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Abstract

This paper builds on existing asset pricing models in an intertemporal

CAPM framework to investigate the pricing of options on interest rate fu-

tures. It addresses the issues of selecting the preferred pricing kernel model by

employing the second Hansen-Jagannathan distance (HJD) criterion. This cri-

terion restricts the set of admissible models to those with a positive stochastic

discount factor that ensures the model is arbitrage free. The results indicate

that the 3-term polynomial pricing kernel with three non-wealth-related state

variables, namely the real interest rate, maximum Sharpe ratio, and implied

volatility, clearly dominates the other candidates. This pricing kernel is always

strictly positive and everywhere monotonically decreasing in market returns

in conformity with economic theory.

JEL code: C11, G12, G13

Keywords: Pricing Kernels, Simulation-based Bayesian Approach, LIBOR Futures

Options
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1 Introduction

This paper investigates the pricing of options written on 6-month LIBOR (London

Interbank O�er Rate) futures in an intertemporal CAPM framework. LIBOR is

the most commonly cited base rate in global money and debt markets including the

Eurocurrency and Eurobond markets. It is the daily reference interest rate at which

banks borrow unsecured funds from other banks in the London wholesale money

market. The overnight LIBOR serves as the benchmark for short-term interbank

loans that are a cornerstone of the money markets while the 3-month LIBOR is em-

ployed as the base rate for short and medium term corporate loans and for �oating

rate corporate bonds. Moreover, the 6-month LIBOR is widely used in the burgeon-

ing over-the-counter derivatives markets such as interest rate and currency swaps.

Hence the hedging of LIBOR exposure is a pervasive problem and the pricing of

hedging instruments such as LIBOR options becomes an important issue.

There are two broad approaches in the literature to pricing options. One widely

adopted approach involves specifying the dynamics of the underlying asset and solv-

ing for the closed-form solution. Examples include Bakshi, Cao, and Chen (1997),

Bates (1996), Pan (2002) for stock index options and Hull and White (1990), Heath,

Jarrow, and Morton (1992), and Singleton and Umantsev (2002) for interest rate

options. Alternatively, a more general approach to evaluating the prices of risky

assets, including derivatives, is to employ an asset pricing kernel, also known as

a stochastic discount factor (SDF). The pricing kernel is a strictly positive ran-

dom variable that succinctly summarizes investor risk and time preferences with
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respect to �nancial assets. It is used to compute today's asset price by stochasti-

cally discounting, state by state, the corresponding payo�s at future dates (Harrison

and Kreps (1979), Hansen and Jagannathan (1991, 1997), Bansal and Viswanathan

(1993), and Chapman (1997)).

The paper makes two contribution to the literature. Firstly, our approach to option

pricing builds on the work of Brennan, Wang, and Xia (2004) and Nielsen and

Vassalou (2006) that establishes the important role of pricing kernels within the

intertemporal CAPM framework of Merton (1973). Our study applies to options on

LIBOR futures the parametric pricing kernel approach that has been successfully

employed in pricing stock index options (Rosenberg and Engle (2002), Jones (2006),

and Brennan, Liu, and Xia (2007)) and stock portfolios (Dittmar (2002) and Vanden

(2004)).

Brennan, Wang, and Xia (2004) stress that the distinguishing characteristic of the

ICAPM is that the state variables in the pricing kernel are not simply any factors

correlated with returns as in arbitrage pricing theory. Instead the innovations in

state variables are able to predict future asset returns. They postulate that the in-

tercept and slope of the instantaneous capital market line are su�cient to describe

the innovations in the investment opportunity set. This is their theoretical justi-

�cation for restricting the number of priced state variables to two in an ICAPM

framework. This ICAPM with aggregate wealth, and real interest rate and maxi-

mum Sharpe ratio as the two non-wealth-related state variables is found to dominate

the Fama-French three-factor model and the CAPM in pricing US equity portfolios

(Brennan, Wang, and Xia (2004)). This is the basis for our choice of the real in-
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terest rate and maximum Sharpe ratio as candidate state variables. We require no

assumptions about the dynamics of interest rates or their term structure.

In the options market, there is strong empirical evidence that market volatility is

priced with a negative risk premium (Coval and Shumway (2001) and Bakshi and

Kapadia (2003)). Based on these �ndings, we consider the LIBOR option implied

volatility as a further non-wealth-related state variable for our pricing kernel. We

use an exponential a�ne function with time-varying innovations to ensure that the

pricing kernel is nonlinear in the three state variables and hence capable of pricing

nonlinear payo�s (Chapman (1997) and Dittmar (2002)). We evaluate two func-

tional forms for market returns, a nonlinear power function and a linear Chebyshev

polynomial approximation. Both are popular choices in the equity and option pric-

ing literature (Brennan (1979), Chapman (1997), Rosenberg and Engle (2002), and

Brennan et al. (2007)). The use of these functional forms ensures comparability

between our results and those of previous studies.

While Brennan et al. (2004) sort their equity portfolios on the basis of size and

book-to-market ratio, we use option moneyness to sort our option portolios. Using

monthly moneyness-based portfolio returns on LIBOR options from January 2000

to February 2008, our results indicate that the coe�cients of the real interest rate,

the maximum Sharpe ratio and implied volatility are all statistically signi�cant

regardless of the functional form. It is in line with the extant literature such as

Collin-Dufresne and Goldstein (2002), Bakshi and Kapadia (2003), Brennan, Wang,

and Xia (2004), Nielsen and Vassalou (2006), Li and Zhao (2006), Bollerslev and

Zhou (2009) and Carr and Wu (2009) for the role of these state variables. This is also
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consistent with the �ndings in Brennan et al. (2007) who use the same functional

forms for index options in the US market and �nd that all candidate state variables

are priced. The implication is that options on LIBOR futures can be priced by

means of a similar set of state variables as that for index options.1 This is also

consistent with the theoretical derivation which indicates that futures prices behave

like stocks with dividend payments in a risk-neutral world, and that the behaviour

of put-call parity for options written on futures contracts and those written on stock

indices is the same (Hull (2008)).

The second contribution is that methodologically our study is one of the �rst papers

that apply the second Hansen-Jagannathan distance (HJD) in evaluating candidate

pricing kernels. There are two motivations for this. On the one hand, the usual

GMM estimation produces problematic pricing kernels that either fail statistical ro-

bustness tests or are inconsistent with economic theory by producing negative or

hump-shaped pricing kernels. On the other hand, the �rst HJD, which measures

pricing errors over the test portfolios and has been widely applied in the literature

(Jagannathan and Wang (1996), Buraschi and Jackwerth (1999), Dittmar (2002),

Lettau and Ludvigson (2001), among others), shares some of the problems inherent

in the GMM approach. By contrast, the second HJD measure restricts our focus to

the family of strictly positive pricing kernels only. This positivity constraint guaran-

tees that the pricing kernels are arbitrage-free, an essential requirement for correctly

pricing contingent claims.

1One minor di�erence is that they employ implied market volatility whereas we use implied

LIBOR volatility as our third state variable.
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However, the second HJD has rarely been applied in the literature mainly due to the

di�culty in deriving a reliable posterior distribution for the test statistic. Notable

exceptions include Hansen, Heaton, and Luttmer (1995), Wang and Zhang (2012),

and Li, Xu, and Zhang (2010). Hansen et al. (1995) develop an asymptotic distri-

bution for the sample estimate of the second HJD under the null hypothesis that a

given stochastic discount factor (SDF) model is misspeci�ed. However, the asymp-

totic theory no longer holds under the null hypothesis of a correctly speci�ed model or

when the second HJD is zero. Wang and Zhang (2012) propose a simulation-based

Bayesian approach that facilitates statistical inference for the second HJD in �nite

samples. Bayesian methods provide us with the full posterior density of the model

parameters and hence the full posterior of the second HJ distance, resulting in in-

ference that takes into account parameter uncertainty and is valid in �nite samples

(Koop (2003)). More recently, Li, Xu, and Zhang (2010) adopt the second HJD as

the yardstick for comparing alternative asset pricing models within a conventional

econometric framework.

We follow Wang and Zhang (2012) and adopt the Bayesian econometrics approach

to provide a robustness test for the second HJD in estimating the pricing kernels.

This is the �rst study that implements this approach for interest rate options. Our

results indicate that the linear Chebyshev polynomial pricing kernels outperform the

non-linear power function models in producing smaller pricing errors. In addition,

unlike the linear pricing kernels obtained from the GMM, those obtained via the

second HJD conform neatly with economic theory by being strictly positive and

decreasing in market returns. These �ndings underline the inherent advantage of
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the second HJD over competing statistical measures in evaluating pricing kernels

for derivatives. The 3-term generalized Chebyshev polynomial model with three

non-wealth-related state variables has the smallest second HJD and hence emerges

as the preferred functional form for pricing options on LIBOR futures.

The rest of the paper proceeds as follows. Section 2 discusses the parametric func-

tional forms of the pricing kernel, the state variables, and the second HJ distance.

Section 3 describes data and analyzes the empirical results. Finally, Section 4 con-

cludes.

2 Methodology

2.1 The state variables

The importance of including non-wealth-related state variables in pricing kernels has

been widely stressed in the literature. The main reason is that such variables enhance

the ability of pricing models in capturing time-varying investment opportunities

(Garcia, Luger, and Renault (2003), Vanden (2004), Santa-Clara and Yan (2010),

among others). Nielsen and Vassalou (2006) postulate that the intercept and slope

of the instantaneous capital market line are su�cient to describe the innovations

in the investment opportunity set in the context of portfolio hedging. Supportive

empirical evidence is given in Brennan, Wang, and Xia (2004).

We follow the above authors in choosing the real interest rate r, and the maximum

Sharpe ratio η as state variables. There is also strong empirical evidence that market
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volatility is priced in the options market. Thus we include implied volatility σ as a

potential third state variables for pricing LIBOR futures options. This particular set

of state variables X ≡ (r, η, σ) facilitates comparison with the results in Brennan

et al. (2007), who adopt the same set of state variables for pricing stock index

options in the US and the UK markets. Hence, this study may be able to shed light

on whether the state variables are distinct for pricing options on di�erent �nancial

assets.

We assume that the real interest rate and the maximum Sharpe ratio follow cor-

related Ornstein-Uhlenbeck processes.2 With further assumptions, the model can

be adapted to the pricing of default-free nominal government bonds.3 The model

parameters and the time series of these two state variables can be estimated from

panel data on UK nominal zero-coupon government bond yields and in�ation via

a Kalman �lter. Following Brennan, Wang, and Xia (2004) and Brennan and Xia

(2006), we assume the real interest rate and maximum Sharpe ratio follow correlated

Ornstein-Uhlenbeck processes and together they de�ne the stochastic discount factor,

dm

m
= −rdt− ηdzm (1)

dr = κr(r̄ − r)dt+ σrdzr (2)

dη = κη(η̄ − η)dt+ σηdzη (3)

where κr and κη are the speed of mean reversion for the real interest rate and the

2It is reasonable to assume that the state variables follow the Ornstein-Uhlenbeck process, a

mean-reverting stochastic process. In our framework, the real interest rate is stochastic and the

risk premia are a part of the Shape ratio (Brennan et al. 2004). Hence, the risk premia are assumed

to follow a simple di�usion process with a mean-reverting drift (see also Kim and Omberg (1996)).
3See Brennan et al. (2004) for details.
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Sharpe ratio, r̄ and η̄ are the long-term mean, σr and ση are the volatility of the two

processes, respectively, and the correlation between them is ρrη. More speci�cally,

ρrη is the correlation coe�cient between the Wiener processes for the real interest

rate and the maximum Sharpe ratio. Implied volatilities are inferred from individual

options and averaged to obtain portfolio volatility.

2.2 The pricing kernels

The pricing kernel approach has been widely employed in the asset pricing literature

(Breeden (1979), Cochrane (1996), Abel (1990), among others). Cochrane (2005)

argues that the projected pricing kernels onto the asset return space have the same

pricing implications as the true pricing kernels. As a result, the portfolio choice

problem for any investor can be solved by the Euler equation

E
[
mt+1R̃i,t+1|Ωt

]
= 1 (4)

wheremt+1 is the pricing kernel, a function of state variable set X; R̃i,t+1 is the gross

return on an asset or portfolio i at time t + 1; and Ωt is the information available

at time t. The pricing kernel is also known as the stochastic discount factor since

it varies over time and across states and can be applied to compute the expected

discounted return that should always be equal to unity.

Motivated by Rosenberg and Engle (2002), two basic forms of the pricing kernel

are implemented. These are a nonlinear power function and a linear Chebyshev

polynomial expansion in aggregate wealth growth, both of which are augmented by

an exponential a�ne function of innovations in the state variables. The use of these
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functional forms in the pricing kernels provides the basis for a comparison between

linear and nonlinear forms of pricing kernels.

Our choice of candidate functional forms is based on �rm theoretical underpinning.

Under the assumptions of constant relative risk aversion (RRA) for economic agents

and a bivariate normal distribution for asset returns and aggregate wealth growth,

Rubinstein (1976) and Brennan (1979) demonstrate that the Black-Scholes option

pricing model implies, in a discrete time setting, a power function: m∗ = k(R̃−γ)/Rf .

Here Rf is the riskfree interest rate, k is a constant, and γ is the RRA parameter. In

continuous time, Bick (1987) uses the same projected pricing kernel but with a con-

tinuously compounding interest rate in the Black-Scholes framework. More gener-

ally, Dybvig (1981) indicates that the projected pricing kernel implied by the Black-

Scholes model is equivalent to a power function of the gross return on aggregate

wealth discounted by the continuously compounded interest rate m∗ = k(R−γ
W )e−r

where k = (E[R−γ
W ])−1.

In light of the theoretical link between the Black-Scholes model and the pricing kernel

approach, we �rst assume that the pricing kernel is expressed as a power function

of aggregate wealth returns, Rw, augmented by an exponential a�ne function of the

innovations in the state variables as follows,4

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 (5)

4The exponential a�ne functional form is adopted to make the pricing kernels nonlinear in order

to capture nonlinear option payo�s. Other methods of making pricing kernels nonlinear include

having higher moments of returns in the pricing kernels (Dittmar (2002)) or adding cross terms

between returns and conditioning variables (Wang and Zhang (2012)).
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where β, b1, b2, and b3 are constants and γ is the RRA parameter. This iso-elastic

function captures the decreasing marginal utility of wealth. However, its main

drawback is that it has weak statistical robustness, as pointed out by Hansen and

Singleton (1982).

The second functional form of the pricing kernel is a linear Chebyshev polynomial in

aggregate market returns. Chapman (1997) discusses the bene�t of approximating

pricing kernels by means of polynomials. Such an approach combines linearity in

the functional form with nonlinearity in the state variables. Hence it is capable of

pricing nonlinear payo�s while retaining linear interpretation. Our second candidate

pricing kernel is expressed as the sum of Chebyshev polynomials augmented by an

exponential a�ne function of the innovations in the state variable as follows,

mt+1 = ℘n(Rw,t+1) exp
b1∆rt+1+b2∆ηt+1+b3∆σt+1 (6)

where ℘n(Rw,t+1) consists of an n-term Chebyshev polynomial. We follow Bren-

nan et al. (2007) and Chapman (1997) and use both 3- and 4-term polynomial

approximations.

2.3 The second HJD andMarkov Chain Monte Carlo (MCMC)

Bayesian inference

Following Wang and Zhang (2012), we estimate the pricing kernel parameters,

θ, by minimizing the second HJD DistHJ2.
5 We obtain the posterior mean of

DistAHJ2/DistBHJ2 for comparing the second HJ distances of candidate pricing kernels

5The interested reader is referred to Wang and Zhang (2012) for more details.
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from a Markov Chain Monte Carlo (MCMC) simulation-based Bayesian approach.

Let zt be a matrix of size t×N+l+k composed of N asset returns rt, l state variables

st, and k factors ft which include all other information like polynomial terms, thus

zt = (r′t, f
′
t , s

′
t)

′. According to Hansen and Jagannathan (1997), the second HJD is

de�ned as

DistHJ2 = {max
λ∈RN

E[m2
t − ([mt − λ′xt]

+)2 − 2λ′qt]}1/2 (7)

where mt is the candidate pricing kernel, RN is the space of N × 1 real vectors, xt

stands for asset payo�s, qt denotes asset prices, [mt − λ′xt]
+ produces non-negative

values and λ′ is a vector of n parameters which are estimated to solve the optimization

problem of the second HJ distance.

For the data-generating process in the MCMC simulation, zt is assumed to follow

a VAR, hence zt = C + Azt−1 + εt, εt ∼ N(0m,Ω). Under the assumption of

independent non-informative prior distributions for the unknown parameters, z0, B

and Ω, we have p(Φ) = p(z0)p(B)p(Ω), where Φ = (z′0, vec(B)′, vech(Ω)′)′, p(z0) ∝

constant, p(B) ∝ constant, p(Ω) ∝ |Ω|−(m+1)/2, m = N + k+ l, and B is the matrix

of parameters including C and A in the VAR system. Note that vec denotes the

conversion from a matrix to a vector when all the columns in a matrix are stacked,

while vech(Ω) is the vector converting the upper triangle of matrix Ω.

The MCMC simulation method is applied to tackle the di�culty in deriving the

posterior distribution of the unknown parameter set Φ. The intuition is that zt is

assumed to follow a general stochastic process which is determined by the unknown

parameters Φ and the conditional probability of z on unknown parameters p(z|Φ).

With the assistance of the Markov Chain Monte Carlo simulations, we can obtain
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a reliable posterior distribution of the parameters ϕ and subsequently a reliable pos-

terior distribution of the second HJ distance. We carry out S = 10, 000 simulations

and discard the �rst S0 = 1000 simulations to approximate the posterior distri-

bution for the second HJ distance. More speci�cally, we implement the following

procedures to compare the second HJD of di�erent candidate pricing kernels.

In the �rst stage, we choose an arbitrary z
(0)
0 , and perform the simulations (j =

1, ..., S):

1. Obtain the jth sample of unknown parameters from their conditional posterior

distributions

• Draw Ω(j) from IW
(
T Ω̂(z

(j−1)
0 ), T − 1,m

)
, where IW is the inverted Wishart

distribution;6

• Draw vec(B(j)) from the truncated normal distribution

N
(
vec(B̂(z

(j−1)
0 )),Ω(j) ⊗ [X(z

(j−1)
0 )′X(z

(j−1)
0 )]−1

)
.

We limit the norm of the eigenvalues of parameter matrix A to be less than

unity to ensure that the VAR is stationary.

• Draw z
(j)
0 from N

(
[A(j)]−1(z1 − C(j)), [A(j)]−1Ω(j)[A(j)′]−1

)
where

Ω̂(z0) =
1

T
[Z −X(z0)B̂(z0)]

′[Z −X(z0)B̂(z0)]

6The Wishart distribution is the conjugate prior to the inverse covariance matrix of a multivari-

ate normal random vector. It is employed as the distribution of the sample covariance matrix from

a multivariate normal distribution. The inverted Wishart distribution is an appropriate choice for

the �rst step of simulations given our assumption that zt follows a VAR and its disturbance follows

a normal distribution with zero means and a covariance matrix of Φ.
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X(z0) =
(
(1, z′0)

′, (1, z′1)
′, ..., (1, z′T−1)

′
)′

B̂(z0) = [X(z0)
′X(z0)]

−1X(z0)
′Z

Z = (z1, ..., zT )
′.

2. Obtain the jth sample with unconditional mean µ̃(νt) and variance Σ̃(νt)

µ̃(νt)
(j) = C̃(j) + Ã(j)µ(zt)

(j)

Σ̃(νt)
(j) = Ã(j)Σ(j)Ã(j)′ +DΩ(j)D′

where

µ(zt)
(j) =

(
Im − A(j)

)−1
C(j)

vec(Σ(zt)
(j)) =

(
Im2 − A(j) ⊗ A(j)

)−1
vec(Ω(j)).

We assume that zt follows a vector autoregressive (VAR) process, and the sample vt

is equal to C̃ + Ãzt−1 +Dεt. Therefore, D is the vector of parameters on the noise

term and
⊗

is the Kronecker product indicating element by element multiplication.

3. Compute the value of the second HJD for the jth sample.

In the second stage, we compute the posterior mean of second HJD of candidate

pricing kernels and the posterior mean of DistAHJ2/DistBHJ2 for comparing the sec-

ond HJD. Here, DistAHJ2 is the second HJD of the candidate pricing kernels, while

DistBHJ2 is the one with smallest second HJD over the tested portfolios. The candi-

date pricing kernel with the smallest second HJD is chosen.
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3 Data and empirical analysis

3.1 Data

We use settlement prices for 6-month LIBOR futures options traded in the London

International Financial Futures and Options Exchange (LIFFE) from January 2000

to February 2008. We exclude options whose prices are below 5 pence or have less

than 14 day to maturity to avoid potential stale prices and microstructural issues.

We calculate monthly returns for all the options as long as they are traded for

two consecutive months. We group option returns into �ve put and call portfolios

according to their moneyness, de�ned as the di�erence between the underlying asset

price and the strike price of the option and then divided by the strike price. The

moneyness classes are chosen so that numbers of options are approximately evenly

spread across the portfolios.

Summary statistics for the option return portfolios are reported in Table 1.

[Insert Table 1 around here]

All the call option portfolios have positive 1-month returns. Put option returns tend

to be negative except in one case but the returns are less negative for deep in-the-

money (ITM) put portfolios. According to the Jarque-Bera test, the null hypothesis

of a normal distribution is rejected at the 5% level for all the portfolios except the

most ITM call portfolio.

For options written on LIBOR futures, the underlying futures level is calculated

as 1-LIBOR rate, so higher interest rate risk corresponds to lower underlying asset

15



price in a manner similar to the index options. Hence it is not surprising to observe

similar patters in the portfolio option returns in Table 1, as out-of-money (OTM)

put index options are often overpriced with low expected returns as a precaution

against extreme events like market crashes (Jackwerth (2000)).

3.2 Empirical results

In the GMM estimation, we employ the following set of instrumental variables: a

constant, the real interest rate, the maximum Sharpe ratio, and the implied volatil-

ity. Table 2 provides summary statistics for bond yields, the state variables and

their innovations.

[Insert Table 2 around here]

The data for inferring the state variables consist of the UK government bond yields

of di�erent maturities from January 1996 to February 2008 that we obtain from the

Bank of England website. We use the longest time series of data available from this

source to have more reliable estimation for the state variables.

In Panel A, we can see a slow increase in monthly yields with increasing maturity and

a rather stable and small standard deviation. Using these bond yields of di�erent

maturities and the UK in�ation rate, also taken from Bank of England website, the

two state variables, r and η, are obtained via a Kalman �lter. The implied volatility,

σ, is obtained as the average of the implied volatility of individual options in the

portfolio.
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In Panel B, we tabulate summary statistics for the state variables and their inno-

vations. We notice that the average return from the nominal interest rate, taken as

the midpoint between LIBOR and LIBID (London interbank bid rate), is very close

to the return for holding the market portfolio. This is due to a sharp correction

in the market in the late 1990s and early 2000s. The returns to aggregate wealth,

rW , are proxied by the FTSE 100 index returns, which have a positive return with

a large standard deviation of 0.48.

Our main empirical results are summarized in Tables 3 and 4. Table 3 presents the

results from the GMM estimation.

[Insert Table 3 around here]

Panel A presents the parameter values for the iso-elastic power pricing kernel. We

�rst include all three candidate state variables in the pricing kernel. The relative

risk aversion parameter γ is 1.17, which is much smaller than the estimate of 4.05

in Bliss and Panigirtzoglou (2004) for 4-week UK stock index options with a power

utility function. The coe�cient for the real interest rate is 14.20 and signi�cant. The

positive coe�cient is consistent with previous evidence of a negative risk premium

associated with interest rate risk in Brennan et al. (2004) and Brennan et al. (2007).

The coe�cient for the maximum Sharpe ratio is -0.58 and also signi�cant, in line with

the �ndings in Nielsen and Vassalou (2006) and Brennan et al. (2004). This implies

a positive risk premium for this state variable. The coe�cient for volatility risk is

12.94 and signi�cantly, consistent with �ndings in Collin-Dufresne and Goldstein

(2002), Bakshi and Kapadia (2003) and Li and Zhao (2006) for pricing stock index

and interest rate options and Bollerslev and Zhou (2009) and Carr and Wu (2009)
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for stock index. In addition, for iso-elastic power kernels the test for over-identifying

restrictions is clearly rejected regardless of the state variables. This points to a lack

of statistical robustness for this functional form (Hansen and Singleton (1982)).

Interestingly, for the Chebyshev polynomials, the value for the over-identifying test

JT is greatly reduced and now the over-identifying restrictions are all accepted except

one. This implies improved overall robustness. The coe�cient for volatility is still

signi�cantly positive for the 3-term polynomial pricing kernels reported in Panel B

and but not for 4-term ones in panel C. However, the over-identifying test of 3-term

polynomial pricing kernels with three state variables is accepted, implying that the

implied volatility should be included in the pricing kernel. The rejection of the over-

identifying restrictions for the 4-term polynomial with three state variables could

be due to the over-speci�cation of the pricing kernel consisting of a large number of

factors.

In addition, the 4-term polynomial with two state variables, the real interest rate and

maximum Sharpe ratio,7 and the 3-term polynomial with all three state variables

have the lowest value for the JT test in Panels C and B, respectively. This indicates

that all the three state variables are essential for pricing interest rate futures options.

The market-related component of the pricing kernels are shown in Figure 1.

[Insert Figure 1 around here]

7As the real interest rate and maximum Sharpe ratio are theoretically motivated together in

Brennan et al. (2004) and Nielsen et al. (2006), we pair them together in the empirical tests.
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We observe a high degree of variation in the scale and shape of the pricing kernels.

Contrary to the literature, large sections of the polynomial pricing kernels are nega-

tive. There is a clear hump in the 3-term polynomials, while the 4-term polynomials

exhibit an N-shape over the market returns. They indicate that investors are risk

seeking in the positive slope regions and will pay to acquire fair gambles in wealth.

This is not only contrary to economic theory but also counter-intuitive. More impor-

tantly, the negative pricing kernels re�ect the existence of arbitrage opportunities,

contrary to the fundamental assumptions of asset pricing theory.

Table 4 summarizes the empirical results when the coe�cients are obtained by min-

imizing the second HJ distance.

[Insert Table 4 around here]

Panel A presents the parameter values for the iso-elastic power pricing kernel. We

�rst include all three state variables in the pricing kernel. The coe�cients for the

real interest rate, maximum Sharpe ratio, and volatility are 21.03, -1.05, and 11.36,

respectively, similar in magnitude to the values in Table 3. Using MCMC simulation-

based Baysian approach, the mean second HJD is 0.35 with three state variables

in the pricing kernel. This is the lowest among the nonlinear iso-elastic pricing

kernels with di�erent state variables. This is additional evidence that all three state

variables should be included in the pricing kernel.

We also test the pricing kernel with a smaller set of state variables with the real

interest rate and maximum Sharpe ratio only. We notice that the parameter for

relative risk aversion has a similar value, and the coe�cients for the real interest
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rate and maximum Sharpe ratio have the same sign and similar magnitude as in

the previous speci�cations. When we remove the implied volatility and maximum

Sharpe ratio from the pricing kernel and leave only the real interest rate, the mean

second HJ measure increases from 0.35 to 0.39 while the coe�cient of risk aversion

becomes negative when there is no non-wealth-related state variable. These further

emphasize the importance of incorporating non-wealth-related state variables in as-

set pricing kernels. The results also demonstrate that interest rate options can be

priced by a similar set of state variables as for stock index options in previous stud-

ies. Again, this is consistent with the extant literature that in a risk-neutral world,

prices of stocks with dividends behave like futures prices. The only di�erence is that

the implied volatility of the LIBOR futures option is used in our case and that of

the stock index option in the other studies.

In Panels B and C, we tabulate the parameter estimates for the 3- and 4-term

polynomial pricing kernels, respectively. There is reasonably good consistency of the

sign and magnitude of the parameter estimates between these two panels and also

with Panel A. Speci�cally, in Panel B with third degree polynomial expansions, the

mean second HJD measure drops from 0.12 to 0.08 when volatility is incorporated

in the pricing kernel. Compared with the 3-term polynomial with real interest

rate only, the second HJD is also reduced dramatically when the maximum Sharpe

ratio is considered. These again con�rm the necessary inclusion of these three state

variables. In Panel C when there are four polynomial terms, although the pricing

kernels could be more �exible with an additional term, the second HJD is similar

or even slightly larger than that of the three-term polynomials. Similar to previous
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results, the pricing kernel with all three state variables has the smallest mean second

HJD.

In the last column of Table 4, we report the posterior mean of the ratio of second HJD

between two candidate pricing kernels DistAHJ2/DistBHJ2 using MCMC simulation-

based Bayesian approach. The second HJD of the 3-term polynomial approximation

with all three state variables is employed as DistBHJ2 as its mean is the lowest among

all speci�cations. This implies that this pricing kernel is potentially the preferred

one among all candidates. Therefore, the value in the last column is the posterior

mean of the ratio between the candidate pricing kernels and the 3-term polynomial

with three state variables.

As we expected, results show that the 3-term polynomial with three state variables

is the preferred pricing kernel as the posterior mean of the ratio is the smallest.

Similar to the rankings of the second HJD, the posterior means indicate that the 3-

term polynomial outperforms the 4-term polynomial as well as the iso-elastic power

function. Finally, consistent with the GMM estimates, the iso-elastic power func-

tion with three state variables has the smallest posterior mean among its family

candidates.

The market-related component of the above pricing kernels is plotted in Figure 2.

[Insert Figure 2 around here]
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All the pricing kernels are strictly positive thus o�ering no arbitrage opportunity.

They are predominantly monotonically downward sloping,8 conforming to economic

theories predicting a risk averse representative agent with diminishing marginal util-

ity (Rubinstein (1976) and Lucas (1978)). The pricing kernels depicted in Figure 2

are in contrast to the empirical pricing kernels recovered from the US and UK stock

index options in Brown and Jackwerth (2004), Liu et al. (2009), and Rosenberg and

Engle (2002). Although they adopt di�erent methodologies over di�erent sample pe-

riods, these papers all report hump-shaped pricing kernels. Our results show that

utilizing information contained in non-wealth-related state variables and employing

an econometric methodology that speci�cally addresses the issue of non-negativity in

the SDF, we can produce empirical results that comply with theoretical predictions.

Summarizing, for our sample period the 3-term polynomial approximation with three

non-wealth-related state variables - the real interest rate, the maximum Sharpe ratio

and the implied volatility - emerges as our preferred pricing kernel. After employing

the second HJD as the objective function, even the linear pricing kernels are arbi-

trage free and monotonic. Therefore, the second HJD not only provides a robust

criterion for testing the performance of candidate pricing kernels over contingent

claims but also produces pricing kernels that are consistent with economic theory.

Finally, our results indicate that the state variables for interest rate futures options

are very similar to those for pricing stock index options in Brennan et al. (2007).

8For the 3-term polynomials with one and two state variables, there is a very small section of

pricing kernels with a marginally positive slope when the market return is low.
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3.3 Robustness test

Our full sample includes the onset of 2007-08 banking crisis. Thus we test whether

the results are robust when we remove the banking crisis from the sample. Table 5

presents the empirical results from the GMM estimation using data up to December

2006.

[Insert Table 5 around here]

Panel A reports parameter values for the iso-elastic power pricing kernel when all

three candidate state variables are included in the pricing kernel. The results are

qualitatively similar to those for the full sample period except that now the coe�-

cient of volatility risk is insigni�cant. Thus volatility risk is not priced for options

prior to the onset of the banking crisis. Likewise, the coe�cient for implied volatil-

ity is invariably insigni�cant for the polynomial pricing kernels reported in Panels

B and C. The polynomial pricing kernel with two state variables, the real interest

rate and maximum Sharpe ratio, now has the lowest value for the JT test.

Table 6 summarizes the empirical results when coe�cients are obtained by minimiz-

ing the second HJD using the pre-crisis observations only.

[Insert Table 6 around here]

Panel A summarizes parameter values for the iso-elastic power pricing kernel. Sim-

ilar to the results for the whole sample, the average value of the second HJD is

larger for iso-elastic power pricing kernel than that for polynomial approximations.

The 3-term polynomial pricing kernel with two state variables in Panel B has the

lowest average second HJD. Consistent with the GMM results in Table 5, only the
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real interest rate and maximum Sharpe ratio are included in the pricing kernel and

implied volatility is not priced. The plots of the market-related component of the

polynomial pricing kernels estimated by second HJD are monotonically downward

sloping, in conformity with economic theory.

We have undertaken two more robustness tests. In the �rst test, we relax the VAR(1)

assumption in Section 2.3 and assume that the variables follow a VAR(2) in the

data-generating process. In the second robustness test, we assume that the sample

in the data-generating process follows a Student t distribution rather than a nor-

mal distribution. We then re-compute the corresponding second HJ distance. The

new empirical results are qualitatively the same as the previous results, namely, the

3-term generalized Chebyshev polynomial model with three non-wealth-related state

variables has the smallest second HJ distance and hence remains our preferred func-

tional form for the whole sample. In addition, for the pre-crisis sample, volatility is

not priced and the 3-term Chebyshev polynomial kernel with two state variables is

still preferred.9

3.4 Discussion

Our robustness test indicates that the 3-term polynomial approximation with the

real interest rate and the maximum Sharpe ratio emerges as our preferred pricing

kernel. This contrasts with the full sample results in which all three state variables,

including implied volatility, are priced. The di�erence in the priced state variables

9We thank an anonymous referee for suggesting robustness testing. Detailed results are available

from the authors upon request.
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is likely due to the fact that the LIBOR rate has been unusually stable due to

the success of implicit or explicit in�ation targeting over the course of the Great

Moderation up to the onset of the banking crisis in mid-2007. Both the UK and US

economies enjoyed unusually stable macroeconomic and monetary policy regimes

over the period up to 2007 and LIBOR options traded against this background. It

has been argued that the low interest rate policy during the latter part of the Great

Moderation may have contributed to the onset of the banking and �nancial crisis in

2007 as this policy focused on goods price in�ation and ignored incipient asset price

in�ation. This may explain the lack of signi�cance of implied LIBOR volatility as

a state variable in the option pricing kernel. More speci�cally, this may be because

the underlying asset, the LIBOR 6-month interest rate, was less volatile before the

�nancial crisis. We �nd that the variance of the LIBOR 6-month interest rate over

the entire sample period is 0.71 while it is 0.61 in the pre-crisis period. Therefore,

the volatility becomes an important state variable with the onset of the banking crisis

for options on interest rate futures.

4 Concluding remarks

In this paper, we evaluate option pricing models for LIBOR interest rate futures

within the intertemporal CAPM framework employing the second HJD criterion

and monthly return portfolios on these options from January 2000 to February

2008. Using the Bayesian methodology of Wang and Zhang (2012), the empirical

results show that the three-term polynomial pricing kernel with three state variables

25



- the real interest rate, maximum Sharpe ratio and implied option volatility - has the

smallest second HJD and thus is the preferred pricing kernel. The latter is strictly

positive and everywhere monotonically decreasing in market returns in conformity

with economic theory. However, when we con�ne our sample to the pre-crisis period

up to December 2006, the three-term polynomial pricing kernel with just two state

variables is preferred and implied option volatility is not priced. The success of

monetary policy during the Great Moderation in maintaining low and stable interest

rates from the early 1990s seems the most plausible explanation for this.

In this paper, we have applied a Bayesian-based methodology in using the second

HJD to choose our preferred pricing kernel. In future work, it would be interesting

to apply the recently proposed approach of Li, Xu, and Zhang (2010) which adopts

conventional econometric methods in estimating the second HJD.
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Table 1. Summary statistics of the LIBOR option portfolio returns

moneyness no. mean std skew kurt min max JB test

Call Options

≤ 0 51 0.099 0.687 2.183 7.051 -0.724 3.576 252.388 (0.000)

≤ 0.01 48 0.121 0.425 2.046 7.134 -0.476 2.348 247.620 (0.000)

≤ 0.02 48 0.049 0.169 1.034 2.400 -0.295 0.761 36.606 (0.000)

≤ 0.03 42 0.028 0.102 0.581 1.129 -0.210 0.404 9.417 (0.000)

> 0.03 45 0.019 0.066 0.335 0.288 -0.124 0.226 1.943 (0.378)

Put Options

≤ −0.01 28 -0.077 0.658 2.849 11.067 -0.715 3.631 567.992 (0.000)

≤ 0 32 -0.052 0.664 2.356 6.368 -0.733 2.897 231.699 (0.000)

≤ 0.01 49 0.026 0.400 1.960 4.878 -0.465 1.841 144.581 (0.000)

≤ 0.02 50 -0.004 0.161 1.430 3.666 -0.301 0.702 79.260 (0.000)

> 0.02 59 -0.006 0.096 0.752 1.939 -0.216 0.347 21.649 (0.000)

This table provides summary statistics of the monthly portfolio returns with LIBOR futures options from January

2000 to February 2008. The p-values for the Jarque-Bera test of normality are reported in the parentheses.
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Table 2. Summary statistics of UK government bond yield and state variables

Panel A: UK government bond yields (%)

Maturity (yr) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0

Mean 4.74 4.84 4.93 4.99 5.02 5.05 5.07 5.08 5.10

Stdev 1.56 1.41 1.29 1.21 1.16 1.12 1.10 1.08 1.07

Max 7.23 7.03 7.13 7.38 7.58 7.75 7.89 8.00 8.18

Min 0.59 1.21 1.74 2.17 2.52 2.81 2.99 3.15 3.48

Panel B: State variables

r ∆r η ∆η σ ∆σ rf rW
Mean 0.025 0.002 0.838 0.003 0.153 0.001 0.052 0.050

Stdev 0.075 0.027 0.949 0.289 0.050 0.016 0.011 0.476

Skew -0.323 3.258 0.043 -3.069 0.510 1.279 0.244 -0.283

Panel A provides summary statistics of UK government bond yields of di�erent maturities from January 1996 to

February 2008. These data are taken from the Bank of England website. Panel B shows summary statistics of the

state variables and the innovations of the state variables used in the pricing kernels. The state variables are real

interest rate r, in�ation π, maximum Sharpe ratio η, riskfree rate r, and returns on aggregate wealth proxied by

FTSE-100 index returns.
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Table 3. GMM parameter estimates of the pricing kernels

β γ r η σ JT

Panel A: Iso-elastic power function

0.729 1.169 14.195 -0.583 12.938 145.832

(0.000) (0.649) (0.000) (0.037) (0.010) (0.000)

0.629 2.481 17.170 -0.559 126.184

(0.000) (0.285) (0.000) (0.034) (0.000)

0.627 3.666 12.881 123.973

(0.000) (0.088) (0.000) (0.000)

1.002 1.868 152.801

(0.000) (0.000) (0.000)

Panel B: Polynomial approximation (n=3)

41.828 -1.448 17.665 26.369

(0.000) (0.000) (0.043) (0.999)

26.151 -1.481 47.159

(0.000) (0.040) (0.734)

18.465 53.044

(0.000) (0.550)

Panel C: Polynomial approximation (n=4)

41.847 -1.598 7.942 73.750

(0.000) (0.000) (0.330) (0.025)

33.640 -1.473 36.878

(0.000) (0.000) (0.955)

19.795 48.619

(0.000) (0.681)

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) exp
b1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term Chebyshev

polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio, and volatility, respectively.

JT is over-identifying test statistic. The p-values are reported in the parentheses.
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Table 4. Second HJ distance parameter estimates of the pricing kernels

β γ r η σ 2nd HJ distance posterior mean

(mean) DistAHJ2/DistBHJ2

Panel A: Iso-elastic power function

0.585 4.607 21.028 -1.053 11.356 0.352 4.241

0.655 4.574 19.918 -0.747 0.479 5.771

0.768 2.778 15.042 0.392 4.723

0.988 -3.646 0.526 6.337

Panel B: Polynomial approximation (n=3)

18.218 -1.314 12.756 0.083 1.000

16.912 -0.995 0.121 1.458

13.117 0.204 2.458

Panel C: Polynomial approximation (n=4)

19.522 -1.558 9.411 0.314 3.483

16.559 -0.852 0.310 3.735

11.603 0.248 2.988

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) exp
b1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term Chebyshev

polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio, and volatility, respectively.

The posterior mean of the ratio of the 2nd HJ distance are also reported, in which the 2nd HJ distance of the

3-term polynomial approximation with three state variables are employed as the denominator DistBHJ2.
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Table 5. GMM parameter estimates of the pricing kernels (Pre-crisis samples)

β γ r η σ JT

Panel A: Iso-elastic power function

0.533 5.211 44.834 -3.354 10.810 153.960

(0) (0.120) (0) (0) (0.187) (0)

0.642 5.869 39.694 -3.039 147.641

(0) (0.012) (0) (0) (0)

0.901 3.360 11.431 158.935

(0) (0.034) (0) (0)

1.001 4.116 153.137

(0) (0) (0)

Panel B: Polynomial approximation (n=3)

45.960 -3.481 14.949 48.859

(0.002) (0.001) (0.248) (0.636)

47.773 -3.079 39.632

(0.020) (0.002) (0.928)

36.667 52.468

(0.002) (0.572)

Panel C: Polynomial approximation (n=4)

44.935 -3.602 12.966 39.383

(0.029) (0.010) (0.346) (0.901)

40.945 -3.695 36.888

(0.025) (0.005) (0.955)

20.794 42.555

(0.012) (0.870)

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) exp
b1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term Chebyshev

polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio, and volatility, respectively.

JT is over-identifying test statistic. The p-values are reported in the parentheses.
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Table 6. Second HJ distance parameter estimates of the pricing kernels (Pre-crisis
samples)

β γ r η σ 2nd HJ distance posterior mean

(mean) DistAHJ2/DistBHJ2

Panel A: Iso-elastic power function

0.915 4.050 39.379 -2.967 10.034 0.313 2.285

0.755 4.356 33.224 -3.331 0.370 2.701

0.811 4.306 10.970 0.252 1.839

0.969 4.162 0.289 2.109

Panel B: Polynomial approximation (n=3)

40.219 -3.397 12.468 0.212 1.547

41.597 -4.004 0.137 1.000

18.143 0.178 1.299

Panel C: Polynomial approximation (n=4)

42.954 -3.083 15.170 0.244 1.781

46.828 -3.270 0.294 2.146

26.982 0.201 1.467

Panel A gives the parameters estimated for the iso-elastic power function

mt+1 = β(Rw,t+1)
−γ expb1∆rt+1+b2∆ηt+1+b3∆σt+1 .

Panels B and C present the parameters estimated for the polynomial pricing kernel

mt+1 = ℘n(Rw,t+1) exp
b1∆rt+1+b2∆ηt+1+b3∆σt+1 ,

where γ is the risk aversion parameter, Rw,t+1 is portfolio returns, ℘n(Rw,t+1) consists of n-term Cheby-

shev polynomials, and r, η, and σ stand for the real interest rate, maximum Sharpe ratio, and volatility,

respectively. The posterior mean of the ratio of the 2nd HJ distance are also reported, in which the 2nd HJ

distance of the 3-term polynomial approximation with two state variables are employed as the denominatorDistBHJ2.
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