

University of Birmingham

Efficient Resource Allocation in Cooperative Co-
evolution for Large-scale Global Optimization
Yang, Ming; Omidvar, Mohammad Nabi; Li, Changhe; Li, Xiaodong; Cai, Zhihua; Kazimipour,
Borhan; Yao, Xin
DOI:
10.1109/TEVC.2016.2627581

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Yang, M, Omidvar, MN, Li, C, Li, X, Cai, Z, Kazimipour, B & Yao, X 2017, 'Efficient Resource Allocation in
Cooperative Co-evolution for Large-scale Global Optimization', IEEE Transactions on Evolutionary Computation,
vol. 21, no. 4, pp. 493-505. https://doi.org/10.1109/TEVC.2016.2627581

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1109/TEVC.2016.2627581
https://doi.org/10.1109/TEVC.2016.2627581
https://birmingham.elsevierpure.com/en/publications/896206d2-c2c6-461e-abd5-61e800cac6d9

1

Efficient Resource Allocation in Cooperative
Co-evolution for Large-scale Global Optimization
Ming Yang, Mohammad Nabi Omidvar, Changhe Li,Member, IEEE, Xiaodong Li,Senior Member, IEEE,

Zhihua Cai, Borhan Kazimipour, and Xin Yao,Fellow, IEEE

Abstract

Cooperative Co-evolution (CC) is an explicit means of problem decomposition in multi-population evolutionary algorithms
for solving large-scale optimization problems. For CC, subpopulations representing subcomponents of a large-scale optimization
problem co-evolve, and are likely to have different contributions to the improvement of the best overall solution to theproblem.
Hence it makes sense that more computational resources should be allocated to the subpopulations with greater contributions.
In this paper, we study how to allocate computational resources in this context and subsequently propose a new CC framework
named CCFR to efficiently allocate computational resourcesamong the subpopulations according to their dynamic contributions
to the improvement of the objective value of the best overallsolution. Our experimental results suggest that CCFR can make
efficient use of computational resources and is a highly competitive CC framework for solving large-scale optimizationproblems.

Index Terms

Cooperative co-evolution, resource allocation, problem decomposition, large-scale global optimization.

I. I NTRODUCTION

Evolutionary algorithms (EAs) have achieved a great success on solving many optimization problems [1]. However, they
often lose their efficacy as the dimensionality of a problem increases [2]. Many real-world problems involve a large number
of decision variables, e.g., the design of airfoil where thousands of variables are required to represent the complex shape of
an aircraft wing [3]. This sort of large-scale optimizationproblems poses a serious challenge to existing EAs.

A natural approach to solving high-dimensional optimization problems is to employ thedivide-and-conquer strategy [4]–[6],
which decomposes a large-scale optimization problem into aset of smaller and simpler subproblems. These subproblems can
be solved separately. The fully separable large-scale optimization problems, where there is no interdependence amongdecision
variables, can be solved by optimizing each variable independently [7]. At the other end of the spectrum, the fully nonseparable
large-scale optimization problems, where there is interdependence between any pair of variables, would need to be solved by
optimizing all the variables together. However, most real-world problems fall somewhere between these two extremes, i.e.,
only some variables are independent or interdependent among each other [8]. For such partially separable problems, there
are usually several clusters of interdependent variables.Cooperative Co-evolution (CC) [7] is an explicit means of problem
decomposition in EAs. For CC, there is a set of subpopulations each of which is responsible for optimizing a subset of variables
(i.e., a subcomponent).

Given a fixed computational budget, the performance of CC maybe affected by how the computational resources are
allocated among subpopulations [9]. For CC, different subpopulations are likely to make different amounts of contributions
to the improvement of the best overall objective value (i.e., the objective value of the best overall solution consisting of the
best individuals from these subpopulations). To be more computationally efficient, more computational resources should be
allocated to the subpopulations that make greater contributions. It is shown in [9] that for imbalanced problems, wheredifferent
subpopulations have unequal contributions to the overall objective value, a contribution-based cooperative co-evolution (CBCC)
outperforms the traditional CC. However, for CBCC, the contribution information is accumulated from the beginning of the
evolutionary process. CBCC relies much on the contributioninformation in the early stage of the evolutionary process,hence
it may respond too slowly or even incorrectly to the local changes of the overall objective value. Since the contributions of
subpopulations may change over time, it makes sense that theresource allocation should be done adaptively in real-time.

The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61305086, 61673355, 61673354, 61329302 and 61305079)
and EPSRC (Grant No. EP/K001523/1).(Corresponding author: Xin Yao.)

M. Yang and Z. Cai are with the School of Computer Science, China University of Geosciences, Wuhan, 430074, China. M. Yangand Z. Cai are also with the
Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China (e-mail: yangming0702@gmail.com,
zhcai@cug.edu.cn).

C. Li is with the School of Automation, China University of Geosciences, Wuhan, 430074, China (e-mail: changhe.lw@gmail.com).
M. N. Omidvar and X. Yao are with the Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science,

University of Birmingham, Birmingham B15 2TT, U.K. X. Yao isalso with Department of Computer Science and Engineering, Southern University of Science
and Technology, Shenzhen, 518055, China (e-mail: m.omidvar@cs.bham.ac.uk, x.yao@cs.bham.ac.uk).

X. Li and B. Kazimipour are with the School of Computer Science and Information Technology, RMIT University, Melbourne,VIC 3001, Australi-
a (e-mail: xiaodong.li@rmit.edu.au, borhan.kazimipour@rmit.edu.au).

2

In this paper, we study how to allocate computational resources among subpopulations and propose a new CC framework,
which can adaptively allocate computational resources to each subpopulation according to its dynamic contributions to the
improvement of the best overall objective value. This new CCframework differs from existing CC frameworks in the following
two aspects.

1) This new CC framework can check whether a subpopulation isstagnant. To save computational resources, the stagnant
subpopulations are excluded from evolution (see Sect. III-A).

2) In this new CC framework, the contribution of a subpopulation is updated dynamically. In each cycle, only the
subpopulation with the greatest contribution is selected to undergo evolution (see Sect. III-B).

The remainder of this paper is organized as follows. Sect. IIpresents an overview of CC. Sect. III introduces our new CC
framework. Sect. IV presents the experimental studies. Finally, Sect. V provides the concluding remarks.

II. RELATED WORK

In the literature of evolutionary computation, the interdependence between decision variables of a problem is known as
linkage [10] or epistasis [11]. The performance of a CC algorithm is greatly affected by the interdependence between variables
[7], [12]. Variable grouping methods aiming to group interdependent variables into the same subcomponent being optimized
play a key role in overcoming such a problem [13]. It is shown in [14] that if all the subcomponents are separable, the overall
solution to the original problem is the combination of the respective solutions to all the subproblems. Here, we review CC
mainly in the context of large-scale optimization.

In the original cooperatively co-evolutionary genetic algorithm (CCGA) proposed by Potter and De Jong [7], aD-dimensional
problem is decomposed intoD one-dimensional subproblems. CCGA then solves the subproblems using an evolutionary
optimizer in a round-robin fashion. The experimental results in [7] show that the original CC cannot perform well on
nonseparable functions, i.e., functions with interdependent variables, such asGriewank andRosenbrock. Liu et al. [2] applied
CC to fast evolutionary programming to solve large-scale optimization problems with up to 1000 dimensions. Van den Bergh
and Engelbrecht [15] applied CC to particle swarm optimization (PSO) [16] and proposed a cooperatively co-evolutionary PSO
algorithm, namely CPSO, which divides aD-dimensional problem intok s-dimensional subproblems for somes ≪ D. Shi
et al. [17] adopted differential evolution (DE) [18] into CC, with decision variables split into two equal-sized subcomponents.
Obviously, this decomposition strategy would not perform well on the problems with a very high dimensionality.

Yang et al. [13] proposed a random variable grouping method and applied it to CC. Unlike CPSO which relies on a fixed
variable grouping from the start to the end of optimization,the random grouping method proposed by Yang et al. randomly
shuffles all the decision variables intok s-dimensional subcomponents in each co-evolutionary cycle. It is shown in [13] that
this random grouping strategy is effective in grouping two interdependent variables into one subcomponent for severalcycles.
The DE algorithm with this random grouping strategy, namelyDECC-G, performs well on a set of large-scale optimization
problems with up to 1000 dimensions [13].

The aforementioned grouping strategies use a pre-specifiedand fixed subcomponent size for decomposition. Therefore, a
user needs to specify a value for eitherk or s before using these decomposition strategies, which may be difficult in practice.
In addition, the performance of CC can be highly dependent onthese specified values.

Adapting the subcomponent size can potentially improve theperformance of CC [19]. Yang et al. [20] proposed a multilevel
cooperatively co-evolutionary (MLCC) algorithm. MLCC uses a set of possible values ofs for decomposition instead of a
fixed subcomponent size. The performance of each subcomponent size used during optimization is measured according to the
improvement of the best overall objective value. The subcomponent size with better performance would be selected in the
next co-evolutionary cycle with a higher probability. Further enhancing the CCPSO algorithm [21] with an improved random
variable grouping strategy, Li and Yao [22] proposed CCPSO2to solve a set of large-scale optimization problems with up to
2000 dimensions.

Random grouping is ineffective when the number of interdependent variables is greater than five [19]. It is shown in [23] that
a non-random method, namely delta grouping, is superior to random grouping on most of the CEC2010’s benchmark functions
[24]. The delta grouping method uses the average differenceof a certain variable during optimization to detect interdependent
variables. The variables with similar difference values are considered to be possible interdependent variables. However, this
assumption may not always hold. For example, the delta grouping method cannot perform well when there is more than one
subcomponent [23].

A given problem may be decomposed in an automatic way withoutknowing in advance its underlying structure, as suggested
in [25]. In the beginning of the co-evolutionary process, all the variables are optimized separately by different subpopulations.
A counter is used in [25] to compute the probability of grouping two variables together. If two variables in a randomly chosen
individual can improve the best individual further, the counter is increased. At the end of each co-evolutionary cycle,the two
variables with the maximum counter are grouped together. The subpopulations corresponding to the two variables are merged
into one subpopulation. The CC with variable interaction learning (CCVIL) algorithm proposed by Chen et al. [26] adopts
a two-stage approach. In the first stage, CCVIL detects the interaction between variables as done in [25] to complete the
decomposition. In the second stage, CCVIL optimizes these decomposed groups in the fashion of the traditional CC [7].

3

Tezuka et al. [27] proposed the linkage identification by nonlinearity check for real-coded GAs (LINC-R). If the difference
of function values with respect to a variable is independenton the difference of function values with respect to anothervariable,
the two variables are separable. Omidvar et al. [28] provided a theoretical study of LINC-R and proposed a new method for
detecting interdependent variables, namely differentialgrouping (DG). DG can identify the interdependent variables with a
high accuracy. It is shown in [28] that CC with DG performs well on a set of large-scale optimization problems with up to
1000 dimensions.

For separable decision variables, it is shown in [29] that optimizing each variable separately may not be the best way for
solving large-scale optimization problems. A more efficient approach is to group the separable variables into several groups.
However, it may be difficult to determine the optimal group size.

When dealing with the partially separable problems, it is possible that there is imbalance between the contributions ofdifferent
subpopulations to the improvement of the overall objectivevalue. The round-robin strategy in the classic CC is no longer
effective in handling this sort of problems since it allocates an equal amount of computational resources to each subpopulation,
without considering the unequal contributions of the subpopulations. To overcome this problem, a contribution-basedCC
(CBCC) was proposed in [9] to allocate computational resources among the subpopulations based on their contributions to
the improvement of the best overall objective value. CBCC emphasizes the contributions in the early stage of the evolutionary
process. As a result, it may allocate most computational resources to the subpopulation whose initial contribution is greater but
then drops after some generations. For the two variants of CBCC (CBCC1 and CBCC2), the experimental results in [30] show
that CBCC1 is much less sensitive to the decomposition accuracy and the imbalance between the contributions of subpopulations
than CBCC2. CBCC1 and CBCC2 are unable to adaptively respondto the dynamic contributions of subpopulations during
optimization.

III. T HE PROPOSEDCC FRAMEWORK

A new cooperatively co-evolutionary framework (CCFR) is presented in this section. CCFR aims at allocating computational
resources intelligently among subpopulations according to the dynamic contributions of subpopulations to the improvement of
the best overall objective value. Note that, CCFR adopts a two-stage approach similar to DECC-DG [28]. In the first stage,
the decomposition is formed using a decomposition method; in the second stage, the resulting groups are optimized separately
while the decomposition is kept fixed.

A. Saving Computation on Stagnant Subpopulations

CC makes subpopulations evolve using an evolutionary optimizer in a round-robin fashion. For the subcomponents that are
easy to optimize, a small number of generations are enough for the corresponding subpopulations to enter a stagnant state,
where these subpopulations do not make contributions to theimprovement of the best overall objective value. In such a case,
no computational resources would be allocated to these stagnant subpopulations. This will allow the CC algorithms to save
some computational cost.

SupposeCi denotes thei-th subcomponent after decomposition. For the subpopulation corresponding toCi at theG-th
generation, in order to check whether the subpopulation is stagnant, the mean and standard deviation of individuals’ gene
values in dimensionj (j ∈ Ci) can be calculated as follows:

mj,G =
1

N

N
∑

t=1

xt,j,G, (1)

stdj,G =

√

√

√

√

1

N

N
∑

t=1

(xt,j,G −mj,G)2, (2)

whereN is the subpopulation size andxt,j,G is the j-th gene value of individualxt,G. xt,G = (xt,1,G, ..., xt,D,G). If the
distribution of a population, i.e., the mean and standard deviation of individuals’ gene values in dimensionj, remains unchanged
for several successive generations, this population is considered to be stagnant in this dimension [31]. Based on this strategy,
we propose the following method for checking whether a subpopulation is stagnant in all dimensions.

βj,G =

1 if mj,G = mj,G−1 and

stdj,G = stdj,G−1 (3a)

0 otherwise, (3b)

whereβj,G denotes whether the values ofmj,G and stdj,G remain unchanged from the last generation in dimensionj, and
note thatβj,0 = 0. γG denotes the number of dimensions whereβj,G = 1:

γG =
∑

j∈Ci

βj,G. (4)

4

If the subpopulation does not change (i.e., no better individuals are generated),γG = Di, whereDi is the dimensionality of
subcomponentCi. ηG denotes the number of successive generations whereγG = Di:

ηG =

{

ηG−1 + 1 if γG = Di (5a)

0 otherwise, (5b)

and note thatη0 = 0. ρG is a flag to denote whether the subpopulation is stagnant at the G-th generation, and the value ofρG
is calculated as follows:

ρG =

{

1 if ηG ≥ U (6a)

0 otherwise, (6b)

whereU is an integer with the value equal toDi. Our experimental results show that the larger the subcomponent size is,
the more generations its corresponding subpopulation takes to enter a stagnant state. According to the sensitivity study of U
(provided in Sect. I in the supplementary material listed inthe appendix), we useU = Di. If the distribution of a subpopulation
remains unchanged for several successive generations (i.e., ηG ≥ U), ρG is set to one to indicate that the subpopulation is
likely to stop evolution.

Some existing methods consider a population to be stagnant if the improvement of the best fitness value [32], [33] or the
difference between the individuals [34], [35] is very small, even though the population still slowly converges to an optimum.
Guo et al. [36], [37] considered an individual to be stagnantwhen the individual’s fitness cannot be improved over several
successive generations. This method is ineffective for problems with a plateau fitness landscape (e.g., theStep function [38]),
where the fitness value of an individual does not change, while the values of the individual’s decision variables change.Yang et
al. [39] considered a population to be stagnant when the average distance among the individuals remains unchanged for several
successive generations. However, it is possible that the distribution of the entire population changes (e.g., all the individuals vary
with the same shift). In such a case, Yang’s method may incorrectly classify the population as a stagnant one. Compared with
the above stagnation detection methods, our proposed method is more accurate in identifying a stagnant population according
to the mean and standard deviation of individuals’ gene values.

For the subpopulations whereρG = 1, we exclude them from the co-evolutionary cycles, which means the stagnant
subpopulations will not undergo evolution in the subsequent co-evolutionary cycles.

B. Resource Allocation Based on Contribution

The probability matching (PM) algorithm [40] and the adaptive pursuit (AP) algorithm [40] learn the optimal resource
allocation among operators. These probability-based methods would allocate resources to the ineffective operators with a
minimum probability. Based on the upper confidence bound (UCB) algorithm [41], Li et al. [42] proposed a method for
allocating resources among operators, where the operator with the maximum relative fitness improvement is selected to take
part in the evolutionary process [43], [44]. These methods based on relative fitness improvements allocate resources tothe
items (e.g., the converging items) whose absolute fitness improvements are very small but their relative fitness improvements
are relatively large. In [45], the average absolute fitness improvements are used in determining resource allocation. Rainville
et al. [46] proposed a resource allocation for CC based on binary rewards. A subpopulation is assigned a reward of one if
the overall objective value becomes better, and zero otherwise. However, the binary rewards cannot reflect the real magnitudes
of the improvements of the objective value. In this section,we propose a resource allocation strategy for CC based on the
absolute improvements of the best overall objective value.Unlike the average absolute improvements in [45], our proposed
method gives more consideration of resource allocation to the recent improvements of the overall objective value.

For a subpopulation (Pi), whenPi finishes evolution in a cycle, we calculate its contributionaccording to the improvement
of the best overall objective value:

∆Fi =
∆F̂i +

∣

∣f(x̂best)− f(xbest)
∣

∣

2
, (7)

where f(x̂best) and f(xbest) are the best overall objective values before and afterPi undergoes evolution in this cycle,
respectively, and∆F̂i is the last contribution ofPi. The initial value of∆Fi is zero. Eq. (7) smoothly updates∆Fi by
averaging the last contribution (i.e.,∆F̂i) and the current contribution (i.e.,|f(x̂best)− f(xbest)|) to the improvement of the
best overall objective value. The more recent contribution|f(x̂best)−f(xbest)| is, the greater the effect of|f(x̂best)−f(xbest)|
on the value of∆Fi is. The effects of the early contributions on∆Fi become smaller and smaller as the co-evolution progresses.

During the first co-evolutionary cycle, the subpopulationsundergo evolution one by one. The values of∆Fi for all the
subpopulations are computed at the end of the first cycle. In the subsequent co-evolutionary cycles, we select only the
subpopulation with the largest value of∆Fi to undergo evolution. The value of∆Fi is updated according to Eq. (7) at
the end of each co-evolutionary cycle. The larger the value of ∆Fi is, the higher chancePi has to undergo evolution in
the future. If a subpopulation is stagnant according to Eq. (6), we set its contribution (∆Fi) to zero. Therefore, the stagnant
subpopulation will be excluded from the subsequent co-evolutionary cycles. When the values of∆Fi are the same for all the
subpopulations, we restart the process from the first co-evolutionary cycle. The advantage of doing so is that the subpopulation

5

P1 P2 P3 P1 P2 P3
...

1st cycle 2nd cycle ...

(a) The traditional CC

P1 P2 P3 P2

1st cycle 2nd cycle 3rd cycle

P1

5th cycle

P2

P2P3P2

6th cycle

...

...

P2

4th cycle

(b) CBCC2

2nd

P2

cycle

...

...

P1 P2

1st cycle

P3 P1

5th
cycle

P2

3rd
cycle

P1

4th
cycle

(c) CCFR

Fig. 1. The computational resource allocation in CC, CBCC2 and CCFR, where the circle size indicates the amount of contributions computed by the
algorithms and the dotted circle indicates that the subpopulation is stagnant.

which is considered to be stagnant by mistake can resume its evolution. The above process is repeated until a termination
criterion is met.

CBCC [9] can also allocate computational resources among the subpopulations according to their contributions to the
improvement of the best overall objective value. The important difference between CCFR and CBCC is that CCFR responds
faster to the recent changes of the overall objective value than CBCC. For CCFR, the contribution is updated smoothly by
averaging the last and current contributions, whereas for CBCC, the contribution is accumulated from the beginning of the
evolutionary process. Furthermore, CBCC does not take stagnant subpopulations into account.

Fig. 1 illustrates the computational resource allocation in the traditional CC [7], CBCC2 [9] (a variant of CBCC) and CCFR.
The round-robin fashion in the traditional CC equally allocates computational resources among all the subpopulationswithout
considering the different contributions of the subpopulations (see Fig. 1a). The traditional CC always allocates computational
resources to stagnant subpopulations (e.g.,P3 in Fig. 1a), which is clearly wasteful. For CBCC, the contribution of each
subpopulation is accumulated from the beginning of the evolutionary process, as shown in Fig. 1b, where different circle sizes
suggest different amounts of the contributions of the subpopulations. CBCC2 allocates most computational resources to the
subpopulation with the greatest accumulated contribution. In the second and third cycles, CBCC2 selects subpopulationP2 with
the greatest accumulated contribution to undergo evolution. From the second cycle, the contribution ofP2 in one cycle (i.e., the
change of circle size) is small. Even in the case thatP2 has been stagnant, CBCC2 still deemsP2 makes the greatest contribution
and allocates computational resources toP2 (e.g., the sixth cycle in Fig. 1b). CBCC2 allocates computational resources to
stagnant subpopulationsP2 andP3. CCFR computes the contributions by averaging the last and current contributions at the
end of each cycle. In Fig. 1c, it can be seen that forP2, the circle size becomes smaller and smaller as the evolution progresses.
The contribution thatP2 makes in the third cycle is relatively small. CCFR will select a subpopulation betweenP1 andP3 to
undergo evolution in the next cycle. Although the last contribution of P3 is greater than the one ofP1, CCFR selectsP1 to
undergo evolution in the fourth cycle. This is becauseP3 is stagnant and has been excluded from the cycles. The figure indicates
that given an equal amount of computational resources, CCFRcan potentially obtain better solutions than the traditional CC
and CBCC2.

C. Obtaining the Best Overall Solution

In co-evolutionary cycles, many cooperatively co-evolutionary algorithms [9], [13], [20], [28] update the best overall solution
to the original problem at the integrated-population level(see Step 7 in Algorithm 1). Take the following two-dimensional
Sphere function as an example:

f(x) = x2

1
+ x2

2
.

This function is additively separable [47]. Its ideal decomposition isC =
{

C1, C2

}

=
{

{x1}, {x2}
}

.
Suppose populationP at a certain generation is as follows:

f=40 6 2

f=58 7 3

f=41 5 4 ,
P

6

Algorithm 1 DECC [28]
/*SupposeC = {C1, . . . , CM} is a decomposition andP = {x1, . . . ,xN} is a population.*/

1: xbest ← argmin
x∈P

f(x);

2: for k ← 1 to cycles do
3: for i← 1 to M do
4: Pi ←

{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

;
5: Pi ←Optimizer(xbest, Pi,GEs);
6:

{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

← Pi;
7: xbest ← argmin

x∈P

f(x);

8: end for
9: end for

where the current best overall solutionxbest = (6,2) is shown in bold and italic font. Suppose that the evolutionary process
(Steps 4 to 7 in Algorithm 1) for subpopulationP1 is as follows:

P1 P1

f=40 6 2 f=20 4 2

→

f=20 4 2

f=53 7 2 → · · · → f=40 6 2 f=45 6 3

f=29 5 2 evolution f=13 3 2 f=25 3 4 ,
P

which produces an updatedxbest = (4,2). Suppose that the evolutionary process for subpopulation P2 is as follows:
P2 P2

f=20 4 2 f=17 4 1

→

f=17 4 1

f=25 4 3 → · · · → f=16 4 0 f=36 6 0

f=32 4 4 evolution f=25 4 3 f=18 3 3 ,
P

which similarly produces an updatedxbest = (4,1). When this co-evolutionary cycle ends, all the possible combinations of the
individuals from different subpopulations are (4,1), (4,0), (4,3), (6,1), (6,0), (6,3), (3,1), (3,0) and (3,3). Each combination is an
overall solution to the problem. Among all the combinations, the best overall solution is (3,0). For a population with population
sizeN andM subpopulations, the number of the combinations isNM . We improve the CC framework in Algorithm 1 through
updatingxbest in the following way. In the case that the subcomponents corresponding to theM subpopulations are separable
between each other,xbest obtained by the improved CC framework is the best overall solution from theNM combinations.

According to the definition of separability [24], [47]:

argmin
x

f(x) =
(

argmin
x1

f(x1, . . .), . . . , argmin
xM

f(. . . ,xM)
)

, (8)

for a separable functionf(x) with M independent subcomponents, the following equation holds:

argmin
x∈Z

f(x) =
(

argmin
x1∈P1

f(x1, . . .), . . . , argmin
xM∈PM

f(. . . ,xM)
)

, (9)

whereZ is the set of all the possible combinations of the individuals from P1, . . . , PM . Eq. (9) simply states that if the
subcomponents are separable, the combination of the best solution from each subpopulation must be the best overall solution
from Z to the original problem. When a decomposition is formed, we set the best overall solutionxbest as follows:

xbest =
(

argmin
x1∈P1

f(x1,x
P1

best
), . . . , argmin

xM∈PM

f(xM ,x
PM

best
)
)

, (10)

wherexPi

best =
{

x | x ∈ xbest, x /∈ Pi

}

, which consists ofxbest with the dimensions ofPi removed.xbest is a concatenation
of all best solutions from theM subpopulations (P1, . . . , PM), as constructed in [48]. In Algorithm 1, Step 5 is changed as
follows:

(Pi,xbest)← Optimizer(xbest, Pi,GEs),

wherexbest is updated at the end of the co-evolutionary process for eachsubpopulation, and Step 7 is removed. The above
co-evolutionary example changes as follows:

P1 P1

f=40 6 2 f=20 4 2

f=53 7 2 → · · · → f=40 6 2

f=29 5 2 evolution f=13 3 2 ,

which produces an updatedxbest = (3,2), and
P2 P2

f=13 3 2 f=10 3 1

f=18 3 3 → · · · → f=9 3 0

f=25 3 4 evolution f=18 3 3 ,

which similarly produces an updatedxbest = (3,0). From the above evolutionary process, it can be seen that xbest is always
updated as the best overall solution during evolution. Notethat, if there is interdependence between subcomponents,xbest

obtained by the above changed evolutionary process may not be the best overall solution.

7

Algorithm 2 CCFR
1: Generate a decompositionC = {C1, . . . , CM};
2: Generate a uniform random populationP ={x1, . . ., xN};
3: Computexbest ← argmin

x∈P

f(x);

4: Set the value ofxbest using Eq. (10);
5: ∆Fi ← 0, Gi ← 0, i = 1, 2, . . . ,M ;
6: while the termination criterion is not metdo
7: For each subpopulation, resetη (see Eq. (5)) to 0;
8: for i← 1 to M do
9: x̂best ← xbest;

10: Pi ←
{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

;
11: (Pi,xbest, ρGi

, Gi)← Optimizer(xbest, Pi,GEs , Gi);
12:

{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

← Pi;
13: ∆Fi ←

(

∆Fi + |f(x̂best)− f(xbest)|
)

/2;
14: if ρGi

equals 1then
15: ∆Fi ← 0;
16: end if
17: end for
18: while min(∆Fi|i = 1, . . . ,M) 6= max(∆Fi|i = 1, . . . ,M) do
19: i← the index of the maximum∆Fi;
20: x̂best ← xbest;
21: Pi ←

{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

;
22: (Pi,xbest, ρGi

, Gi)← Optimizer(xbest, Pi,GEs , Gi);
23:

{

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

}

← Pi;
24: ∆Fi ←

(

∆Fi + |f(x̂best)− f(xbest)|
)

/2;
25: if ρGi

equals 1then
26: ∆Fi ← 0;
27: end if
28: end while
29: end while

Algorithm 3 (Pi, xbest, ρG, G)← Optimizer(xbest, Pi,GEs , G0)

1: G← G0;
2: Forx ∈ Pi, evaluate

(

x,x
Pi

best

)

;
3: while G < G0 +GEs do
4: for x ∈ Pi do
5: x̂←Reproduction(x); /*evolutionary process*/

6: Evaluate
(

x̂,x
Pi

best

)

;
7: if

(

x̂,x
Pi

best

)

is better than
(

x,x
Pi

best

)

then
8: x← x̂;
9: end if

10: if
(

x̂,xPi

best

)

is better thanxbest then
11: xbest ←

(

x̂,xPi

best

)

;
12: end if
13: end for
14: G← G+ 1;
15: ComputeρG using Eq. (6);
16: if ρG equals 1then
17: Terminate the algorithm and return;
18: end if
19: end while

D. CCFR

Algorithm 2 summarizes the proposed CCFR. Steps 8 to 17 compute the contribution (i.e., the value of∆Fi) of each
subpopulation. Steps 18 to 28 select the subpopulation withthe greatest contribution to undergo evolution and update its
contribution when the evolution ends. When all the subpopulations make an equal contribution, CCFR goes to Step 8 to reset
the contribution of each subpopulation. The above process is repeated until a termination criterion is met. Steps 11 and22
invoke the evolutionary process for a subpopulation, whichis shown in Algorithm 3.

In Algorithm 3, a subpopulation undergoes evolution for a pre-specified number of generations, i.e.,GEs . Steps 15 to 18
check whether a subpopulation is stagnant. If the subpopulation is identified as a stagnant one, CCFR will stop the subpopulation
evolving. In Algorithm 3, the best overall solutionxbest is updated when a better solution is found. In the end,xbest is returned
to Algorithm 2.

Compared with the traditional CC, CCFR needs extra computation to initialize the best overall solution before the co-
evolutionary cycles begin (Step 4 in Algorithm 2), and the computational complexity isO(M · N). CCFR also needs extra
computation to check whether a subpopulation is stagnant ateach generation (Step 15 in Algorithm 3), and the computational
complexity isO(Di ·N).

8

Co-evolutionary Cycles
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 561 575

T
he

 In
di

ce
s

of
 S

ub
po

pu
la

tio
ns

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(a) f8

Co-evolutionary Cycles
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

T
he

 in
di

ce
s

of
 S

ub
po

pu
la

tio
ns

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(b) f10

Fig. 2. The activation of subpopulations for CCFR-I on two selected CEC’2013 functions in a single run, where the filled circle point indicates that the
subpopulation undergoes evolution in the corresponding co-evolutionary cycle.

IV. EXPERIMENTAL STUDIES

A set of 35 test instances with 1000 dimensions proposed in the IEEE CEC’2010 and CEC’2013 special sessions on large-
scale global optimization were used to study the performance of CCFR. The detailed description of these test instances is
given in [24], [47]. Compared with the CEC’2010 functions, the CEC’2013 functions have four new characteristics: nonuniform
subcomponent sizes, imbalance in the contributions of subcomponents, functions with overlapping subcomponents, andnew
transformations to the base functions.

In the experimental studies, CCFR is compared with seven CC algorithms (DECC-G [13], MLCC [49], DECC-D [23],
DECC-DML [23], DECC [28], CBCC1 [9] and CBCC2 [9]) and two memetic algorithms (MA-SW-Chains [50] and MOS-
CEC2013 [51]). The two memetic algorithms were ranked the first in the IEEE CEC’2010 and CEC’2013 competitions on
large-scale global optimization, respectively. We set themaximum number of fitness evaluations toMaxFEs = 3× 106 as the
termination criterion, as suggested in [24]. For the competitors of CCFR, the parameters were set to the values as used intheir
publications. To make a fair comparison, CCFR and the other CC algorithms under comparison adopt the same settings of the
following parameters.

1) The subcomponent optimizer is SaNSDE [52], a variant of differential evolution (DE) [18]. The population size of
SaNSDE was set to 50.

2) The pre-specified number of the evolutionary generations, i.e.,GEs in Algorithm 3, was set to 100.

A. Behavior of CCFR

In this section, the behavior of CCFR is studied. The grouping of variables is an ideal decomposition, which was done
manually using the prior knowledge of the benchmark functions.

Fig. 2 shows the activation of the subpopulations in a singlerun on two CEC’2013 functions (f8 and f10), which have
20 separable subcomponents. The contributions of all the subpopulations were computed in the first co-evolutionary cycle.
For f8, because the third subcomponent has the largest weight value [47], the corresponding subpopulation (i.e.,P3) has
the largest contribution to the improvement of the best overall objective value. In Fig. 2a, it can be seen that after the first
cycle, P3 underwent evolution in the subsequent successive cycles. The contribution ofP3 became smaller and smaller as
the evolution progressed. In the 21st cycle,P5, whose corresponding subcomponent has the second largest weight value,
underwent evolution. From Fig. 2a, two observations can be made: 1) the subpopulations undergo evolution alternately;2)
most computational resources are spent onP3 andP5, whose corresponding subcomponents have the largest and second largest
weight values, respectively. Forf8, according to the dynamic contributions of the subpopulations, CCFR can adaptively allocate
computational resources among the subpopulations.

For f10, it can be seen in Fig. 2b thatP12, whose corresponding subcomponent has the largest weight value [47], underwent
evolution in several successive cycles. Because SaNSDE, the optimizer used by CCFR, was not able to solve this function
effectively,P12 was stagnant. The distribution ofP12 remained unchanged for several successive generations. Inthe fourth
cycle, CCFR consideredP12 to be stagnant according to Eq. (6) and excluded it from the subsequent cycles. In the 152nd

9

The Indices of Subcomponents

1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920

W
ei

gh
t V

al
ue

10-5

100

105

1010

f9f8 f10 f11

(a) The weight values of subcomponents

The Indices of Subpopulations

1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920

U
se

d
F

un
ct

io
n

E
va

lu
at

io
ns

103

104

105

106

107

f8 f9 f10 f11

(b) The box plot of the function evaluations used by each subpopulation to optimize its corresponding subcomponent over25 independent runs, where
the circle point indicates the mean number of function evaluations used by each subpopulation over 25 independent runs.

Fig. 3. The computational resource allocation among the subpopulations in CCFR-I on four selected CEC’2013 functions.

cycle, all the subpopulations were stagnant. The co-evolution restarted from the first cycle. All the subpopulations underwent
evolution one by one.

Fig. 3 shows the resource allocation in CCFR-I on four CEC’2013 functions (f8–f11), which have 20 separable
subcomponents. The weight values of the subcomponents are significantly different (see Fig. 3a), which results in the
significantly different contributions of the subpopulations to the improvement of the best overall objective value. Itcan be seen
in Fig 3 that forf8–f11 exceptf10, the larger the weight value of a subcomponent is, the more resources its corresponding
subpopulation uses for evolution. As discussed before, theoptimizer used in CCFR was not able to solvef10 effectively, so all
the subpopulations were stagnant after some cycles. All thesubpopulations then underwent evolution one by one. Therefore,
for f10, the computational resources allocated to different subpopulations do not differ greatly (see Fig. 3b).

B. Comparison Between CCFR and Other CC Frameworks

In this section, CCFR is compared with two variants of CBCC (CBCC1 and CBCC2) [9] and the traditional CC [7]. The
grouping of variables for CCFR-I, CBCC-I and CC-I is an idealdecomposition, which was done manually using the prior
knowledge of the functions. All the function evaluations are used for optimization. For the separable variables, CCFR and CC
optimize the variables separately, while CBCC optimizes the variables together [28]. The only difference between CCFR-I,
CBCC-I and CC-I is the cooperatively co-evolutionary frameworks they employ. Table I summarizes the results of CCFR-I,
CBCC1-I, CBCC2-I and CC-I.

1) Comparison on the IEEE CEC’2010 Functions: The results show that CCFR-I performs significantly better than the other
peer algorithms on 13 out of 20 functions. CCFR-I outperforms the other peer algorithms on all the separable functions (f1–f3)
and most of the partially separable functions (f4–f18). For the partially separable functions on which CCFR-I performs worse,
the differences between the results of CCFR-I and the other peer algorithms are not significant. For the functions on which
CCFR-I performs better, the differences are significant, especially for f7, f12, f13 and f17. For the nonseparable functions
(f19 and f20), all the variables are grouped into one subcomponent and are optimized together, hence there is no issue of
computational resource allocation. CCFR-I, CBCC-I and CC-I have similar performance on the nonseparable functions.

Fig. 4 shows the convergence of four CC algorithms.f1 is a fully separable function in which each variable has a weight value.
These weight values grow as the indices of the variables increase.f12 is a partially separable function with 10 nonseparable
subcomponents and 500 separable variables.

CC cannot save computational resources on stagnant subpopulations. As can be seen in Fig. 4, the convergence speed of
CC-I is very slow. In contrast, CCFR can stop stagnant subpopulations from evolving. As a result, CCFR spends much less
computational resources on the separable variables and converges faster than CC-I. In the beginning of the evolutionary process,
CCFR-I converges slowly. This is because CCFR-I optimizes all the subcomponents including the separable variables oneby
one in the first co-evolutionary cycle. When the first cycle ends (about2.5× 106 function evaluations forf1; about1.3× 106

function evaluations forf12), CCFR-I starts to select the subpopulation with the greatest contribution to undergo evolution,
hence the convergence speed of CCFR-I increases. CBCC groups all the separable variables into one subcomponent and all the
separable variables are optimized together [28], which loses the power of the divide-and-conquer strategy of CC. In Fig. 4a,
it can be seen that CBCC1-I and CBCC2-I converge slowly onf1. The best overall objective value off1 drops sharply when

10

TABLE I
THE AVERAGE FITNESS VALUES± STANDARD DEVIATIONS ON THE CEC’2010AND CEC’2013FUNCTIONS OVER25 INDEPENDENT RUNS. THE

SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION,α=0.05).R+ , R− AND
p-VALUE ARE OBTAINED THROUGH MULTIPLE-PROBLEM ANALYSIS BY THE WILCOXON TEST BETWEENCCFR-IAND ITS COMPETITORS.

CEC’2010 Functions

F CCFR-I CBCC1-I CBCC2-I CC-I

f1 1.2e-05±4.9e-06 9.9e+06±1.3e+07↑ 9.9e+06±1.3e+07↑ 3.5e+11±2.0e+10↑
f2 2.7e+01±5.2e+00 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 9.4e+03±2.1e+02↑
f3 4.6e+00±4.6e-01 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑ 2.0e+01±4.4e-02↑

f4 8.3e+10±6.2e+10 6.0e+10±4.4e+10 9.9e+10±2.7e+10↑ 3.4e+14±7.5e+13↑
f5 7.2e+07±1.3e+07 6.8e+07±1.0e+07 6.7e+07±9.1e+06 4.9e+08±2.4e+07↑
f6 7.7e+05±7.1e+05 1.3e+06±6.4e+05↑ 1.3e+06±6.8e+05↑ 1.1e+07±7.5e+05↑
f7 1.5e-03±2.5e-04 5.9e+04±9.3e+03↑ 8.4e+04±1.9e+04↑ 7.7e+10±9.6e+09↑
f8 3.2e+05±1.1e+06 8.6e+05±1.6e+06↑ 1.0e+06±1.7e+06↑ 1.8e+14±9.3e+13↑

f9 9.4e+06±1.2e+06 1.7e+07±2.1e+07 2.8e+09±1.8e+09↑ 9.4e+08±7.1e+07↑
f10 1.4e+03±1.0e+02 3.0e+03±1.7e+02↑ 4.5e+03±6.6e+02↑ 4.8e+03±6.7e+01↑
f11 1.0e+01±2.7e+00 2.2e+01±3.2e+00↑ 2.4e+01±2.7e+00↑ 4.1e+01±1.5e+00↑
f12 1.2e+00±4.6e+00 1.8e+04±6.5e+03↑ 2.5e+04±7.3e+03↑ 4.9e+05±3.4e+04↑
f13 3.2e+02±9.9e+01 1.9e+04±6.3e+03↑ 2.8e+04±5.4e+03↑ 1.5e+07±4.1e+06↑

f14 2.5e+07±2.9e+06 2.8e+07±2.1e+06↑ 9.5e+09±5.2e+08↑ 2.7e+07±2.1e+06↑
f15 2.8e+03±1.3e+02 4.0e+03±1.5e+02↑ 4.2e+03±1.6e+02↑ 4.0e+03±1.6e+02↑
f16 2.0e+01±2.6e+00 1.9e+01±3.2e+00 2.0e+01±3.4e+00 2.0e+01±4.0e+00
f17 9.8e+00±1.1e+01 3.5e+01±4.9e+01↑ 1.4e+02±4.4e+01↑ 2.2e+01±3.7e+01↑
f18 1.1e+03±1.8e+02 1.1e+03±1.8e+02 1.4e+03±1.9e+02↑ 1.0e+03±1.7e+02

f19 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04
f20 1.0e+09±9.0e+08 1.0e+09±9.0e+08 1.0e+09±9.0e+08 1.0e+09±9.0e+08

R+ — 167.0 194.0 204.0
R− — 43.0 16.0 6.0
p-value — 2.06e-02 8.92e-04 2.19e-04

CEC’2013 Functions

F CCFR-I CBCC1-I CBCC2-I CC-I

f1 1.3e-05±3.2e-06 1.4e+07±3.6e+07↑ 1.4e+07±3.6e+07↑ 3.7e+11±1.5e+10↑
f2 5.5e-01±1.5e+00 2.1e+04±9.9e+02↑ 2.1e+04±9.9e+02↑ 8.5e+04±5.1e+03↑
f3 2.0e+01±3.1e-07 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑ 2.1e+01±9.1e-03↑

f4 4.5e+07±1.7e+07 1.6e+08±6.0e+07↑ 6.6e+10±5.6e+09↑ 1.7e+12±4.8e+11↑
f5 2.5e+06±2.7e+05 2.5e+06±4.2e+05 2.4e+06±4.5e+05 1.2e+07±6.9e+05↑
f6 1.1e+06±1.2e+03 1.1e+06±1.9e+03↓ 1.1e+06±1.7e+03↓ 1.1e+06±1.6e+03↑
f7 8.6e+06±1.9e+07 1.9e+07±2.4e+07↑ 9.6e+07±3.7e+08↑ 4.2e+09±1.1e+09↑

f8 9.6e+09±1.6e+10 2.0e+13±2.8e+13↑ 1.0e+12±1.3e+11↑ 4.7e+13±2.8e+13↑
f9 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.8e+07↑ 2.9e+08±5.2e+07↑
f10 9.5e+07±1.9e+05 9.4e+07±2.8e+05↓ 9.4e+07±2.3e+05↓ 9.4e+07±2.9e+05↓
f11 3.3e+08±3.2e+08 3.0e+09±1.0e+10↑ 4.9e+10±9.5e+10↑ 2.2e+09±8.4e+09↑

f12 6.0e+08±7.1e+08 6.1e+08±7.1e+08 6.1e+08±7.1e+08 6.1e+08±7.1e+08
f13 9.3e+08±5.3e+08 9.5e+08±5.4e+08 9.5e+08±5.4e+08 9.5e+08±5.4e+08
f14 2.1e+09±2.1e+09 2.2e+09±2.1e+09 2.2e+09±2.1e+09 2.2e+09±2.1e+09

f15 8.2e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06

R+ — 109.0 107.0 115.0
R− — 11.0 13.0 5.0
p-value — 3.36e-03 5.37e-03 6.10e-04

The symbols↑ and↓ denote that the CCFR-I algorithm performs significantly better than and worse
than this algorithm by the Wilcoxon rank sum test at the significance level of 0.05, respectively.

0.5 1 1.5 2 2.5 3

x 10
6

10
−5

10
0

10
5

10
10

Function Evaluations

M
ea

n
V

al
ue

 o
f B

es
t

CCFR−I
CBCC1−I
CBCC2−I
CC−I

(a) f1

0.5 1 1.5 2 2.5 3

x 10
6

10
0

10
2

10
4

10
6

10
8

Function Evaluations

M
ea

n
V

al
ue

 o
f B

es
t

CCFR−I
CBCC1−I
CBCC2−I
CC−I

(b) f12

Fig. 4. The average convergence on two selected CEC’2010 functions over 25 independent runs.

CCFR-I completes the first co-evolutionary cycle. Forf12, CCFR-I converges faster than CBCC1-I and CBCC2-I (see Fig.
4b). CBCC allocates computational resources among subpopulations according to the accumulated contributions. Emphasizing
the recent contributions, CCFR adapts the computational resource allocation to the real-time contributions of subpopulations
better than CBCC. The experimental results in a single run onf12 showed that for the third subpopulation, CBCC1-I and
CBCC2-I used about5×105 and1×106 function evaluations to improve the best overall objectivevalue by6.9×105. CCFR-I
used about1.9× 105 function evaluations to make the improvement of6.9× 105. When the real-time contribution of the third
subpopulation was relatively small, CBCC still allocated computational resources to the subpopulation, while CCFR allocated
resources to some other subpopulation which made a relatively greater real-time contribution.

2) Comparison on the IEEE CEC’2013 Functions: To further investigate the effect of imbalance, CCFR-I, CBCC-I and CC-I
were tested on the CEC’2013 functions. The results show thatCCFR-I significantly outperforms the other peer algorithmson 8
out of 15 functions. CCFR-I performs significantly better than the other peer algorithms on all the separable functions (f1–f3)

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
3

10
4

10
5

10
6

10
7

U
s
e

d
 F

u
n

c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

The Indices of Subpopulations

 CBCC1-I

 CBCC2-I

 CC-I

Fig. 5. The average function evaluations used by each subpopulation to optimize its corresponding subcomponent on a CEC’2013 function (f8) over 25
independent runs.

TABLE II
AVERAGE RANKINGS ON THECEC’2010AND CEC’2013FUNCTIONS(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT.

CCFR-I CBCC1-I CBCC2-I CC-I p-value

Average Ranking 1.4000 2.3714 2.8286 3.4000 1.15e-10

and most of the partially separable functions (f4–f11). CCFR-I, CBCC-I and CC-I have similar performance on nonseparable
functionsf12–f15. For the partially separable functions on which CCFR-I performs worse, the differences between the results
of CCFR-I and the other peer algorithms are not significant. For the functions on which CCFR-I performs better, the differences
are significant, especially forf4, f7, f8 and f11, where CCFR-I outperforms the other peer algorithms by several orders of
magnitude.

Fig. 5 shows the average function evaluations used by each subpopulation to optimize its corresponding subcomponent
for CBCC1-I, CBCC2-I and CC-I onf8 over 25 independent runs. Forf8, the weight values of the subcomponents are
significantly different (see Fig. 3a). It can be seen in Fig. 5that CC-I allocates equal computational resources to all the
subpopulations. CBCC1-I and CBCC2-I allocate equal computational resources to all the subpopulations except the third one
(P3). In the beginning of the evolutionary process,P3 makes the greatest contribution. Therefore, CBCC1-I and CBCC2-I
allocate more computational resources toP3. In the subsequent co-evolutionary cycles, the contribution of P3 in one cycle
drops, but CBCC1-I and CBCC2-I still deemP3 makes the greatest contribution and allocate resources toP3 rather than some
other subpopulation which makes the greatest real-time contribution. In contrast, CCFR-I allocates computational resources
to P5 with the greatest real-time contribution when the real-time contribution ofP3 is small. Allocating more computational
resources to the subpopulation with the greatest contribution increases the probability of making a greater improvement of the
best overall objective value. In short, forf8, the result of CCFR-I is significantly better than those of CBCC1-I, CBCC2-I and
CC-I (see Table I).

The average ranking of CCFR-I is the best among the four CC algorithms on the CEC’2010 and CEC’2013 functions (see
Table II). The results in this section show that CCFR can makebetter use of computational resources than CBCC and CC on
both the CEC’2010 and CEC’2013 functions.

In order to show the effect of the contribution-based resource allocation (see Sect. III-B) on the overall performance of
CCFR, we compared CCFR-I with ICBCC2-I, ICBCC1-I and ICC-I,which are the improved CBCC1-I, CBCC2-I and CC-
I, respectively. ICBCC2-I, ICBCC1-I and ICC-I adopt the components of CCFR (see Sect. III-A to Sect. III-C) except the
contribution-based resource allocation. Table III summarizes the results on partially separable CEC’2013 functionsf8–f11. The
comparison between the results in Table I and Table III showsthat the components of CCFR proposed in Sect. III-A and Sect.
III-C improve the performance of CBCC1-I, CBCC2-I and CC-I on the four CEC’2013 functions (f8–f11). However, CCFR-I
still outperforms the other CC algorithms on most of the fourfunctions due to its better contribution-based resource allocation.

The scalability study of CCFR-I on the block-rotated ellipsoid function [53] is provided in Sect. II in the supplementary
material listed in the appendix. The results show that for CCFR-I, the number of function evaluations increases linearly as
the dimensionality of the function and the number of subcomponents increase. CBCC1-I, CBCC2-I and CC-I have similar
performance to CCFR-I, but for CCFR-I, as the dimensionality of the function and the number of subcomponents increase,
the number of function evaluations increases less rapidly than the other three CC algorithms.

C. CCFR with IDG2

The experimental results of CCFR with two grouping methods (provided in Sect. III in the supplementary material listed
in the appendix) show that a high grouping accuracy can improve the performance of CCFR, especially for nonseparable
variables.

In this section, the performance of CCFR-IDG2 is presented.IDG2 [54], which is an improved variant of differential
grouping (DG) [28], is able to group interdependent variables together with a very high accuracy and correctly identifythe
indirect interaction between decision variables. CCFR-IDG2 is compared with seven CC algorithms (DECC-G [13], MLCC
[49], DECC-D [23], DECC-DML [23], DECC [28], CBCC1 [9] and CBCC2 [9]) and two memetic algorithms (MA-SW-Chains

12

TABLE III
THE AVERAGE FITNESS VALUES± STANDARD DEVIATIONS ON FOUR PARTIALLY SEPARABLECEC’2013FUNCTIONS(f8–f11) OVER 25 INDEPENDENT

RUNS. THE SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION,α=0.05).R+ , R−

AND p-VALUE HAVE SIMILAR MEANINGS AS IN TABLE I.

F CCFR-I ICBCC1-I ICBCC2-I ICC-I

f8 9.6e+09±1.6e+10 1.9e+13±2.7e+13↑ 9.9e+11±1.3e+11↑ 4.7e+13±2.6e+13↑
f9 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.9e+07↑ 2.8e+08±5.4e+07↑
f10 9.5e+07±1.9e+05 9.5e+07±2.8e+05↓ 9.5e+07±3.1e+05↓ 9.5e+07±2.8e+05
f11 3.3e+08±3.2e+08 5.2e+08±4.6e+08 7.9e+09±1.2e+10↑ 1.8e+09±6.1e+09↑

R+ — 9.0 9.0 9.0
R− — 1.0 1.0 1.0
p-value — 2.50e-01 2.50e-01 2.50e-01

The symbols↑ and↓ have similar meanings as in Table I.

TABLE IV
THE AVERAGE FITNESS VALUES± STANDARD DEVIATIONS ON THE CEC’2010AND CEC’2013FUNCTIONS OVER25 INDEPENDENT RUNS. THE

SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION,α=0.05).R+ , R− AND

p-VALUE HAVE SIMILAR MEANINGS AS IN TABLE I.

CEC’2010 Functions

F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML

f1 2e-5±7e-6 4e-7±1e-7↓ 8e-7±4e-7↓ 1e-22±9e-21↓ 3e-7±9e-7↓
f2 1.7e2±9e0 1.3e3±3e1↑ 3e-3±5e-3↓ 6.5e1±4e1↓ 1.0e1±2e1↓
f3 1.2e1±4e-1 1.1e0±4e-1↓ 1e-2±3e-2↓ 2.3e0±2e-1↓ 3e-1±7e-1↓

f4 1e11±8e10 2e13±5e12↑ 1e14±4e13↑ 3e12±9e11↑ 1e14±2e14↑
f5 9.2e7±2e7 2.5e8±7e7↑ 5.0e8±1e8↑ 2.9e8±1e8↑ 5.0e8±1e8↑
f6 6.8e5±7e5 5.3e6±1e6↑ 1.9e7±2e6↑ 5.9e6±5e6↑ 1.7e7±6e6↑
f7 2e-3±3e-4 8.1e8±5e8↑ 5e10±2e10↑ 1.5e5±2e5↑ 3e10±5e10↑
f8 3.2e5±1e6 6.8e7±3e7↑ 8.2e8±2e8↑ 1.3e8±1e8↑ 3e10±7e10↑

f9 1.3e7±2e6 4.5e8±5e7↑ 1.7e9±2e8↑ 1.0e8±9e6↑ 1.0e9±1e9↑
f10 1.8e3±1e2 1.1e4±4e2↑ 5.2e3±2e3↑ 4.1e3±1e3↑ 4.3e3±2e3↑
f11 2.0e1±3e0 2.6e1±1e0↑ 2.0e2±2e0↑ 1.0e2±1e2↑ 1.9e2±3e1↑
f12 2.0e1±2e1 9.9e4±1e4↑ 8.7e5±1e5↑ 9.1e3±1e3↑ 4.8e5±5e5↑
f13 5.3e2±1e2 5.3e3±3e3↑ 3.2e4±3e4↑ 5.4e3±3e3↑ 8.6e4±2e5↑

f14 3.1e7±3e6 9.8e8±8e7↑ 3.6e9±5e8↑ 3.0e8±2e7↑ 2.2e9±2e9↑
f15 3.2e3±2e2 1.2e4±7e2↑ 1.2e4±2e3↑ 1.3e4±2e2↑ 1.1e4±3e3↑
f16 2.0e1±3e0 6.9e1±5e0↑ 4.0e2±3e0↑ 2.0e2±2e2↑ 3.6e2±1e2↑
f17 6.7e1±9e1 3.1e5±2e4↑ 1.8e6±2e5↑ 7.5e4±5e3↑ 9.7e5±1e6↑
f18 1.4e3±2e2 3.5e4±1e4↑ 1.1e5±3e4↑ 1.4e4±1e4↑ 7.8e4±2e5↑

f19 1.3e6±1e5 1.1e6±6e4↓ 3.0e6±4e5↑ 1.6e6±1e6 2.7e6±3e6↑
f20 2.0e9±2e9 4.5e3±8e2↓ 1.8e5±2e5↓ 2.3e3±2e2↓ 5.4e3±1e4↓

R+ — 176.0 187.0 184.0 188.0
R− — 34.0 23.0 26.0 22.0
p-value — 8.03e-03 2.20e-03 3.19e-03 1.94e-03

CEC’2013 Functions

F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML

f1 2e-5±5e-6 3e-6±2e-6↓ 1e-6±6e-7↓ 1e-17±1e-17↓ 7e-8±3e-7↓
f2 3.6e2±2e1 1.3e3±3e1↑ 2e-2±4e-2↓ 7.1e1±3e1↓ 4.9e0±2e1↓
f3 2.1e1±1e-2 2.0e1±7e-3↓ 2.0e1±9e-4↓ 2.0e1±2e-3↓ 2.0e1±2e-2↓

f4 9.6e7±4e7 2e11±1e11↑ 2e12±8e11↑ 3e10±2e10↑ 1e12±1e12↑
f5 2.8e6±3e5 8.6e6±1e6↑ 1.9e7±5e6↑ 6.1e6±2e6↑ 1.9e7±8e6↑
f6 1.1e6±1e3 1.1e6±1e3↓ 1.1e6±3e3↓ 1.1e6±2e3↓ 1.0e6±5e3↓
f7 2.0e7±3e7 1.0e9±5e8↑ 8.4e9±4e9↑ 9.0e7±4e7↑ 3.7e9±5e9↑

f8 7e10±1e11 9e15±4e15↑ 8e16±4e16↑ 2e14±9e13↑ 5e16±8e16↑
f9 1.9e8±3e7 6.1e8±1e8↑ 1.2e9±3e8↑ 5.1e8±1e8↑ 1.2e9±4e8↑
f10 9.5e7±2e5 9.3e7±5e5↓ 9.3e7±5e5↓ 9.3e7±6e5↓ 9.3e7±6e5↓
f11 4e8±3e8 2e11±9e10↑ 1e12±5e11↑ 9e8±5e8↑ 6e11±7e11↑

f12 1.6e9±2e9 4.4e3±7e2↓ 8.8e4±3e4↓ 2.3e3±2e2↓ 5.2e3±1e4↓
f13 1.2e9±6e8 9.6e9±3e9↑ 5e10±1e10↑ 1.7e9±5e8↑ 2e10±2e10↑
f14 3.4e9±3e9 2e11±5e10↑ 9e11±4e11↑ 7.4e9±9e9 2e11±5e11↑

f15 9.8e6±4e6 1.2e7±1e6↑ 3.7e8±3e8↑ 6.9e6±7e5↓ 3e10±1e11↑

R+ — 98.0 96.0 87.0 97.0
R− — 22.0 24.0 33.0 23.0
p-value — 3.02e-02 4.13e-02 1.35e-01 3.53e-02

The symbols↑ and↓ have similar meanings as in Table I.

[50] and MOS-CEC2013 [51]). It is shown in [55] that the two memetic algorithms are competitive for solving large-scale
optimization problems. Note that, for the algorithms with IDG2, the function evaluations spent on groupings are counted as
part of the computational budget.

Table IV summarizes the results of CCFR-IDG2, DECC-G, MLCC,DECC-D and DECC-DML. CCFR-IDG2 performs
significantly better than the other peer algorithms by several orders of magnitude on all the CEC’2010 partially separable
functions (f4–f18) and most of the CEC’2013 partially separable functions (f4–f11). This indicates that an efficient grouping
method and an efficient resource allocation strategy can help CCFR achieve competitive performance. The average ranking of
CCFR-IDG2 is the best among the five CC algorithms on the CEC’2010 and CEC’2013 functions (see Table V).

CCFR is compared with CBCC1, CBCC2 and DECC, which adopt two grouping methods (i.e., DG [28] and IDG2 [54]).
The detailed results are provided in Sect. III in the supplementary material listed in the appendix. For IDG2, the comparison
results are similar to the comparison results between CCFR-I and its competitors (CBCC1-I, CBCC2-I and CC-I) in Sect. IV-B.

13

TABLE V
AVERAGE RANKINGS ON THECEC’2010AND CEC’2013FUNCTIONS(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT.

CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML p-value

Average Ranking 2.1429 3.0286 4.0000 2.3143 3.5143 5.66e-07

The results show that CCFR-IDG2 performs significantly better than CBCC1-IDG2, CBCC2-IDG2 and DECC-IDG2 on most
of the fully separable and partially separable functions. The overall performance of CCFR-DG is also better than CBCC1-DG,
CBCC2-DG and DECC-DG on the CEC’2010 and CEC’2013 functions. The algorithms with IDG2 perform better than the
ones with DG. This is because IDG2 is able to identify interdependence between variables with higher accuracies.

The comparison between CCFR-IDG2 and the two memetic algorithms (MA-SW-Chains and MOS-CEC2013) is provided
in Sect. IV in the supplementary material listed in the appendix. The experimental results show that the overall performance
of CCFR-IDG2 is worse than MA-SW-Chains and MOS-CEC2013 on the CEC’2013 functions. However, when we replace
SaNSDE with another optimizer (i.e., CMAES [56]), the performance of CCFR-IDG2 is improved. Overall, CCFR-IDG2 with
CMAES performs better than MA-SW-Chains and MOS-CEC2013 onboth the CEC’2010 and CEC’2013 functions.

V. CONCLUSION

In this paper, we presented a new CC framework named CCFR for tackling large-scale global optimization problems. CCFR
aims to make efficient use of computational resources among subpopulations. Unlike the traditional CC where the computational
resources are equally allocated among subpopulations and CBCC where the computational resources are allocated according
to the accumulated contributions of subpopulations from the beginning of the evolutionary process, CCFR allocates resources
to subpopulations according to the previous and current contributions of the subpopulations. The CEC’2010 and CEC’2013
large-scale benchmark functions were used to evaluate the performance of CCFR. From our experimental results, several
conclusions can be drawn.

Firstly, CCFR can detect stagnant subpopulations and save computational cost on stagnant subpopulations. Secondly,
according to the previous and current contributions of subpopulations to the improvement of the best overall objectivevalue,
CCFR can make a more efficient computational resource allocation among subpopulations and obtain better solutions than
other CC frameworks. Finally, the performance of CCFR depends on the performance of grouping methods. Grouping the
interdependent decision variables together with a high accuracy can improve the performance of CCFR. CCFR with an improved
differential grouping method is a highly competitive CC algorithm for solving the large-scale optimization problems.

In the future, we are planning to investigate the potential of using the racing algorithm [57], reinforcement learning [58] and
the techniques adopted in adaptive selection of operators [59] for allocating computational resources among subpopulations.

APPENDIX

SUPPLEMENTARY MATERIAL AVAILABLE ON THE WEB

The experiments in the supplementary material consist of the following parts.

1) The sensitivity study of the parameterU of CCFR.
2) The scalability study of CCFR.
3) The performance of CCFR with DG and IDG2.
4) The comparison between CCFR-IDG2 and non-CC algorithms.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Bahar Salehi at Dept. of Computing and Information Systems, University of Melbourne,
for carefully proofreading this paper.

REFERENCES

[1] R. Sarker, M. Mohammadian, and X. Yao, Eds.,Evolutionary Optimization. Springer US, 2002.
[2] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary programming with cooperative coevolution,” inIEEE Congress on Evolutionary

Computation, 2001, pp. 1101–1108.
[3] A. Vicini and D. Quagliarella, “Airfoil and wing design through hybrid optimization strategies,”AIAA journal, vol. 37, no. 5, pp. 634–641, 1999.
[4] G. B. Dantzig and P. Wolfe, “Decomposition principle forlinear programs,”Operations Research, vol. 8, no. 1, pp. 101–111, 1960.
[5] A. Griewank and P. Toint, “Partitioned variable metric updates for large structured optimization problems,”Numerische Mathematik, vol. 39, no. 1, pp.

119–137, 1982.
[6] M. Z. Ali, N. H. Awad, and P. N. Suganthan, “Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale

global optimization,”Applied Soft Computing, vol. 33, pp. 304–327, 2015.
[7] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach to function optimization,” inParallel Problem Solving from Nature, 1994, pp.

249–257.
[8] P. L. Toint, “Test problems for partially separable optimization and results for the routine PSPMIN,” The University of Namur, Department of Mathematics,

Belgium, Tech. Rep., 1983.

14

[9] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms,” inGenetic
and Evolutionary Computation Conference, 2011, pp. 1115–1122.

[10] Y. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, “A survey of linkage learning techniques in genetic and evolutionary algorithms,” University of Illinois
at Urbana-Champaign, Urbana IL, Tech. Rep., 2007.

[11] T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls and booby traps,”Journal of Computer Science and Technology, vol. 27, no. 5,
pp. 907–936, 2012.

[12] R. Salomon, “Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. a survey of some theoretical and practical
aspects of genetic algorithms,”Biosystems, vol. 39, no. 3, pp. 263 – 278, 1996.

[13] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using cooperative coevolution,”Information Sciences, vol. 178, no. 15, pp.
2985–2999, 2008.

[14] Y. Mei, M. Omidvar, X. Li, and X. Yao, “A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization,”ACM Trans.
Math. Softw., vol. 42, no. 2, pp. 13:1–13:24, 2016.

[15] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,”IEEE Transactions on Evolutionary Computation,
vol. 8, no. 3, pp. 225–239, 2004.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, IEEE International Conference on, 1995, pp. 1942–1948.
[17] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential evolution for function optimization,” inAdvances in natural computation. Springer,

2005, pp. 1080–1088.
[18] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,”Journal of global

optimization, vol. 11, no. 4, pp. 341–359, 1997.
[19] M. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution for large scale optimization through more frequent random grouping,” inIEEE

Congress on Evolutionary Computation, 2010, pp. 1–8.
[20] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for large scale optimization,” inIEEE Congress on Evolutionary Computation, 2008,

pp. 1663–1670.
[21] X. Li and X. Yao, “Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms,” inIEEE Congress on

Evolutionary Computation, 2009, pp. 1546–1553.
[22] ——, “Cooperatively coevolving particle swarms for large scale optimization,”IEEE Transactions on Evolutionary Computation, vol. 16, no. 2, pp.

210–224, 2012.
[23] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta grouping for large scale non-separable function optimization,” inIEEE Congress

on Evolutionary Computation, 2010, pp. 1–8.
[24] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark functions for the CEC’2010 special session and competition on large-scale global

optimization,” Nature Inspired Computation and Applications Laboratory, Tech. Rep., 2010.
[25] K. Weicker and N. Weicker, “On the improvement of coevolutionary optimizers by learning variable interdependencies,” in IEEE Congress on Evolutionary

Computation, 1999, pp. 1627–1632.
[26] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimization using cooperative coevolution with variable interaction learning,” inParallel

Problem Solving from Nature, 2010, vol. 6239, pp. 300–309.
[27] M. Tezuka, M. Munetomo, and K. Akama, “Linkage identification by nonlinearity check for real-coded genetic algorithms,” in Conference on Genetic

and Evolutionary Computation, 2004, vol. 3103, pp. 222–233.
[28] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differential grouping for large scale optimization,” IEEE Transactions on

Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.
[29] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms,”

in IEEE Congress on Evolutionary Computation, 2014, pp. 1305–1312.
[30] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A sensitivity analysis of contribution-based cooperative co-evolutionary algorithms,” inIEEE

Congress on Evolutionary Computation, 2015, pp. 1–8.
[31] M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with auto-enhanced population diversity,”IEEE Transactions on Cybernetics, vol. 45, no. 2,

pp. 302–315, 2015.
[32] F. Peng, K. Tang, G. Chen, and X. Yao, “Multi-start jade with knowledge transfer for numerical optimization,” inIEEE Congress on Evolutionary

Computation, 2009, pp. 1889–1895.
[33] Y.-l. Li and J. Zhang, “A new differential evolution algorithm with dynamic population partition and local restart,” in Genetic and Evolutionary

Computation Conference, 2011, pp. 1085–1092.
[34] M. Vasile, E. Minisci, and M. Locatelli, “An inflationary differential evolution algorithm for space trajectory optimization,” IEEE Transactions on

Evolutionary Computation, vol. 15, no. 2, pp. 267–281, 2011.
[35] M. Zhabitsky and E. Zhabitskaya, “Asynchronous differential evolution with adaptive correlation matrix,” inGenetic and Evolutionary Computation

Conference, 2013, pp. 455–462.
[36] S.-M. Guo, C.-C. Yang, P.-H. Hsu, and J.-H. Tsai, “Improving differential evolution with a successful-parent-selecting framework,”IEEE Transactions

on Evolutionary Computation, vol. 19, no. 5, pp. 717–730, 2015.
[37] S.-M. Guo, J.-H. Tsai, C.-C. Yang, and P.-H. Hsu, “A self-optimization approach for l-shade incorporated with eigenvector-based crossover and successful-

parent-selecting framework on cec 2015 benchmark set,” inIEEE Congress on Evolutionary Computation, 2015, pp. 1003–1010.
[38] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.
[39] M. Yang, Z. Cai, C. Li, and J. Guan, “An improved adaptivedifferential evolution algorithm with population adaptation,” in Genetic and Evolutionary

Computation Conference, 2013, pp. 145–152.
[40] D. Thierens, “Adaptive strategies for operator allocation,” in Parameter Setting in Evolutionary Algorithms, ser. Studies in Computational Intelligence,

F. Lobo, C. F. Lima, and Z. Michalewicz, Eds. Springer BerlinHeidelberg, 2007, vol. 54, pp. 77–90.
[41] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-timeanalysis of the multiarmed bandit problem,”Machine Learning, vol. 47, no. 2-3, pp. 235–256,

2002.
[42] K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition,”

IEEE Transactions on Evolutionary Computation, vol. 18, no. 1, pp. 114–130, 2014.
[43] Q. Zhang, W. Liu, and H. Li, “The performance of a new version of moea/d on cec09 unconstrained mop test instances,” inIEEE Congress on

Evolutionary Computation, 2009, pp. 203–208.
[44] A. Zhou and Q. Zhang, “Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms,”

IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 52–64, 2016.
[45] A. Fialho, M. Schoenauer, and M. Sebag, “Analysis of adaptive operator selection techniques on the royal road and long k-path problems,” inGenetic

and Evolutionary Computation Conference, 2009, pp. 779–786.
[46] F.-M. De Rainville, M. Sebag, C. Gagné, M. Schoenauer,and D. Laurendeau, “Sustainable cooperative coevolution with a multi-armed bandit,” inGenetic

and Evolutionary Computation Conference, 2013, pp. 1517–1524.
[47] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark functions for the CEC’2013 special session and competition on large scale global

optimization,” Evolutionary Computation and Machine Learning Group, RMIT University, Australia, Tech. Rep., 2013.

15

[48] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,”IEEE Transactions on Evolutionary Computation,
vol. 8, no. 3, pp. 225–239, 2004.

[49] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for large scale optimization,” inIEEE Congress on Evolutionary Computation, 2008,
pp. 1663–1670.

[50] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic algorithm based on local search chains for large scalecontinuous global optimization,”
in IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.

[51] A. LaTorre, S. Muelas, and J.-M. Pena, “Large scale global optimization: Experimental results with mos-based hybrid algorithms,” in IEEE Congress
on Evolutionary Computation, 2013, pp. 2742–2749.

[52] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with neighborhood search,” inIEEE Congress on Evolutionary Computation, 2008,
pp. 1110–1116.

[53] R. Ros and N. Hansen, “A simple modification in cma-es achieving linear time and space complexity,” inParallel Problem Solving from Nature, 2008,
pp. 296–305.

[54] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “IDG: A faster and more accurate differential grouping algorithm,” University of Birmingham,
School of Computer Science, Tech. Rep. CSR-15-04, September 2015. [Online]. Available: ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2015/CSR-15-04.pdf

[55] A. LaTorre, S. Muelas, and J.-M. Peña, “A comprehensive comparison of large scale global optimizers,”Information Sciences, vol. 316, pp. 517–549,
2015.

[56] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation
(cma-es),”Evol. Comput., vol. 11, no. 1, pp. 1–18, 2003.

[57] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing algorithm for configuring metaheuristics,” inGenetic and Evolutionary Computation
Conference, 2002, pp. 11–18.

[58] J. Schmidhuber, “A general method for multi-agent reinforcement learning in unrestricted environments,” inEvolutionary computation: theroy and
applications, X. Yao, Ed. World Scientific, 1999, pp. 81–123.

[59] P. A. Consoli, Y. Mei, L. L. Minku, and X. Yao, “Dynamic selection of evolutionary operators based on online learningand fitness landscape analysis,”
Soft Computing, vol. 8886, no. 10, pp. 1–26, 2016.

Ming Yang received the B.Sc., M.Sc., and Ph.D. degrees in computer science from China University of Geosciences, Wuhan, China,
in 2005, 2008, and 2012, respectively. He carried out a postdoctoral research at the School of Computer Science, University of
Birmingham, U.K. from Dec., 2014 to Dec., 2015.

He is currently an Associate Professor with the School of Computer Science, China University of Geosciences, Wuhan, China.
He is also a member of the Hubei Key Laboratory of IntelligentGeo-Information Processing, Wuhan, China. His research interests
include swarm intelligence, large-scale optimization, multi-objective optimization and their applications.

Mohammad Nabi Omidvar (S’09-M’15) received his bachelor of computer science withfirst class honors from RMIT University,
Melbourne, Australia, in 2010, and his Ph.D. in computer science from RMIT University in 2015. He also holds a bachelor of
applied mathematics from RMIT University. From 2008 to 2015, he was a member of Evolutionary Computing and Machine Learning
(ECML) group at RMIT University. He received an Australian Postgraduate Award in 2010 and also received the best Computer
Science Honours Thesis award from the School of Computer Science and IT, RMIT University.

He is currently a research fellow in evolutionary computation and a member of Centre of Excellence for Research in Computational
Intelligence and Applications (CERCIA) at the School of Computer Science, University of Birmingham. His research interests include
large-scale global optimization and many-objective optimization.

Changhe Li (M’12) received the B.Sc. and M.Sc. degrees in computer science from China University of Geosciences, Wuhan, China,
in 2005 and 2008, respectively, and the Ph.D. degree in computer science from the University of Leicester, U.K. in July 2011.

He has been an Associate Professor at China University of Geosciences (Wuhan) since 2012. He is the vice chair of the Task
Force on Evolutionary Computation in Dynamic and UncertainEnvironments. His research interests are evolutionary algorithms with
machine leaning, swarm intelligence, multi-modal optimization and dynamic optimization.

16

Xiaodong Li (M’03-SM’07) received his B.Sc. degree from Xidian University, Xi’an, China, and Ph.D. degree in information science
from University of Otago, Dunedin, New Zealand, respectively.

He is currently an Associate Professor at the School of Science (Computer Science and Software Engineering), RMIT University,
Melbourne, Australia. His research interests include evolutionary computation, neural networks, data analytics, multiobjective
optimization, multimodal optimization, and swarm intelligence. He serves as an Associate Editor of the IEEE Transactions on
Evolutionary Computation, Swarm Intelligence (Springer), and International Journal of Swarm Intelligence Research. He is the
recipient of 2013 ACM SIGEVO Impact Award.

Zhihua Cai received the B.Sc. degree from Wuhan University, Wuhan, China, in 1986, the M.Sc.degree from the Beijing University
of Technology, Beijing, China, in 1992, and the Ph.D. degreefrom the China University of Geosciences, Wuhan, in 2003.

He is currently a Professor with the School of Computer Science, China University of Geosciences. He has published over 100
research papers in journals and international conferences. His current research interests include data mining, machine learning,
evolutionary computation, and their applications.

Borhan Kazimipour (S’12) received the B.Sc. degree in Software Engineering and the M.Sc. degree in Artificial Intelligence from
Shiraz University, Shiraz, Iran, in 2007 and 2010, respectively. Since 2012, he has been a member of the Evolutionary Computing
and Machine Learning Research Group at RMIT University, Melbourne, Australia, where he is currently working towards the Ph.D.
degree in the field of evolutionary optimization.

He is currently a Lecturer at the Faculty of Information Technology, Monash University, Melbourne, Australia. His research interests
include evolutionary computation, machine learning and big data analytics.

Xin Yao (M’91-SM’96-F’03) received the B.Sc. degree from the University of Science and Technology of China (USTC), Hefei,
China, in 1982; the M.Sc. degree from North China Institute of Computing Technology, Beijing, China, in 1985; and the Ph.D. degree
from the USTC, Hefei, in 1990. He was an Associate Lecturer and Lecturer with the USTC, from 1985 to 1990; a Postdoctoral Fellow
with the Australian National University, Canberra, Australia, and Commonwealth Scientific and Industrial Research Organization,
Melbourne, Australia, from 1990 to 1992; and a Lecturer, Senior Lecturer, and Associate Professor with the University of New South
Wales, the Australian Defence Force Academy (ADFA), Canberra, from 1992 to 1999. Since April 1999, he has been a Professor
(Chair) of Computer Science with the University of Birmingham, U.K., where he is currently the Director of the Centre of Excellence
for Research in Computational Intelligence and Applications. He is also a Professor at the Department of Computer Science and
Engineering, Southern University of Science and Technology, China.

He is an IEEE CIS Distinguished Lecturer and a former EIC of the IEEE Transactions on Evolutionary Computation. He was a
recipient of the 2001 IEEE Donald G. Fink Prize Paper Award, the 2010 IEEE Transactions on Evolutionary Computation Outstanding

Paper Award, the 2011 IEEE Transactions on Neural Networks Outstanding Paper Award, and several other best paper awards.

1

Supplementary File of ‘Efficient Resource
Allocation in Cooperative Co-evolution for

Large-scale Global Optimization’
Ming Yang, Mohammad Nabi Omidvar, Changhe Li,Member, IEEE, Xiaodong Li,Senior Member, IEEE,

Zhihua Cai, Borhan Kazimipour, and Xin Yao,Fellow, IEEE

CONTENTS

I Sensitivity Study of the Parameter U of CCFR 2

II Scalability Study of CCFR 2

III Performance of CCFR with DG and IDG2 3

IV Comparison Between CCFR-IDG2 and Non-CC Algorithms 3

References 6

The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61305086, 61673355, 61673354, 61329302 and 61305079)
and EPSRC (Grant No. EP/K001523/1).(Corresponding author: Xin Yao.)

M. Yang and Z. Cai are with the School of Computer Science, China University of Geosciences, Wuhan, 430074, China. M. Yangand Z. Cai are also with the
Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China (e-mail: yangming0702@gmail.com,
zhcai@cug.edu.cn).

C. Li is with the School of Automation, China University of Geosciences, Wuhan, 430074, China (e-mail: changhe.lw@gmail.com).
M. N. Omidvar and X. Yao are with the Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science,

University of Birmingham, Birmingham B15 2TT, U.K. X. Yao isalso with Department of Computer Science and Engineering, Southern University of Science
and Technology, Shenzhen, 518055, China. (e-mail: m.omidvar@cs.bham.ac.uk, x.yao@cs.bham.ac.uk).

X. Li and B. Kazimipour are with the School of Computer Science and Information Technology, RMIT University, Melbourne,VIC 3001, Australia (e-mail:
xiaodong.li@rmit.edu.au, borhan.kazimipour@rmit.edu.au).

2

TABLE I: The average fitness values± standard deviations on the CEC’2010 and CEC’2013 functionsover 25 independent
runs. The significantly better results are in bold font (Wilcoxon rank sum test with Holmp-value correction,α=0.05).R+, R−

andp-value are obtained through multiple-problem analysis by the Wilcoxon test between CCFR-I (U=Di) and its competitors.

CEC’2010 Functions

F CCFR-I (U = Di) CCFR-I (U = 2Di) CCFR-I (U = 10Di)

f1 1.20e-05±4.89e-06 1.31e-05±5.19e-06 1.68e-05±6.54e-06↑
f2 2.75e+01±5.25e+00 5.13e+01±5.04e+00↑ 1.52e+02±7.22e+00↑
f3 4.56e+00±4.63e-01 5.56e+00±4.63e-01↑ 8.10e+00±4.65e-01↑

f4 8.33e+10±6.16e+10 8.69e+10±4.68e+10 1.06e+11±4.31e+10↑
f5 7.23e+07±1.32e+07 7.32e+07±1.22e+07 9.12e+07±1.74e+07↑
f6 7.74e+05±7.15e+05 7.83e+05±8.28e+05 7.28e+05±8.51e+05
f7 1.49e-03±2.47e-04 1.66e-03±2.78e-04↑ 2.14e-03±3.90e-04↑
f8 3.19e+05±1.08e+06 6.38e+05±1.46e+06 9.57e+05±1.70e+06↑

f9 9.38e+06±1.18e+06 8.81e+06±1.05e+06 1.05e+07±1.44e+06↑
f10 1.41e+03±1.01e+02 1.42e+03±7.83e+01 1.61e+03±1.10e+02↑
f11 1.03e+01±2.71e+00 9.72e+00±2.11e+00 1.00e+01±2.59e+00
f12 1.17e+00±4.57e+00 4.72e+00±1.75e+01↑ 7.49e+00±2.30e+01↑
f13 3.18e+02±9.91e+01 3.25e+02±1.01e+02 4.03e+02±9.45e+01↑

f14 2.48e+07±2.85e+06 2.48e+07±2.85e+06 2.48e+07±2.85e+06
f15 2.81e+03±1.31e+02 2.81e+03±1.31e+02 2.81e+03±1.31e+02
f16 2.01e+01±2.62e+00 2.01e+01±2.62e+00 2.01e+01±2.62e+00
f17 9.78e+00±1.09e+01 9.78e+00±1.09e+01 9.78e+00±1.09e+01
f18 1.14e+03±1.82e+02 1.14e+03±1.82e+02 1.14e+03±1.82e+02

f19 1.16e+06±9.47e+04 1.16e+06±9.47e+04 1.16e+06±9.47e+04
f20 1.01e+09±8.96e+08 1.01e+09±8.96e+08 1.01e+09±8.96e+08

R+ — 168.0 170.0
R− — 42.0 40.0
p-value — 2.66e-02 1.71e-02

CEC’2013 Functions

F CCFR-I (U = Di) CCFR-I (U = 2Di) CCFR-I (U = 10Di)

f1 1.30e-05±3.18e-06 1.40e-05±3.49e-06 1.80e-05±4.65e-06↑
f2 5.51e-01±1.47e+00 5.33e+01±1.70e+01↑ 3.14e+02±2.05e+01↑
f3 2.00e+01±3.06e-07 2.00e+01±3.23e-07↓ 2.00e+01±3.89e-04↑

f4 4.50e+07±1.66e+07 5.26e+07±2.22e+07 7.47e+07±2.31e+07↑
f5 2.53e+06±2.67e+05 2.47e+06±3.75e+05 2.62e+06±3.88e+05
f6 1.06e+06±1.19e+03 1.06e+06±1.30e+03↓ 1.07e+06±1.64e+03↑
f7 8.60e+06±1.90e+07 9.94e+06±2.64e+07 1.04e+07±1.85e+07

f8 9.61e+09±1.59e+10 9.61e+09±1.59e+10 9.61e+09±1.59e+10
f9 1.85e+08±2.79e+07 1.84e+08±2.70e+07 1.84e+08±2.73e+07
f10 9.47e+07±1.86e+05 9.46e+07±3.84e+05 9.43e+07±3.44e+05↓
f11 3.25e+08±3.24e+08 2.53e+08±3.33e+08 3.28e+08±3.38e+08

f12 6.00e+08±7.09e+08 6.00e+08±7.09e+08 6.00e+08±7.09e+08
f13 9.28e+08±5.33e+08 9.28e+08±5.33e+08 9.28e+08±5.33e+08
f14 2.14e+09±2.11e+09 2.14e+09±2.11e+09 2.14e+09±2.11e+09

f15 8.25e+06±3.28e+06 8.25e+06±3.28e+06 8.25e+06±3.28e+06

R+ — 49.5 89.5
R− — 70.5 30.5
p-value — 6.25e-01 1.60e-01

The symbols↑ and ↓ denote that the CCFR-I (U = Di) algorithm performs
significantly better than and worse than this algorithm by the Wilcoxon rank sum
test at the significance level of 0.05, respectively.

I. SENSITIVITY STUDY OF THE PARAMETER U OF CCFR

Table I summarizes the results of CCFR-I with different values of the parameterU (see Eq. (6a) in the paper) on the
CEC’2010 and CEC’2013 large-scale functions [1], [2].Di is the dimensionality of thei-th subcomponent.

For the functions with separable variables (i.e., the CEC’2010 functionsf1–f13 and the CEC’2013 functionsf1–f7), the
smaller the value ofU is, the better the performance of CCFR is in general. This is because CCFR with a small value ofU
can early stop the evolution of stagnant subpopulations. Itcan save more computational resources on stagnant variables than
CCFR with a larger value ofU . Therefore, we useU = Di as the default setting ofU . For the functions without separable
variables, the subpopulations hardly enter a stagnant state, so there are no differences between the performance of CCFR-I
with different values ofU . Overall, the CCFR-I algorithms with different values ofU have similar performance on most of
the CEC’2010 and CEC’2013 functions.

II. SCALABILITY STUDY OF CCFR

We used the block-rotated ellipsoid function [3] to study the performance of CCFR-I, CBCC1-I, CBCC2-I and CC-I with
the scale-up dimensionality of the function and the scale-up number of subcomponents. The dimensionality of the function

3

Dimensionality

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024

F
un

ct
io

n
E

va
lu

at
io

ns

104

105

106

107

1 Subcomponents
2 Subcomponents
4 Subcomponents
8 Subcomponents
D Subcomponents

CC-ICBCC1-ICCFR-I CBCC2-I

Fig. 1: The average function evaluations used by CCFR-I, CBCC1-I, CBCC2-I and CC-I on the block-rotated ellipsoid function
over the successful runs out of 10 runs.

(i.e., D) ranges from24 to 2
10. The numbers of subcomponents are{1,2,4,8,D}. Within 10

7 function evaluations, if the best
overall objective value is smaller than a target value (i.e., 0.1) in a run, CCFR-I stops running and this run is considered to be
successful. Fig. 1 shows the average number of function evaluations over successful runs out of 10 runs. CCFR-I can reach
the target value within107 function evaluations when there are less than 64 variables in a subcomponent. When the number
of the variables in a subcomponent is equal to or smaller thaneight, the number of function evaluations increases linearly as
the dimensionality of the function and the number of subcomponents increase. When there are more than eight variables in
a subcomponent, the number of function evaluations increases rapidly and linearly as the dimensionality of the function and
the number of subcomponents increase. It can be seen in Fig. 1that CBCC1-I, CBCC2-I and CC-I have similar performance
to CCFR-I, but for CCFR-I, as the dimensionality of the function and the number of subcomponents increase, the number of
function evaluations increases less rapidly than the otherthree CC algorithms.

III. PERFORMANCE OFCCFRWITH DG AND IDG2

In order to study the effect of decomposition on the performance of CCFR, we tested CCFR with two grouping methods (DG
[4] and IDG2 [5]). DG is a differential grouping method with atheoretical foundation, which is able to group the interdependent
variables together with a high accuracy. In DG, the parameter ǫ was set to10-3, which is recommended in [4]. IDG2 is an
improved variant of DG, which is able to group the interdependent variables together better than DG. Table II summarizesthe
grouping results of IDG2 and DG.

Table III summarizes the optimization results of CCFR, CBCC1 [6], CBCC2 [6] and DECC [4] with IDG2 and DG. Note
that, for the algorithms with IDG2 and DG, the function evaluations spent on groupings (see the ‘FEs’ column in Table II)
are counted as part of the computational budget. The resultsshow that CCFR-IDG2 and CCFR-DG perform better than the
other peer algorithms on the CEC’2010 and CEC’2013 functions.

CCFR-DG performs significantly better than the other peer algorithms with DG on most of the separable functions (f1–
f3). For almost all the partially separable functions (the CEC’2010 functionsf4–f18; the CEC’2013 functionsf4–f11), the
differences between the results of the algorithms with DG are not significant. For the CEC’2010 functionsf7, f8 and f13,
because DG is not able to identify the interdependence between variables, there is interdependence between the subcomponents
formed by DG. CCFR-DG performs worse than CBCC1-DG and DECC-DG by several orders of magnitude. This indicates
that if there is interdependence between subcomponents, optimizing each subcomponent one by one may be a good way.

CCFR-IDG2 outperforms the other peer algorithms on most of the separable and partially separable functions (the CEC’2010
functionsf1–f18; the CEC’2013 functionsf1–f11), especially on the separable functions (f1–f3). For the partially separable
functions on which CCFR-IDG2 performs worse, the differences between the results of CCFR and the other peer algorithms are
not significant. For the functions on which CCFR-IDG2 performs better, the differences are significant. For the nonseparable
functions (the CEC’2010 functionsf19–f20; the CEC’2013 functionsf12–f15), all the variables are grouped into one
subcomponent. Therefore, the algorithms with IDG2 have similar performance on these nonseparable functions.

For most of the functions, the algorithms with IDG2 perform better than the ones with DG. This is because IDG2 can identify
the interdependence between variables with higher accuracies than DG (see Table II). The results show that compared with
DG, IDG2 makes CCFR perform much better than the other peer algorithms. For most of the functions on which CCFR-IDG2
performs worse than CCFR-DG, the performance of CCFR-IDG2 and CCFR-DG does not differ greatly. For most of the
functions on which CCFR-IDG2 performs better than CCFR-DG,CCFR-IDG2 significantly outperforms CCFR-DG by several
orders of magnitude due to the higher grouping accuracies ofIDG2 in identifying the interdependence between variables(e.g.,
the CEC’2010 functionsf7, f8, f13 andf18; the CEC’2013 functionsf4, f7, f8 andf11). The experimental results show that
the performance of CCFR is dependent on the decomposition method. A high grouping accuracy can improve the performance
of CCFR, especially for the nonseparable variables.

IV. COMPARISON BETWEEN CCFR-IDG2AND NON-CC ALGORITHMS

Table IV summarizes the results of CCFR-IDG2, MA-SW-Chains[7] and MOS-CEC2013 [8]. MA-SW-Chains and MOS-
CEC2013 were ranked the first in the IEEE CEC’2010 and CEC’2013 competitions on large-scale global optimization,

4

TABLE II: The grouping results on the CEC’2010 and CEC’2013 functions. The values of IDG2 and DG are separated by
“/”. The bold font indicates IDG2 performs better than DG; the gray background indicates IDG2 performs worse than DG.

CEC’2010 Functions

F
Sep
Vars

Non-Sep
IDG2 / DG (ǫ = 10−3)

FEs
Sep Non-sep

Vars Groups
Formed

Vars
Captured

Vars Accuracy
Formed

Subcomponents
Captured

Subcomponents Accuracy

f1 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f2 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f3 1000 0 0 500501 / 1001000 0 / 1000 0 / 1000 0.0% / 100.0% 1 / 0 0 / 0 100.0% / 100.0%

f4 950 50 1 500501 / 14554 950 / 33 950 / 33 100.0% / 3.5% 1 / 10 1 / 1 100.0% / 100.0%
f5 950 50 1 500501 / 905450 950 / 950 950 / 950 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%
f6 950 50 1 500501 / 906332 854 / 950 854 / 950 89.9% / 100.0% 2 / 1 1 / 1 100.0% / 100.0%
f7 950 50 1 500501 / 67742 950 / 248 950 / 248 100.0% / 26.1% 1 / 4 1 / 0 100.0% / 0.0%
f8 950 50 1 500501 / 23286 950 / 134 950 / 133 100.0% / 14.0% 1 / 5 1 / 0 100.0% / 0.0%

f9 500 500 10 500501 / 270802 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f10 500 500 10 500501 / 272958 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f11 500 500 10 500501 / 270640 0 / 501 0 / 500 0.0% / 100.0% 11 / 10 10 / 9 100.0% / 90.0%
f12 500 500 10 500501 / 271390 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f13 500 500 10 500501 / 50328 500 / 131 500 / 107 100.0% / 21.4% 10 / 34 10 / 0 100.0% / 0.0%

f14 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f15 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f16 0 1000 20 500501 / 21128 0 / 4 0 / 0 100.0% / 100.0% 20 / 20 20 / 16 100.0% / 80.0%
f17 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f18 0 1000 20 500501 / 39624 0 / 78 0 / 0 100.0% / 100.0% 20 / 50 20 / 0 100.0% / 0.0%

f19 0 1000 1 500501 / 2000 0 / 0 0 / 0 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%
f20 0 1000 1 500501 / 155430 0 / 33 0 / 0 100.0% / 100.0% 1 / 241 1 / 0 100.0% / 0.0%

CEC’2013 Functions

F
Sep
Vars

Non-Sep
IDG2 / DG (ǫ = 10−3)

FEs
Sep Non-sep

Vars Groups
Formed

Vars
Captured

Vars Accuracy
Formed

Subcomponents
Captured

Subcomponents Accuracy

f1 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f2 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f3 1000 0 0 500501 / 1001000 0 / 1000 0 / 1000 0.0% / 100.0% 1 / 0 0 / 0 100.0% / 100.0%

f4 700 300 7 500501 / 15792 700 / 40 700 / 40 100.0% / 5.7% 7 / 13 7 / 3 100.0% / 58.3%
f5 700 300 7 500501 / 527026 700 / 707 700 / 700 100.0% / 100.0% 7 / 10 7 / 6 100.0% / 66.7%
f6 700 300 7 500501 / 579848 0 / 752 0 / 700 0.0% / 100.0% 8 / 5 7 / 3 100.0% / 50.0%
f7 700 300 7 500501 / 11452 700 / 64 700 / 64 100.0% / 9.1% 7 / 10 7 / 0 100.0% / 0.0%

f8 0 1000 20 500501 / 22682 200 / 4 0 / 0 100.0% / 100.0% 18 / 25 18 / 14 80.0% / 65.0%
f9 0 1000 20 500501 / 17650 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f10 0 1000 20 500501 / 48650 0 / 152 0 / 0 100.0% / 100.0% 20 / 18 20 / 14 100.0% / 65.0%
f11 0 1000 20 500501 / 9102 0 / 1 0 / 0 100.0% / 100.0% 20 / 18 20 / 0 100.0% / 0.0%

f12 0 1000 1 500501 / 149894 0 / 50 0 / 0 100.0% / 100.0% 1 / 222 1 / 0 100.0% / 0.0%
f13 0 905 1 409966 / 18786 0 / 0 0 / 0 100.0% / 100.0% 1 / 20 1 / 0 100.0% / 0.0%
f14 0 905 1 409966 / 26698 0 / 0 0 / 0 100.0% / 100.0% 1 / 19 1 / 0 100.0% / 0.0%

f15 0 1000 1 500501 / 2000 0 / 0 0 / 0 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%

respectively. For the partially separable functions (the CEC’2010 functionsf4–f18; the CEC’2013 functionsf4–f11) on which
CCFR-IDG2 performs better than MA-SW-Chains, the differences between the results of CCFR-IDG2 and MA-SW-Chains are
significant. For the partially separable functions on whichCCFR-IDG2 performs worse than MA-SW-Chains, the differences
are not significant except for the CEC’2010 functionf12. CCFR-IDG2 performs worse than MOS-CEC2013 on most of the
CEC’2010 and CEC’2013 functions. For the nonseparable functions (the CEC’2010 functionsf19–f20; the CEC’2013 functions
f12–f15), CCFR-IDG2 optimizes all the decision variables togetherand performs significantly worse than MA-SW-Chains and
MOS-CEC2013. This indicates that the optimizer used by CCFR-IDG2 (i.e., SaNSDE) is inferior to MA-SW-Chains and MOS-
CEC2013. The results show that CCFR-IDG2 performs worse than MA-SW-Chains and MOS-CEC2013 on the CEC’2013
functions. This may be because that the optimizer used by CCFR-IDG2 performs worse than MA-SW-Chains and MOS-
CEC2013. The previous experimental results have shown thatfor a given optimizer (i.e., SaNSDE), CCFR is superior to the
other peer algorithms with the same optimizer.

Fig. 2 shows the convergence of CCFR-IDG2, MA-SW-Chains andMOS-CEC2013. Because CCFR-IDG2 spends 500501
function evaluations grouping the decision variables, in Fig. 2 the convergence lines of CCFR-IDG2 start from 500502 function
evaluations. For separable functionf1, CCFR-IDG2 optimizes each separable variable one by one andconverges slowly, but
when CCFR-IDG2 finishes optimizing the last variable with the largest weight value, the best overall objective value drops
sharply.f8 is a partially separable function with imbalance between subcomponents. Forf8, compared with MA-SW-Chains and
MOS-CEC2013, in the beginning of the evolutionary process,CCFR-IDG2 converges very slowly. When the first evolutionary
cycle ends (about0.8× 10

6 function evaluations), CCFR-IDG2 starts to select the subpopulation with the greatest contribution

5

TABLE III: The average fitness values± standard deviations on the CEC’2010 and CEC’2013 functionsover 25 independent
runs. The significantly better results are in bold font (Wilcoxon rank sum test with Holmp-value correction,α=0.05).R+,
R− andp-value have similar meanings as in Table I.

CEC’2010 Functions

F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG

f1 1.6e-05±6.5e-06 1.7e+07±2.1e+07↑ 1.7e+07±2.1e+07↑ 1.7e+07±2.1e+07↑ 4.8e+08±9.8e+07 2.9e+07±3.1e+07↓ 2.9e+07±3.1e+07↓ 2.9e+07±3.1e+07↓
f2 1.7e+02±8.6e+00 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 3.2e+02±1.7e+01 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑
f3 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.1e+01±3.8e-01 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑

f4 1.3e+11±7.5e+10 7.4e+10±4.8e+10↓ 1.1e+11±2.9e+10 8.9e+10±4.6e+10↓ 4.3e+10±1.6e+10 3.5e+11±2.0e+11↑ 5.1e+10±3.1e+10 7.8e+11±5.5e+11↑
f5 9.2e+07±1.6e+07 6.8e+07±1.1e+07↓ 6.8e+07±9.4e+06↓ 6.7e+07±1.0e+07↓ 4.9e+08±2.4e+07 6.9e+07±1.0e+07↓ 6.9e+07±1.0e+07↓ 6.9e+07±1.1e+07↓
f6 6.8e+05±7.1e+05 1.1e+06±7.9e+05↑ 1.1e+06±6.9e+05↑ 6.4e+05±6.8e+05 1.1e+07±7.5e+05 1.3e+06±6.4e+05↓ 1.3e+06±6.4e+05↓ 8.1e+05±7.2e+05↓
f7 2.0e-03±3.5e-04 7.9e+04±1.0e+04↑ 1.1e+05±1.8e+04↑ 4.2e+04±1.2e+04↑ 2.7e+07±7.0e+07 1.1e+05±8.5e+04↓ 7.6e+09±6.6e+09↑ 6.0e+04±3.3e+04↓
f8 3.2e+05±1.1e+06 8.8e+05±1.6e+06↑ 1.1e+06±1.7e+06↑ 5.2e+05±1.3e+06↑ 2.6e+08±1.9e+08 4.6e+06±8.8e+06↓ 6.3e+07±6.0e+07↓ 1.5e+07±2.3e+07↓

f9 1.3e+07±1.7e+06 2.1e+07±2.2e+07 4.4e+09±7.0e+08↑ 5.4e+07±6.4e+07↑ 1.1e+07±1.4e+06 1.8e+07±2.1e+07 1.8e+07±2.1e+07 3.3e+07±2.0e+07↑
f10 1.8e+03±1.4e+02 3.4e+03±1.7e+02↑ 4.6e+03±7.7e+02↑ 4.3e+03±1.8e+02↑ 1.6e+03±1.2e+02 3.2e+03±1.7e+02↑ 3.2e+03±1.7e+02↑ 4.1e+03±1.7e+02↑
f11 2.0e+01±3.3e+00 2.4e+01±2.4e+00↑ 2.5e+01±2.3e+00↑ 2.3e+01±2.1e+00↑ 1.1e+01±2.5e+00 2.3e+01±2.2e+00↑ 2.3e+01±2.1e+00↑ 2.3e+01±2.7e+00↑
f12 2.0e+01±2.2e+01 2.6e+04±7.4e+03↑ 3.7e+04±9.7e+03↑ 2.3e+04±8.8e+03↑ 4.6e+00±6.9e+00 2.2e+04±6.3e+03↑ 2.2e+04±6.3e+03↑ 1.9e+04±7.3e+03↑
f13 5.3e+02±1.0e+02 2.6e+04±7.8e+03↑ 3.9e+04±6.2e+03↑ 2.5e+04±7.8e+03↑ 2.8e+06±9.2e+05 5.8e+03±4.4e+03↓ 1.6e+04±7.8e+03↓ 8.7e+03±3.9e+03↓

f14 3.1e+07±3.3e+06 3.5e+07±2.6e+06↑ 9.5e+09±5.2e+08↑ 3.3e+07±2.7e+06↑ 2.5e+07±2.9e+06 2.8e+07±2.1e+06↑ 2.8e+07±2.1e+06↑ 2.7e+07±2.2e+06↑
f15 3.2e+03±1.5e+02 4.4e+03±1.5e+02↑ 4.6e+03±1.7e+02↑ 4.4e+03±1.9e+02↑ 2.8e+03±1.3e+02 4.0e+03±1.5e+02↑ 4.0e+03±1.5e+02↑ 4.0e+03±1.6e+02↑
f16 2.0e+01±2.6e+00 1.9e+01±3.2e+00 2.0e+01±3.4e+00 2.0e+01±4.0e+00 2.4e+01±4.3e+00 2.0e+01±3.4e+00↓ 2.1e+01±3.1e+00 2.1e+01±3.4e+00
f17 6.7e+01±8.7e+01 1.3e+02±8.9e+01↑ 7.2e+02±3.4e+02↑ 8.0e+01±5.2e+01↑ 1.1e+01±1.1e+01 3.6e+01±4.9e+01↑ 3.6e+01±4.9e+01↑ 2.4e+01±3.7e+01
f18 1.4e+03±1.9e+02 1.3e+03±1.9e+02 1.7e+03±2.4e+02↑ 1.2e+03±1.5e+02↓ 1.3e+08±9.9e+07 6.9e+09±2.3e+09↑ 1.4e+10±2.0e+09↑ 2.1e+10±3.9e+09↑

f19 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04
f20 2.0e+09±1.8e+09 2.0e+09±1.8e+09 2.0e+09±1.8e+09 2.0e+09±1.8e+09 3.1e+07±6.6e+06 1.4e+10±2.7e+09↑ 1.6e+08±1.5e+08↑ 3.3e+10±5.9e+09↑

R+ — 165.0 174.0 153.0 — 123.0 137.0 123.0
R− — 45.0 36.0 57.0 — 87.0 73.0 87.0
p-value — 2.51e-02 1.00e-02 7.31e-02 — 5.02e-01 2.32e-01 5.02e-01

CEC’2013 Functions

F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG

f1 1.8e-05±4.5e-06 4.6e+07±1.3e+08↑ 4.6e+07±1.3e+08↑ 4.6e+07±1.3e+08↑ 4.8e+08±6.9e+07 6.2e+07±1.3e+08↓ 6.2e+07±1.3e+08↓ 6.2e+07±1.3e+08↓
f2 3.6e+02±2.1e+01 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 7.4e+02±4.0e+01 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑
f3 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.0e+01±6.0e-07 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑

f4 9.6e+07±4.0e+07 2.2e+08±6.0e+07↑ 6.6e+10±5.6e+09↑ 2.9e+08±9.7e+07↑ 9.1e+10±5.6e+10 8.7e+10±5.1e+10 4.6e+11±2.8e+11↑ 8.3e+10±4.7e+10
f5 2.8e+06±3.2e+05 2.6e+06±4.3e+05 2.5e+06±4.7e+05↓ 3.0e+06±4.7e+05 3.0e+06±5.2e+05 2.8e+06±3.6e+05 2.6e+06±4.4e+05↓ 3.3e+06±4.0e+05↑
f6 1.1e+06±1.0e+03 1.1e+06±1.7e+03↓ 1.1e+06±1.8e+03↓ 1.1e+06±1.6e+03↓ 1.1e+06±1.6e+03 1.1e+06±2.1e+03↓ 1.1e+06±1.5e+03↓ 1.1e+06±2.3e+03↓
f7 2.0e+07±2.9e+07 2.2e+07±2.6e+07 9.9e+07±3.7e+08 2.4e+07±3.8e+07 1.4e+08±9.7e+07 1.2e+08±3.9e+07 1.6e+10±1.4e+10↑ 1.4e+08±7.1e+07

f8 6.6e+10±9.5e+10 2.3e+13±1.6e+13↑ 1.1e+12±1.7e+11↑ 7.4e+13±5.8e+13↑ 1.6e+15±1.0e+15 2.0e+15±1.5e+15 5.9e+15±4.3e+15↑ 2.0e+15±1.4e+15
f9 1.9e+08±2.8e+07 2.6e+08±4.0e+07↑ 2.3e+08±3.0e+07↑ 3.0e+08±5.7e+07↑ 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.9e+07↑ 2.9e+08±5.2e+07↑
f10 9.5e+07±1.8e+05 9.4e+07±2.8e+05↓ 9.4e+07±2.5e+05↓ 9.5e+07±3.0e+05↓ 9.5e+07±3.1e+05 9.4e+07±6.1e+05↓ 9.4e+07±6.6e+05↓ 9.4e+07±2.4e+05↓
f11 4.2e+08±3.4e+08 5.0e+09±1.5e+10 7.3e+10±1.2e+11↑ 2.8e+09±1.1e+10 2.8e+10±6.0e+10 4.5e+10±6.1e+10↑ 5.2e+12±3.7e+12↑ 4.7e+10±5.7e+10↑

f12 1.6e+09±1.6e+09 1.6e+09±1.6e+09 1.6e+09±1.6e+09 1.6e+09±1.6e+09 8.0e+07±8.3e+06 6.0e+10±8.3e+09↑ 6.6e+08±1.3e+08↑ 1.2e+11±1.4e+10↑
f13 1.2e+09±6.0e+08 1.2e+09±6.0e+08 1.2e+09±6.0e+08 1.2e+09±6.0e+08 2.0e+09±1.0e+09 4.0e+09±1.5e+09↑ 4.1e+10±2.7e+10↑ 6.3e+09±1.9e+09↑
f14 3.4e+09±3.1e+09 3.5e+09±3.2e+09 3.5e+09±3.2e+09 3.5e+09±3.2e+09 7.4e+09±8.5e+09 1.3e+10±1.2e+10↑ 5.0e+11±1.2e+12↑ 8.9e+09±6.8e+09

f15 9.8e+06±3.7e+06 9.9e+06±3.7e+06 9.9e+06±3.7e+06 9.9e+06±3.7e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06

R+ — 107.0 107.0 112.0 — 80.0 99.0 91.0
R− — 13.0 13.0 8.0 — 40.0 21.0 29.0
p-value — 5.37e-03 5.37e-03 1.53e-03 — 2.77e-01 2.56e-02 8.33e-02

The symbols↑ and↓ have similar meanings as in Table I.

Function Evaluations ×106
0.5 1 1.5 2 2.5 3

M
ea

n
V

al
ue

 o
f B

es
t

10-20

100

CCFR-IDG2
MA-SW-Chains
MOS-CEC2013

(a) f1

Function Evaluations ×106
0.5 1 1.5 2 2.5 3

M
ea

n
V

al
ue

 o
f B

es
t

1010

1015

1020

CCFR-IDG2
MA-SW-Chains
MOS-CEC2013

(b) f8

Fig. 2: The average convergence on two selected CEC’2013 functions over 25 independent runs.

to undergo evolution. CCFR-IDG2 then converges much fasterthan MA-SW-Chains and MOS-CEC2013. This indicates that if
the optimizer used by CCFR-IDG2 performs well on a function,CCFR might outperform MA-SW-Chains and MOS-CEC2013
on that function.

To improve the performance of CCFR-IDG2, we replaced SaNSDEwith CMAES [9]. Table V summarizes the results of
CCFR-IDG2 with CMAES. CCFR-IDG2 with CMAES significantly outperforms MA-SW-Chains on almost all the CEC’2010
and CEC’2013 functions. CCFR-IDG2 with CMAES performs significantly better than MOS-CEC2013 by several orders of
magnitude on most of the partially separable functions (theCEC’2010 functionsf4–f18; the CEC’2013 functionsf4–f11).

6

TABLE IV: The average errors± standard deviations on the CEC’2010 and CEC’2013 functionsover 25 independent runs.
The significantly better results are in bold font (Wilcoxon rank sum test with Holmp-value correction,α=0.05).R+, R− and
p-value have similar meanings as in Table I.

CEC’2010 Functions

F CCFR-IDG2 MA-SW-Chains MOS-CEC2013

f1 1.62e-05±6.55e-06 3.88e-14±3.59e-14↓ 0.00e+00±0.00e+00↓
f2 1.73e+02±8.62e+00 8.63e+02±5.84e+01↑ 0.00e+00±0.00e+00↓
f3 1.22e+01±3.66e-01 5.41e-13±2.13e-13↓ 1.65e-12±6.73e-14↓

f4 1.26e+11±7.50e+10 2.94e+11±9.32e+10↑ 1.56e+10±6.02e+09↓
f5 9.15e+07±1.61e+07 1.75e+08±1.03e+08↑ 1.11e+08±2.25e+07↑
f6 6.85e+05±7.05e+05 3.52e+04±1.72e+05 1.22e-07±6.43e-08↓
f7 2.04e-03±3.45e-04 3.30e+02±1.40e+03 0.00e+00±0.00e+00↓
f8 3.19e+05±1.08e+06 9.28e+06±2.36e+07↑ 1.95e+00±8.03e+00↓

f9 1.34e+07±1.68e+06 1.45e+07±1.59e+06 3.46e+06±4.49e+05↓
f10 1.81e+03±1.43e+02 2.06e+03±1.19e+02↑ 3.78e+03±1.47e+02↑
f11 1.99e+01±3.26e+00 3.69e+01±8.24e+00↑ 1.91e+02±4.07e-01↑
f12 2.03e+01±2.23e+01 3.19e-06±5.32e-07↓ 0.00e+00±0.00e+00↓
f13 5.26e+02±1.04e+02 1.09e+03±6.29e+02↑ 7.14e+02±5.68e+02

f14 3.08e+07±3.35e+06 3.34e+07±3.37e+06↑ 9.80e+06±6.03e+05↓
f15 3.18e+03±1.51e+02 2.69e+03±9.75e+01↓ 7.44e+03±1.84e+02↑
f16 2.01e+01±2.62e+00 1.08e+02±1.51e+01↑ 3.82e+02±1.55e+01↑
f17 6.72e+01±8.68e+01 1.26e+00±9.45e-02↓ 2.83e-07±7.97e-08↓
f18 1.37e+03±1.93e+02 1.87e+03±5.79e+02↑ 1.54e+03±7.46e+02

f19 1.28e+06±1.01e+05 2.85e+05±1.74e+04↓ 2.91e+04±2.14e+03↓
f20 1.97e+09±1.83e+09 1.05e+03±7.59e+01↓ 3.52e+02±4.43e+02↓

R+ — 143.0 73.0
R− — 67.0 137.0
p-value — 1.56e-01 2.32e-01

CEC’2013 Functions

F CCFR-IDG2 MA-SW-Chains MOS-CEC2013

f1 1.77e-05±4.52e-06 8.49e-13±1.09e-12↓ 1.27e-22±7.41e-23↓
f2 3.64e+02±2.06e+01 1.22e+03±1.14e+02↑ 8.32e+02±4.48e+01↑
f3 2.07e+01±1.21e-02 2.14e+01±5.62e-02↑ 9.18e-13±5.12e-14↓

f4 9.56e+07±4.03e+07 4.58e+09±2.46e+09↑ 1.74e+08±7.87e+07↑
f5 2.80e+06±3.18e+05 1.87e+06±3.06e+05↓ 6.94e+06±8.85e+05↑
f6 1.06e+06±1.05e+03 1.01e+06±1.53e+04↓ 1.48e+05±6.43e+04↓
f7 2.03e+07±2.94e+07 3.45e+06±1.27e+06 1.62e+04±9.10e+03↓

f8 6.63e+10±9.52e+10 4.85e+13±1.02e+13↑ 8.00e+12±3.07e+12↑
f9 1.89e+08±2.83e+07 1.07e+08±1.68e+07↓ 3.83e+08±6.29e+07↑
f10 9.48e+07±1.82e+05 9.18e+07±1.06e+06↓ 9.02e+05±5.07e+05↓
f11 4.17e+08±3.43e+08 2.19e+08±2.98e+07 5.22e+07±2.05e+07↓

f12 1.56e+09±1.58e+09 1.25e+03±1.05e+02↓ 2.47e+02±2.54e+02↓
f13 1.21e+09±6.00e+08 1.98e+07±1.82e+06↓ 3.40e+06±1.06e+06↓
f14 3.39e+09±3.06e+09 1.36e+08±2.11e+07↓ 2.56e+07±7.94e+06↓

f15 9.82e+06±3.69e+06 5.71e+06±7.57e+05↓ 2.35e+06±1.94e+05↓

R+ — 34.0 41.0
R− — 86.0 79.0
p-value — 1.51e-01 3.03e-01

The symbols↑ and↓ have similar meanings as in Table I.

REFERENCES

[1] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark functions for the CEC’2010 special session and competition on large-scale global
optimization,” Nature Inspired Computation and Applications Laboratory, Tech. Rep., 2010.

[2] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark functions for the CEC’2013 special session and competition on large scale global
optimization,” Evolutionary Computation and Machine Learning Group, RMIT University, Australia, Tech. Rep., 2013.

[3] R. Ros and N. Hansen, “A simple modification in cma-es achieving linear time and space complexity,” inParallel Problem Solving from Nature, 2008,
pp. 296–305.

[4] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differential grouping for large scale optimization,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.

[5] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “IDG: A faster and more accurate differential grouping algorithm,” University of Birmingham,
School of Computer Science, Tech. Rep. CSR-15-04, September 2015. [Online]. Available: ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2015/CSR-15-04.pdf

[6] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms,” inGenetic
and Evolutionary Computation Conference, 2011, pp. 1115–1122.

[7] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization,”
in IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.

[8] A. LaTorre, S. Muelas, and J.-M. Pena, “Large scale global optimization: Experimental results with mos-based hybrid algorithms,” inIEEE Congress on
Evolutionary Computation, 2013, pp. 2742–2749.

[9] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducingthe time complexity of the derandomized evolution strategywith covariance matrix adaptation
(cma-es),”Evol. Comput., vol. 11, no. 1, pp. 1–18, 2003.

7

TABLE V: The average errors± standard deviations on the CEC’2010 and CEC’2013 functionsover 25 independent runs.
The significantly better results are in bold font (Wilcoxon rank sum test with Holmp-value correction,α=0.05).R+, R− and
p-value have similar meanings as in Table I.

CEC’2010 Functions

F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013

f1 5.50e-17±2.15e-17 3.88e-14±3.59e-14↑ 0.00e+00±0.00e+00↓
f2 5.41e+02±4.80e+01 8.63e+02±5.84e+01↑ 0.00e+00±0.00e+00↓
f3 1.02e+00±3.98e-01 5.41e-13±2.13e-13↓ 1.65e-12±6.73e-14↓

f4 4.28e-03±4.98e-03 2.94e+11±9.32e+10↑ 1.56e+10±6.02e+09↑
f5 1.10e+08±1.60e+07 1.75e+08±1.03e+08↑ 1.11e+08±2.25e+07
f6 9.58e+00±8.51e-01 3.52e+04±1.72e+05↑ 1.22e-07±6.43e-08↓
f7 4.47e-07±1.73e-06 3.30e+02±1.40e+03↑ 0.00e+00±0.00e+00↓
f8 1.25e+06±1.85e+06 9.28e+06±2.36e+07↑ 1.95e+00±8.03e+00

f9 9.28e-06±5.47e-06 1.45e+07±1.59e+06↑ 3.46e+06±4.49e+05↑
f10 1.29e+03±6.14e+01 2.06e+03±1.19e+02↑ 3.78e+03±1.47e+02↑
f11 2.35e-01±4.08e-01 3.69e+01±8.24e+00↑ 1.91e+02±4.07e-01↑
f12 1.28e-10±9.64e-11 3.19e-06±5.32e-07↑ 0.00e+00±0.00e+00↓
f13 4.73e+00±3.79e+00 1.09e+03±6.29e+02↑ 7.14e+02±5.68e+02↑

f14 2.61e-19±3.26e-20 3.34e+07±3.37e+06↑ 9.80e+06±6.03e+05↑
f15 2.04e+03±8.22e+01 2.69e+03±9.75e+01↑ 7.44e+03±1.84e+02↑
f16 8.07e-13±2.60e-14 1.08e+02±1.51e+01↑ 3.82e+02±1.55e+01↑
f17 7.42e-24±1.63e-25 1.26e+00±9.45e-02↑ 2.83e-07±7.97e-08↑
f18 1.09e+01±6.87e+00 1.87e+03±5.79e+02↑ 1.54e+03±7.46e+02↑

f19 2.12e+04±2.21e+03 2.85e+05±1.74e+04↑ 2.91e+04±2.14e+03↑
f20 8.50e+02±2.50e+01 1.05e+03±7.59e+01↑ 3.52e+02±4.43e+02↓

R+ — 207.0 157.0
R− — 3.0 53.0
p-value — 1.40e-04 5.22e-02

CEC’2013 Functions

F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013

f1 5.52e-17±5.70e-18 8.49e-13±1.09e-12↑ 1.27e-22±7.41e-23↓
f2 4.35e+02±3.55e+01 1.22e+03±1.14e+02↑ 8.32e+02±4.48e+01↑
f3 2.04e+01±5.30e-02 2.14e+01±5.62e-02↑ 9.18e-13±5.12e-14↓

f4 5.58e+03±2.73e+04 4.58e+09±2.46e+09↑ 1.74e+08±7.87e+07↑
f5 2.19e+06±3.11e+05 1.87e+06±3.06e+05↓ 6.94e+06±8.85e+05↑
f6 9.99e+05±1.26e+04 1.01e+06±1.53e+04↑ 1.48e+05±6.43e+04↓
f7 2.22e-08±4.21e-08 3.45e+06±1.27e+06↑ 1.62e+04±9.10e+03↑

f8 4.89e+03±1.23e+03 4.85e+13±1.02e+13↑ 8.00e+12±3.07e+12↑
f9 1.59e+08±3.33e+07 1.07e+08±1.68e+07↓ 3.83e+08±6.29e+07↑
f10 9.11e+07±1.35e+06 9.18e+07±1.06e+06↑ 9.02e+05±5.07e+05↓
f11 4.64e-05±7.47e-05 2.19e+08±2.98e+07↑ 5.22e+07±2.05e+07↑

f12 1.01e+03±5.20e+01 1.25e+03±1.05e+02↑ 2.47e+02±2.54e+02↓
f13 2.58e+06±3.00e+05 1.98e+07±1.82e+06↑ 3.40e+06±1.06e+06↑
f14 3.63e+07±3.21e+06 1.36e+08±2.11e+07↑ 2.56e+07±7.94e+06↓

f15 2.80e+06±2.77e+05 5.71e+06±7.57e+05↑ 2.35e+06±1.94e+05↓

R+ — 103.0 77.0
R− — 17.0 43.0
p-value — 1.25e-02 3.59e-01

The symbols↑ and↓ have similar meanings as in Table I.

