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Small assemblies of hypothalamic ‘parvocellular’ neurons release
their neuroendocrine signals at the median eminence to control
long-lasting pituitary hormone rhythms essential for homeostasis.
How such rapid hypothalamic neurotransmission leads to slowly-
evolving hormonal signals remains unknown. Here, we show that
the temporal organization of dopamine release events in freely-
behaving animals relies on a set of characteristic features that are
adapted to the dynamic dopaminergic control of pituitary prolactin
secretion, a key reproductive hormone. First, locally generated
dopamine release signals are organized over more than four orders
of magnitude (0.001 Hz- 10 Hz). Second, these dopamine events are
finely-tuned within and between frequency domains as building
blocks that recur over days to weeks. Third, an integration time
window is detected across the median eminence, and consists of
high-frequency dopamine discharges that are coordinated within
the minutes range. Thus, a hierarchical combination of time-scaled
neuroendocrine signals displays local-global integration to con-
nect brain-pituitary rhythms and pace hormone secretion.

dopamine | prolactin | rhythms | hypothalamus

A remarkable function of the brain is its capability to in-
tegrate temporal information with complex physiological re-
sponses. This has been well established for behavioral responses
such as non–rapid eye movement (NREM) sleep, where three
neuronal oscillations with distinct frequency bands support in-
formation transfer (1). Yet the neuronal mechanisms that or-
chestrate the dialog between the brain and other basic functions
like reproduction, lactation and growth remain largely unknown
(2-5). They depend on the fine tuning of pituitary hormone
pulses by small assemblies of hypothalamic neuroendocrine or
parvocellular neurons, which release specific secretagogues at the
median eminence (ME) (4, 6).

Here, we took advantage of the anatomical organisation of
the ME to investigate how the tuberoinfundibular (TIDA) neu-
ronal population (7, 8) releases dopamine (DA) to negatively
regulate pituitary secretion of prolactin (PRL), a key reproduc-
tive hormone (2). To do so, miniaturized amperometric carbon
fiber implants were used to detect DA release events (9) for
days to weeks in freely-behaving mice. Using this approach, we
uncovered a hierarchically-organized delivery of release events
over four orders of magnitude (from <0.1 sec to several hours),
which correlate with the dynamics of PRL in the bloodstream.

RESULTS
Frequency-coding of DA release events in vivo

To characterize the release dynamics of TIDA nerve terminals
in vivo, we employed long-term constant voltage amperometry
in awake mice using thin (30 µm tip diameter) carbon fibers im-
planted into the ME (Fig. 1A). Voltage was clamped at - 700 mV
to allow detection of DA released from TIDA neurons. DA am-
perometry was performed continuously during several days, and
the relationship with PRL secretion was assessed using tail blood
micro-sampling for high-sensitivity mPRL ELISA developed in-
house (10) (Fig. 1A). Single carbon fiber electrode recordings

revealed robust DA currents (median 325 nA, IQR: 127 to 822
nA) due to oxidation of DA to dopamine-o-quinone (Fig. 1A),
and these could be robustly detected over the long term (Fig.1B)
(n = 7 virgin female mice). We then used DA as a relevant readout
to explore the dynamics of TIDA neuron population function in
freely-behaving animals. DA currents at the ME level discharged
over different timescales (Fig. 1B, C) and more frequently during
the night than day (Fig. 1D) (mean counts/h from ZT 0, in 6 hour
blocks: 18.7, 27.2, 28.6, 30.4), implying that the strength of TIDA
neuron excitability is likely modular around the day/night switch.
DA release events were often grouped and interspaced by long-
lasting (dozens of minutes to several hours) silent periods, sug-
gesting nested relations between high and low frequency output
patterns (Fig. 1B,C). No clear association between DA current
density and estrus cycle stage was detected (Fig. 1C and Fig. S1).

Analysis of inter-event intervals (IEI) for DA release unveiled
a wide range of time intervals, from less than 100 ms to a few
hours, with two principal frequencies of 1.5 Hz and 12 Hz (Fig,
1E). Elevated release from TIDA neurons corresponded with
periods of lowered PRL concentration (Fig. 1F). A delay of
several minutes between decreasing PRL levels and the onset of
high-frequency DA release events was also observed following
exogenous PRL injection (Fig. 1G), and these occurred at similar
frequencies (0.9 Hz and 17 Hz) (Fig. 1H) to those recorded during
spontaneous activity (Fig. 1E). Notably, this response outlasted
the decrease in PRL levels (Fig. S2), supporting a role for persis-

Significance

The hypothalamo-pituitary axis controls a wide-range of
homeostatic processes including growth, stress and reproduc-
tion. Despite this, the hypothalamic neuron firing patterns that
lead to slowly-evolving pituitary hormone rhythms remain
enigmatic. Here, we employed in vivo amperometric record-
ings in freely-behaving mice to investigate how tuberoin-
fundibular neurons release dopamine (DA) at the median
eminence (ME) to control pituitary prolactin secretion. Using
this approach, we show that DA release occurs as multiple
locally-generated and time-scaled secretory events, which are
integrated over a range of minutes across the ME. These results
provide a broad physiological mechanism for the dialog that
occurs between the brain and pituitary to dictate hormone
rhythms over multiple timescales, from ultradian to seasonal.
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Fig. 1. . In vivo monitoring of DA release events at the median eminence level. (A)Electrodes were implanted at the median eminence (ME) of mice and
dopamine (DA) was detected using constant voltage amperometry. Serial blood micro-sampling was performed from the tail vein. (B) Representative 24 hour
recording of DA release (top, shaded area is lights-out), with zoom of a 10-minute sequence (bottom). (C) Representative 11 day recording from a female
mouse. Each vertical line corresponds to a single secretion event. The stage of the estrus cycle is indicated on the left for each day (M, metestrus; D, diestrus;
P, proestrus, E, estrus). (D) Mean distribution of DA release events during the day (n = 80 days from 7 female mice). (E)Histogram of inter-event intervals
(IEIs): two prominent frequencies are apparent at 1.5 and 12 Hz (n = 80 days, from 7 female mice). (F)Relation between DA and PRL. Average normalized PRL
levels occurring around a DA event (n = 501 DA events, from six 1 hour long sessions) (black, mean; blue, SEM). (G) DA secretory response to a i.p. injection
of 1µg ovine PRL (PRL injected at time 0)(from 5 animals, 7 injections). (H) Distribution of the IEIs of DA events induced by i.p. injection of PRL. (I) Example of
simultaneous recording of PRL levels (red) and DA release events (black). In all cases, bar graphs show the mean ± SEM.

tent PRL receptor signaling (2, 11, 12) or other mediators (13-15)
in the generation of high-frequency DA release events.

Conversely, the arrest of high frequency DA release events
was followed a few minutes later by an increase in PRL levels
(Fig. 1F,I), resembling the previously described responses to
administration of a D2 receptor antagonist (10). Thus, the TIDA
neuron population has the capability to generate bouts of DA
release events at relatively high frequencies (Hz range), which
are inversely correlated with PRL levels in the bloodstream of
freely-moving mice. We were also able to record these episodic
high-frequency DA events over a number of days during lactation
(Fig. S3), although their amplitude and frequency were lower,
most likely due to the reported loss of DA granular content at
this time (9).

Long-range organization of DA release events at the local ME
level

We next examined whether these sub-second DA release
events possess a secondary/tertiary organization at the local level
i.e. in the close vicinity of carbon fiber tips. Using cluster analysis
to group DA currents on the basis of their shape, and bootstrap-
ping to identify temporal series of events appearing with a higher-
than-chance frequency during the recording period, a specific

distribution could be revealed. In 6 of the 7 recorded mice, several
repetitive patterns of DA release events were found, with stereo-
typical features remaining consistent between different animals
recorded on different days (Fig. 2A, Fig. S4).

Further analyses demonstrated that these stereotyped pat-
terns of DA release were not randomly-distributed, but rather
appeared as chains of sequential events within the same group
and/or between groups (Fig. 2 B-E). These recurrent motifs of
DA release events were scaled from the millisecond (Fig. 2B-D)
right up to the hour (Fig. 2E) range, and could even be detected
over days (Fig. 2F-I). Thus, the mechanisms controlling TIDA
neuron activities appear to be inherently robust.

Local-global integration of DA release events across the me-
dian eminence

A long-standing question regarding parvocellular neuron
function is how nerve terminals discharge their neurohormones
across the ME to sculpt pituitary output (2-4, 6). Given that
TIDA nerve terminals abut over the whole ME (7, 8), dual-carbon
fiber recordings were carried out 500 µm apart rostro-caudally,
spanning the population (n = 3 animals). While distant DA events
at high frequencies (≥1 Hz) were not synchronized (Fig. 3A), DA
events were coordinated with IEI’s in the minutes range during
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Fig. 2. Temporal patterning of DA release events. (A) Distribution of IEIs for
each class of event obtained after clustering all events from one recording
by shape (n = 13541). Insets show average event shape in each group; the
proportion of each class is shown near each graph. (B-E) Example of temporal
patterns on DA release. Each dot represents a single DA release event,
colored depending on the subgroup (as in figure 2A). Each line shows one
repetition of the sequence during the recording; five examples of repetition
are shown for each pattern. (F-I) Frequency of the four temporal patterns
during 8 days of recording.

most of the recordings (Fig. 3B, C). This temporal coordination
was not seen when each electrode was considered separately
(Fig. 3D), suggesting that it is not simply due to hypothalamic
PRL feedback, but rather effects on TIDA neuron interactions.
Frequencies of 1.39 ± 0.12 Hz and 10.08 ± 2.6 Hz were both
present during the dual electrode recordings of coordinated DA
release events (n = 6) (Fig. 3E, F). Such spatial organization
strengthens the view of a large-scale coordination within the
TIDA neuron population, which may provide a means for trans-
forming short-lived hypothalamic signals into long-lasting inputs
for downstream endocrine targets.

DISCUSSION

Our results show how an ensemble of parvocellular TIDA neu-
rons delivers its neuroendocrine products towards ME portal
vessels in a freely-behaving mouse model. DA release events
are repeated over weeks as network-driven rhythms that cover
more than four orders of magnitude of frequency, from infra-slow
(<0.001 Hz) to fast rhythms (1-10Hz). This organization occurs
not only locally within, but also across the TIDA neuron assembly,
as DA release events are scaled over the minute-range throughout
the ME (Fig. 4).

Specifically, the use of miniaturized carbon fibers
stereotaxically-implanted into the ME allowed us to detect
and discriminate DA-related currents in vivo, which were far
more complex, but also more organized than spike firing activities
recorded in parvocellular neurons from either brain slices (9,
14-17) or anesthetized animals (18). Even though the small tip
of the carbon fiber was likely able to detect DA release from
only a few TIDA neurons, we observed a variety of rhythms.
First, high frequency (about 1 and 10 Hz) events were prominent

Fig. 3. Spatial patterning of DA release events. (A) Representative double
recording of DA secretion at distant sites in the ME (500 µm rostro-caudal),
showing de-synchronization of release events at the minute timescale. (B)
Distribution of events from a double recording. Top: “rug plot” of DA release
events, where each vertical line represents one event detected by one of
the two electrodes. Bottom: density plot of the DA events, showing coin-
cidence over a long time scale. (C)Cross-distribution of IEI between the two
electrodes, showing reciprocal delays during a ∼7 minute time lag. (D) Auto-
correlation of the signals on each of the single electrodes only shows the
expected peak at lag 0, suggesting that the coordination is not dependent
on pituitary feedback. (E-F) Distribution of IEIs from the signals detected by
the two electrodes during a period in which DA release was only detected by
one electrode (E) (light purple) or during a period of coordination between
both electrodes (F) (light purple and green; dark purple shows overlap of IEIs
between both electrodes).

locally but not synchronized globally. As the site of recording
is variable and these rhythms were observed in all animals, a
large number of local DA release processes presumably originate
from TIDA neurons capable of secreting at high rates. The latter
would be considered as “executive” in the top-down control
of pituitary PRL rhythms by hypothalamic DA inputs, since
they coincided with drops in pituitary PRL secretion. Second,
slower rhythms of DA release (with time periods of minutes
to hours) were detectable locally due to the ability of small
carbon fibers to measure DA events over days to weeks with
no noticeable deleterious effects. Strikingly, these were not
distinguishable from high frequency DA events with which a
hierarchal combination occurred regarding both the specific
frequencies generated and how they organize in time as temporal
motifs. Since the local-global integration of high frequency DA
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Fig. 4. Schematic of the brain-pituitary dialog proposed to underlie hy-
pothalamic dopaminergic control of pituitary prolactin secretion. Illustrated
are three sub-sets of hypothalamic TIDA neurons (colored in green, brown
and magenta), which each locally release dopamine (DA) at the median
eminence level (where the first loop of portal capillaries reside). Local DA
release events are organized in the frequency domain (0.001 Hz-10 Hz) and
recur as sequences. Local-global integration across the median eminence
coordinates high frequency DA release events within the minutes range. This
allows the build-up of DA in the portal blood required to efficiently inhibit
pituitary prolactin secretion.

events occurred over frequencies of one or more minutes across
the ME, slow rhythms may orchestrate the delivery of longer,
but highly-ordered DA outputs from the TIDA neuron assembly
towards the pituitary responder.

The current study performed in freely-behaving animals
poses the question of how the TIDA neuronal network generates
such a hierarchal organization of DA release events in vivo.
While classical PRL feedback (2) is able to account for a pro-
portion of the high frequency DA release events through direct
stimulation of TIDA neuron electrical activity, it cannot explain
slower rhythms including those organized over a minutes-range
across the ME. This raises the possibility that both intra-network
modes of information transfer (14, 19) and neuronal inputs (13-
16), which were recently revealed in acute brain slice studies,
may contribute to the coding of DA release at the ME level.
Nonetheless, the present study suggests that the TIDA neuron
network has the inherent capability to code DA release over time
periods consistent with the pacing of PRL secretion.

Finally, it has recently been shown that local somatodentritic
DA release from the TIDA population is able to influence close

neuronal neighbours within the arcuate nucleus (19). As D1
and D2 receptors are expressed in the ME (20), this raises the
possibility that DA release events at the ME, even those organized
over slow rhythms, may also contribute to the regulation of other
neurohormones, such as those underlying circhoral luteinizing-
and growth-hormone pulses (20, 21).

The discovery of a multiple-time-scale integration of DA
delivery at the neurohemal space provides a hitherto unknown
element concerning how the brain dialogs with peripheral organs
via a neuroendocrine connection. Such hierarchical organization
of rhythms has been observed in other brain regions where mul-
tiple oscillations co-occur, with the slower oscillation generally
driving local, faster oscillations (1). A similar multiple-time-scale
neurohemal code may plausibly be shared by other assemblies of
hypothalamic parvocellular neurons. Notably, the ME is capable
of delivering hormone changes over a wide-range of timescales,
from ultradian to seasonal (22, 23). This neurohemal structure
may thus provide a model system for investigating how par-
vocellular outputs are translated into slowly-evolving endocrine
outcomes such as reproduction, growth, metabolism and stress.
MATERIALS AND METHODS
Detailed methods are provided in SI Materials and Methods. Briefly, carbon
fiber microelectrodes were fabricated using a single 30µm thread of carbon
fiber, coated in Nafion and connected to a gold-plated pin. C57/BL6 female
mice were stereotaxically implanted with carbon fiber microelectrodes at the
level of the median eminence (stereotaxic coordinates (relative to Bregma)
-1.3 mm rostro-caudal; 0 mm medio-lateral; 6.1 mm ventral). After recovery,
mice were transferred to recording cages, connected to an electrical swivel to
allow for free movement, and carbon fibers were held at 700 mV throughout
the recording to detect secretion of DA. Repeated tail blood microsampling
was performed to measure blood PRL levels, using a home-made ELISA. All
statistical analysis was performed with R software.
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