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Efficient Resource Allocation in Cooperative
Co-evolution for Large-scale Global Optimization

Ming Yang, Mohammad Nabi Omidvar, Changhe Member, IEEE, Xiaodong Li, Senior Member, |EEE,
Zhihua Cai, Borhan Kazimipour, and Xin Yabellow, |IEEE

Abstract

Cooperative Co-evolution (CC) is an explicit means of peabldecomposition in multi-population evolutionary algioms
for solving large-scale optimization problems. For CC,mpulations representing subcomponents of a large-sgimiaation
problem co-evolve, and are likely to have different conttitns to the improvement of the best overall solution to fihablem.
Hence it makes sense that more computational resourcesdsbeuwallocated to the subpopulations with greater coriidbs.

In this paper, we study how to allocate computational reseiin this context and subsequently propose a new CC frarkewo
named CCFR to efficiently allocate computational resousresng the subpopulations according to their dynamic dautigns
to the improvement of the objective value of the best ovesalution. Our experimental results suggest that CCFR cakema
efficient use of computational resources and is a highly atitive CC framework for solving large-scale optimizatiproblems.

Index Terms

Cooperative co-evolution, resource allocation, problexnodnposition, large-scale global optimization.

I. INTRODUCTION

Evolutionary algorithms (EAs) have achieved a great sicosssolving many optimization problems [1]. However, they
often lose their efficacy as the dimensionality of a probleeréases [2]. Many real-world problems involve a large nemb
of decision variables, e.g., the design of airfoil whereusends of variables are required to represent the compbgxesof
an aircraft wing [3]. This sort of large-scale optimizatiproblems poses a serious challenge to existing EAs.

A natural approach to solving high-dimensional optimiaatproblems is to employ thdivide-and-conquer strategy [4]-[6],
which decomposes a large-scale optimization problem irgetaof smaller and simpler subproblems. These subproblams ¢
be solved separately. The fully separable large-scalenig#ition problems, where there is no interdependence amecigion
variables, can be solved by optimizing each variable inddpatly [7]. At the other end of the spectrum, the fully nqresable
large-scale optimization problems, where there is infeedeence between any pair of variables, would need to beddly
optimizing all the variables together. However, most neatd problems fall somewhere between these two extremes, i
only some variables are independent or interdependent greach other [8]. For such partially separable problemggethe
are usually several clusters of interdependent varialilesperative Co-evolution (CC) [7] is an explicit means oblgem
decomposition in EAs. For CC, there is a set of subpopulatg@eth of which is responsible for optimizing a subset ofaldes
(i.e., a subcomponent).

Given a fixed computational budget, the performance of CC mayaffected by how the computational resources are
allocated among subpopulations [9]. For CC, different sydyations are likely to make different amounts of contiiits
to the improvement of the best overall objective value ,(tlee objective value of the best overall solution consistir the
best individuals from these subpopulations). To be morepdgationally efficient, more computational resources #hdoe
allocated to the subpopulations that make greater cotiitg! It is shown in [9] that for imbalanced problems, wheiféerent
subpopulations have unequal contributions to the ovebgdlative value, a contribution-based cooperative cogiah (CBCC)
outperforms the traditional CC. However, for CBCC, the cmtion information is accumulated from the beginning bé t
evolutionary process. CBCC relies much on the contribuitidormation in the early stage of the evolutionary procéssce
it may respond too slowly or even incorrectly to the local mfes of the overall objective value. Since the contribigion
subpopulations may change over time, it makes sense thaesbearce allocation should be done adaptively in real-time
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In this paper, we study how to allocate computational ressgiamong subpopulations and propose a new CC framework,
which can adaptively allocate computational resourcesatth esubpopulation according to its dynamic contributiamshte
improvement of the best overall objective value. This newfathework differs from existing CC frameworks in the follmg
two aspects.

1) This new CC framework can check whether a subpopulatiatagnant. To save computational resources, the stagnant
subpopulations are excluded from evolution (see Sec®)lI-

2) In this new CC framework, the contribution of a subpopolatis updated dynamically. In each cycle, only the
subpopulation with the greatest contribution is selectedrtdergo evolution (see Sect. 111-B).

The remainder of this paper is organized as follows. Segirdsents an overview of CC. Sect. Il introduces our new CC
framework. Sect. IV presents the experimental studiesalljinSect. V provides the concluding remarks.

II. RELATED WORK

In the literature of evolutionary computation, the intggdedence between decision variables of a problem is known as
linkage [10] or epistasis [11]. The performance of a CC algorithm is greatly affectgdhe interdependence between variables
[7], [12]. Variable grouping methods aiming to group intepéndent variables into the same subcomponent being aptimi
play a key role in overcoming such a problem [13]. It is showjili4] that if all the subcomponents are separable, the dvera
solution to the original problem is the combination of thepective solutions to all the subproblems. Here, we revi&@v C
mainly in the context of large-scale optimization.

In the original cooperatively co-evolutionary geneticaithm (CCGA) proposed by Potter and De Jong [7])-a@imensional
problem is decomposed int® one-dimensional subproblems. CCGA then solves the subgmsbusing an evolutionary
optimizer in a round-robin fashion. The experimental ressuh [7] show that the original CC cannot perform well on
nonseparable functions, i.e., functions with interdemedariables, such asriewank and Rosenbrock. Liu et al. [2] applied
CC to fast evolutionary programming to solve large-scalénauipation problems with up to 1000 dimensions. Van den Berg
and Engelbrecht [15] applied CC to particle swarm optimira{PSO) [16] and proposed a cooperatively co-evolutipi80
algorithm, namely CPSO, which dividesia-dimensional problem inté& s-dimensional subproblems for somex D. Shi
et al. [17] adopted differential evolution (DE) [18] into C@ith decision variables split into two equal-sized subpoments.
Obviously, this decomposition strategy would not perforellvon the problems with a very high dimensionality.

Yang et al. [13] proposed a random variable grouping methatapplied it to CC. Unlike CPSO which relies on a fixed
variable grouping from the start to the end of optimizatitie random grouping method proposed by Yang et al. randomly
shuffles all the decision variables inkos-dimensional subcomponents in each co-evolutionary cytie shown in [13] that
this random grouping strategy is effective in grouping twteidependent variables into one subcomponent for sevgchds.
The DE algorithm with this random grouping strategy, naneECC-G, performs well on a set of large-scale optimization
problems with up to 1000 dimensions [13].

The aforementioned grouping strategies use a pre-speecifiddixed subcomponent size for decomposition. Therefore, a
user needs to specify a value for eittieor s before using these decomposition strategies, which mayiffieutt in practice.

In addition, the performance of CC can be highly dependerthese specified values.

Adapting the subcomponent size can potentially improveptiidormance of CC [19]. Yang et al. [20] proposed a multileve
cooperatively co-evolutionary (MLCC) algorithm. MLCC ssa set of possible values effor decomposition instead of a
fixed subcomponent size. The performance of each subcompsize used during optimization is measured accordingéo th
improvement of the best overall objective value. The suljmoment size with better performance would be selected in the
next co-evolutionary cycle with a higher probability. Fhet enhancing the CCPSO algorithm [21] with an improved oamd
variable grouping strategy, Li and Yao [22] proposed CCP&®D&olve a set of large-scale optimization problems withap t
2000 dimensions.

Random grouping is ineffective when the number of interdejeat variables is greater than five [19]. It is shown in [2@&]tt
a non-random method, namely delta grouping, is superiocaridam grouping on most of the CEC2010’s benchmark functions
[24]. The delta grouping method uses the average differeheecertain variable during optimization to detect intgreledent
variables. The variables with similar difference values eonsidered to be possible interdependent variables. \owenis
assumption may not always hold. For example, the delta gngupethod cannot perform well when there is more than one
subcomponent [23].

A given problem may be decomposed in an automatic way witkeowving in advance its underlying structure, as suggested
in [25]. In the beginning of the co-evolutionary process tia¢ variables are optimized separately by different sypljations.

A counter is used in [25] to compute the probability of graxgptwo variables together. If two variables in a randomlysgo
individual can improve the best individual further, the ntar is increased. At the end of each co-evolutionary cytble,two
variables with the maximum counter are grouped togethes. Stibpopulations corresponding to the two variables argeder
into one subpopulation. The CC with variable interactioarteng (CCVIL) algorithm proposed by Chen et al. [26] adopts
a two-stage approach. In the first stage, CCVIL detects tterdntion between variables as done in [25] to complete the
decomposition. In the second stage, CCVIL optimizes thes®mposed groups in the fashion of the traditional CC [7].



Tezuka et al. [27] proposed the linkage identification bylmearity check for real-coded GAs (LINC-R). If the differee
of function values with respect to a variable is independerthe difference of function values with respect to anotlagiable,
the two variables are separable. Omidvar et al. [28] praViadheoretical study of LINC-R and proposed a new method for
detecting interdependent variables, namely differergialuping (DG). DG can identify the interdependent variabléth a
high accuracy. It is shown in [28] that CC with DG performs hah a set of large-scale optimization problems with up to
1000 dimensions.

For separable decision variables, it is shown in [29] thainaiging each variable separately may not be the best way for
solving large-scale optimization problems. A more effitiapproach is to group the separable variables into seveoalbg.
However, it may be difficult to determine the optimal groupesi

When dealing with the partially separable problems, it isgilnle that there is imbalance between the contributionéffeirent
subpopulations to the improvement of the overall objectigie. The round-robin strategy in the classic CC is no longe
effective in handling this sort of problems since it all@saan equal amount of computational resources to each sulagpiop,
without considering the unequal contributions of the sydytations. To overcome this problem, a contribution-ba€€zl
(CBCC) was proposed in [9] to allocate computational resesiramong the subpopulations based on their contributmns t
the improvement of the best overall objective value. CBCQleasizes the contributions in the early stage of the eaiaty
process. As a result, it may allocate most computationalurees to the subpopulation whose initial contributionrsager but
then drops after some generations. For the two variants @@CBCBCC1 and CBCC2), the experimental results in [30] show
that CBCCL1 is much less sensitive to the decomposition acgwand the imbalance between the contributions of subptipok
than CBCC2. CBCC1 and CBCC2 are unable to adaptively respmiiide dynamic contributions of subpopulations during
optimization.

IIl. THE PROPOSEDCC FRAMEWORK

A new cooperatively co-evolutionary framework (CCFR) isggnted in this section. CCFR aims at allocating computatio
resources intelligently among subpopulations accordintpé dynamic contributions of subpopulations to the improent of
the best overall objective value. Note that, CCFR adoptsastage approach similar to DECC-DG [28]. In the first stage,
the decomposition is formed using a decomposition methothe second stage, the resulting groups are optimizedatephar
while the decomposition is kept fixed.

A. Saving Computation on Stagnant Subpopulations

CC makes subpopulations evolve using an evolutionary ép¢inin a round-robin fashion. For the subcomponents that ar
easy to optimize, a small humber of generations are enougthécorresponding subpopulations to enter a stagnar, stat
where these subpopulations do not make contributions tintpeovement of the best overall objective value. In such seca
no computational resources would be allocated to theseatagubpopulations. This will allow the CC algorithms toesa
some computational cost.

SupposeC; denotes the-th subcomponent after decomposition. For the subpopuatorresponding t@; at the G-th
generation, in order to check whether the subpopulationtagnant, the mean and standard deviation of individualgege
values in dimension (5 € C;) can be calculated as follows:

1 N
miG = 5 > wga 1)
t=1
1 ,
stdjc =\ | 37 > (wrje —mia)? 2
t=1

where N is the subpopulation size and ; ¢ is the j-th gene value of individuak, ¢. x¢,¢ = (z¢1,6,....@,p,c)- If the
distribution of a population, i.e., the mean and standawiadien of individuals’ gene values in dimensignremains unchanged
for several successive generations, this population isidered to be stagnant in this dimension [31]. Based on thasegy,
we propose the following method for checking whether a sphjaiion is stagnant in all dimensions.

1 if m; G = Mm;G-1 and
Bjc = stdjq = stdj g1 (3a)
0 otherwise, (3b)

where ;¢ denotes whether the values of; ¢ and std; ¢ remain unchanged from the last generation in dimengjcand
note thats; o = 0. 7¢ denotes the number of dimensions whgre; = 1.

Yo=Y Bia 4)

JEC;



If the subpopulation does not change (i.e., no better iddais are generatedys = D;, whereD; is the dimensionality of
subcomponent’;. s denotes the number of successive generations where D;:

B { ng-1+1  if y¢=D; (5a)
= o otherwise, (5b)

and note thatjy = 0. pg is a flag to denote whether the subpopulation is stagnaneafith generation, and the value p§
is calculated as follows:

- { 1 if ng >U (6a)
€= 0  otherwise, (6b)

whereU is an integer with the value equal ;. Our experimental results show that the larger the subcoemicsize is,
the more generations its corresponding subpopulatiorstakenter a stagnant state. According to the sensitivitgysaf U
(provided in Sect. | in the supplementary material listethim appendix), we us€ = D;. If the distribution of a subpopulation
remains unchanged for several successive generationsn.e> U), pg is set to one to indicate that the subpopulation is
likely to stop evolution.

Some existing methods consider a population to be stagh#ame improvement of the best fithess value [32], [33] or the
difference between the individuals [34], [35] is very smalen though the population still slowly converges to arinopin.
Guo et al. [36], [37] considered an individual to be stagnahen the individual's fithess cannot be improved over sdvera
successive generations. This method is ineffective foblpras with a plateau fitness landscape (e.g.,3ep function [38]),
where the fitness value of an individual does not change ewthé values of the individual’s decision variables changag et
al. [39] considered a population to be stagnant when theageedistance among the individuals remains unchangedyerale
successive generations. However, it is possible that gtalition of the entire population changes (e.qg., all tiidviiduals vary
with the same shift). In such a case, Yang's method may iecty classify the population as a stagnant one. Compartd wi
the above stagnation detection methods, our proposed théthroore accurate in identifying a stagnant population eting
to the mean and standard deviation of individuals’ geneeslu

For the subpopulations wherg; = 1, we exclude them from the co-evolutionary cycles, which msethe stagnant
subpopulations will not undergo evolution in the subsegueerevolutionary cycles.

B. Resource Allocation Based on Contribution

The probability matching (PM) algorithm [40] and the adeptpursuit (AP) algorithm [40] learn the optimal resource
allocation among operators. These probability-based odsttwould allocate resources to the ineffective operatdts &
minimum probability. Based on the upper confidence boundRl@lgorithm [41], Li et al. [42] proposed a method for
allocating resources among operators, where the operdtiorthe maximum relative fitness improvement is selectecake t
part in the evolutionary process [43], [44]. These methodseld on relative fitness improvements allocate resourcéseto
items (e.g., the converging items) whose absolute fitnepsawements are very small but their relative fithess impnosets
are relatively large. In [45], the average absolute fithegsrovements are used in determining resource allocatiamvife
et al. [46] proposed a resource allocation for CC based oarpirewards. A subpopulation is assigned a reward of one if
the overall objective value becomes better, and zero ofeertowever, the binary rewards cannot reflect the real radgs
of the improvements of the objective value. In this sectiwr, propose a resource allocation strategy for CC based on the
absolute improvements of the best overall objective validike the average absolute improvements in [45], our psepo
method gives more consideration of resource allocatioméorécent improvements of the overall objective value.

For a subpopulationf;), when P; finishes evolution in a cycle, we calculate its contributamtording to the improvement
of the best overall objective value:

AF; + | f (Rvest) = f (Xpest)| 7
- .

where f(X5es:) and f(xpes:) are the best overall objective values before and afleundergoes evolution in this cycle,
respectively, andAE} is the last contribution ofP;. The initial value of AF; is zero. Eq. (7) smoothly updateSF; by
averaging the last contribution (i.eAFi) and the current contribution (i.€.f (Xpest) — f(Xbest)|) to the improvement of the
best overall objective value. The more recent contribuffdfy.s: ) — f (Xpest )| IS, the greater the effect Of (Xpest) — f (Xpest)|
on the value ofA F; is. The effects of the early contributions &¥; become smaller and smaller as the co-evolution progresses.
During the first co-evolutionary cycle, the subpopulatiamglergo evolution one by one. The values®f; for all the
subpopulations are computed at the end of the first cyclehénsubsequent co-evolutionary cycles, we select only the
subpopulation with the largest value &F; to undergo evolution. The value @i F; is updated according to Eq. (7) at
the end of each co-evolutionary cycle. The larger the valué\é; is, the higher chancé; has to undergo evolution in
the future. If a subpopulation is stagnant according to BY. e set its contributionX F;) to zero. Therefore, the stagnant
subpopulation will be excluded from the subsequent cotgianary cycles. When the values &fF; are the same for all the
subpopulations, we restart the process from the first cbdwaary cycle. The advantage of doing so is that the subjatijon

AF; =




1st cycle 2nd cycle
EEEE>EF -
(a) The traditional CC

1st cycle

(b) CBCC2

1st cycle i2nd i 3rd § 4th i 5th i ..
...... i cycle i cycle: cycleg cycleg
O ) BB D>
(c) CCFR

Fig. 1. The computational resource allocation in CC, CBC@d €CFR, where the circle size indicates the amount of dontdns computed by the
algorithms and the dotted circle indicates that the subladipu is stagnant.

which is considered to be stagnant by mistake can resumedtsten. The above process is repeated until a termination
criterion is met.

CBCC [9] can also allocate computational resources amoagstibpopulations according to their contributions to the
improvement of the best overall objective value. The impatrdifference between CCFR and CBCC is that CCFR responds
faster to the recent changes of the overall objective vdiaa CBCC. For CCFR, the contribution is updated smoothly by
averaging the last and current contributions, whereas B€C, the contribution is accumulated from the beginninghaf t
evolutionary process. Furthermore, CBCC does not takenatagsubpopulations into account.

Fig. 1 illustrates the computational resource allocatiothie traditional CC [7], CBCC2 [9] (a variant of CBCC) and GCF
The round-robin fashion in the traditional CC equally adltes computational resources among all the subpopulatiithsut
considering the different contributions of the subpopala (see Fig. 1a). The traditional CC always allocates egatnal
resources to stagnant subpopulations (ef.in Fig. 1a), which is clearly wasteful. For CBCC, the conitibn of each
subpopulation is accumulated from the beginning of thewgiahary process, as shown in Fig. 1b, where different eisizes
suggest different amounts of the contributions of the sphbfaiions. CBCC2 allocates most computational resourcehe
subpopulation with the greatest accumulated contributiothe second and third cycles, CBCC2 selects subpopual&iavith
the greatest accumulated contribution to undergo evalutioom the second cycle, the contributionff in one cycle (i.e., the
change of circle size) is small. Even in the case fhalhas been stagnant, CBCC2 still deefMsnakes the greatest contribution
and allocates computational resourcesPo(e.g., the sixth cycle in Fig. 1b). CBCC2 allocates compaitet resources to
stagnant subpopulationd, and P;. CCFR computes the contributions by averaging the last amckict contributions at the
end of each cycle. In Fig. 1c, it can be seen thatrgrthe circle size becomes smaller and smaller as the evnlptiogresses.
The contribution thai?, makes in the third cycle is relatively small. CCFR will salacsubpopulation betweef, and P; to
undergo evolution in the next cycle. Although the last cibotiion of Ps is greater than the one df,, CCFR selectd”; to
undergo evolution in the fourth cycle. This is becaises stagnant and has been excluded from the cycles. The figdieates
that given an equal amount of computational resources, CE&HRpotentially obtain better solutions than the tradaloGC
and CBCC2.

C. Obtaining the Best Overall Solution

In co-evolutionary cycles, many cooperatively co-evaudry algorithms [9], [13], [20], [28] update the best oVksalution
to the original problem at the integrated-population lefgde Step 7 in Algorithm 1). Take the following two-dimemsb
Sohere function as an example:

F(x) = af + 3.

This function is additively separable [47]. Its ideal deqmsition isC = {Cy,Ca} = {{z1}, {z2}}.
Suppose populatio®? at a certain generation is as follows:

f=a0[6]2

f=58|7]3

f=a1|5] 4|,
P




Algorithm 1 DECC [28]

*SupposeC = {C1,...,Cys} is a decomposition an®® = {x1,...,xx} is a population.*/
1 Xpest < argmin f(x);

xEP
2: for k + 1 tocycles do

3: fori+ 1ltoM do
4: P,L'<—{Sct7j|Z’t,]‘EP,t:1,...,N,jECi};
5: P; < Optimizer(Xpest, Pi, GES);
6: {Z’f,J‘SCtJEP7t:177N7JECZ}<—PL,
7 Xpest < argmin f(x);
xcP
8: end for
9: end for

where the current best overall solutiep.s; = (6,2) is shown in bold and italic font. Suppose that the elohary process
(Steps 4 to 7 in Algorithm 1) for subpopulatid? is as follows:
Py Py

f=40] 6 [ 2] =20 4 [ 2] f=20{4]2
=53 7 [2| »--.— s=40[6 2] > f=45
f=29| 5 | 2 | evolution f=13| 3 | 2 | f=25(3|4],
P
which produces an updated..; = (4,2). Suppose that the evolutionary process for subptipal®, is as follows:
Pg PZ
f=20l4| 2 =174 1 =174l
f=25[4] 3| —>...o f=16[4| 0| - f=36[6]0
f=32| 4| 4 | evolution f=25|4| 3 f=18 3|3,

which similarly produces an updated.s; = (4,}13). When this co-evolutionary cycle ends, all the pdssimmbinations of the

individuals from different subpopulations are (4,1), }4@,3), (6,1), (6,0), (6,3), (3,1), (3,0) and (3,3). Eacdmbination is an

overall solution to the problem. Among all the combinatiaihe best overall solution is (3,0). For a population wittpplation

size N and M subpopulations, the number of the combinationd’i¥¥. We improve the CC framework in Algorithm 1 through

updatingx,.,; in the following way. In the case that the subcomponentsespwnding to thé/ subpopulations are separable

between each othex,.,; obtained by the improved CC framework is the best overalitsm from the N combinations.
According to the definition of separability [24], [47]:

argmin f(x) = (argmin f(x1,...),...,argmin f(... 7xM)), (8)

for a separable functioyi(x) with M independent subcomponents, the following equation holds:

argmin f(x) = (argmin f(x1,...),..., argmin f(... 7xM)), 9)
x€Z x1€P; xnm EPM

where Z is the set of all the possible combinations of the individutbm P, ..., Py. Eq. (9) simply states that if the
subcomponents are separable, the combination of the blesbadrom each subpopulation must be the best overalltsoiu
from Z to the original problem. When a decomposition is formed, efete best overall solutiory.,; as follows:
Xpest = (argmin f(x1,x,%,), .., argmin f(xar, %, %)), (10)
x1EP; xn € Py
Wherexlifst = {a: | © € Xpest, x & H-}, which consists ok;.,; with the dimensions of?, removed.x;.,; IS a concatenation
of all best solutions from thé/ subpopulations#;, ..., Pys), as constructed in [48]. In Algorithm 1, Step 5 is changed as
follows:
(P, Xpest) + Optimizer(Xpest, Pi, GEs),
wherex,.s; IS updated at the end of the co-evolutionary process for sabpopulation, and Step 7 is removed. The above

co-evolutionary example changes as follows:
P P

f=40| 6 | 2 f=20| 4 | 2
f=53] 7 | 2| —»---— [f=40] 6 | 2
f=29| 5 | 2 | evolution f=13| 3 [ 2],

which produces an updated.,; = (3,2), and
P, P,

f=13| 3| 2 f=10| 3| 1
f=1813| 3 | —»---— f=9 [3] 0
f=25|3| 4 | evolution f=18|3| 3 |,

which similarly produces an updateq.,; = (3,0). From the above evolutionary process, it can be sesnxth,; is always
updated as the best overall solution during evolution. Nb#g, if there is interdependence between subcomponents,
obtained by the above changed evolutionary process mayentitebbest overall solution.



Algorithm 2 CCFR

. Generate a decompositiait = {C1,...,Cu};
. Generate a uniform random populatiéh={x1, ..., xnx };
: Computexpess ¢ argmin f(x);

1
2
3
xcP
4: Set the value ok.s; using Eq. (10);
5. AF; «+ 0,G; < 0,:=1,2,..., M;
6: while the termination criterion is not meio
7 For each subpopulation, resgtsee Eq. (5)) to 0;
8: fori+ 1toM do
9: )’&best < Xbest
10: P {a¢j| @ €Pt=1,...,N,j€C;};

11 (Pi, Xpest, PG, > Gi) < Optimizer(Xpest, Pi, GEs, Gi);
12: {Z’t’j‘xt_’jEP7t:17...7N7jECZ‘}<—Pi;

13 AF; + (AFZ + If(f(best) - f(xbest)‘)/z

14: if pg, equals 1then

15: AF; + 0;

16: end if

17:  end for

18:  while min(AF;li=1,..., M) # max(AF;|li=1,..., M) do
19: i < the index of the maximund\ F;

20: )’&best < Xpests

21: P,L'<—{Sct7j|Z’t,]‘EP,t:1,...,N,jECi};

220 (Pi,Xpest PG, Gi)  Optimizer(xpest, Pi, GEs, Gi);
23: {Z’t’j‘xt_’jEP7t:17...7N7jECZ‘}<—Pi;

24 AFZ‘ «— (AFZ + If(ﬁbest) - f(xbest)‘)/z

25: if pg, equals 1then

26: AF; + 0;

27: end if

28: end while

29: end while

Algorithm 3 (P}, xpest, pg, G) < Optimizer(Xpess, Pi, GEs, Go)
1. G + Go;
2: Forx € P;, evaluate(x, xf;ist);
3: while G < Go + GEs do
for x € P; do

%<+ Reproduction(x); /*evolutionary process*/

Evaluate(x, xfgst) :

if (fc,xfgst) is better than(x7xlifst) then

X — X,

4
5

6

7

8

9 end if

10 if (fc,xfgst) is better thanxy..; then
11: Xpest < (X, %30,

12: end if

13:  end for

14 G+—G+1;

15 Computep using Eq. (6);

16 if p equals 1then

17 Terminate the algorithm and return;
18: endif

19: end while

D. CCFR

Algorithm 2 summarizes the proposed CCFR. Steps 8 to 17 ctamie contribution (i.e., the value @k F;) of each
subpopulation. Steps 18 to 28 select the subpopulation thithgreatest contribution to undergo evolution and update i
contribution when the evolution ends. When all the subpaiuhs make an equal contribution, CCFR goes to Step 8 td rese
the contribution of each subpopulation. The above procesepeated until a termination criterion is met. Steps 11 2d
invoke the evolutionary process for a subpopulation, whgckhown in Algorithm 3.

In Algorithm 3, a subpopulation undergoes evolution for a-ppecified number of generations, i.6£s. Steps 15 to 18
check whether a subpopulation is stagnant. If the subptipale identified as a stagnant one, CCFR will stop the subladion
evolving. In Algorithm 3, the best overall solution..; is updated when a better solution is found. In the eqg,, is returned
to Algorithm 2.

Compared with the traditional CC, CCFR needs extra comjoutdbd initialize the best overall solution before the co-
evolutionary cycles begin (Step 4 in Algorithm 2), and thenpaoitational complexity iSD(M - N). CCFR also needs extra
computation to check whether a subpopulation is stagnasa@i generation (Step 15 in Algorithm 3), and the computatio
complexity isO(D; - N).
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Fig. 2. The activation of subpopulations for CCFR-I on twéested CEC’2013 functions in a single run, where the fillectlei point indicates that the
subpopulation undergoes evolution in the correspondingvetutionary cycle.

IV. EXPERIMENTAL STUDIES

A set of 35 test instances with 1000 dimensions proposedenEEE CEC'2010 and CEC’'2013 special sessions on large-
scale global optimization were used to study the perforreadsfcCCFR. The detailed description of these test instarges i
given in [24], [47]. Compared with the CEC’2010 functionsgetCEC’2013 functions have four new characteristics: ndotm
subcomponent sizes, imbalance in the contributions of ubonents, functions with overlapping subcomponents, reevd
transformations to the base functions.

In the experimental studies, CCFR is compared with seven IQ6@rithms (DECC-G [13], MLCC [49], DECC-D [23],
DECC-DML [23], DECC [28], CBCCL1 [9] and CBCC2 [9]) and two metit algorithms (MA-SW-Chains [50] and MOS-
CEC2013 [51]). The two memetic algorithms were ranked thet fir the IEEE CEC’2010 and CEC’2013 competitions on
large-scale global optimization, respectively. We setrtieximum number of fitness evaluationsMuzFEs = 3 x 10° as the
termination criterion, as suggested in [24]. For the comestof CCFR, the parameters were set to the values as ushdiin
publications. To make a fair comparison, CCFR and the otl@ralgorithms under comparison adopt the same settings of the
following parameters.

1) The subcomponent optimizer is SaNSDE [52], a variant fewdintial evolution (DE) [18]. The population size of

SaNSDE was set to 50.
2) The pre-specified number of the evolutionary generatioes GEs in Algorithm 3, was set to 100.

A. Behavior of CCFR

In this section, the behavior of CCFR is studied. The grogph variables is an ideal decomposition, which was done
manually using the prior knowledge of the benchmark fumdtio

Fig. 2 shows the activation of the subpopulations in a simgle on two CEC’'2013 functionsf§ and f1y), which have
20 separable subcomponents. The contributions of all thpapulations were computed in the first co-evolutionaryleyc
For fg, because the third subcomponent has the largest weigh¢ Yal{], the corresponding subpopulation (i.€;) has
the largest contribution to the improvement of the best aVeabjective value. In Fig. 2a, it can be seen that after thst fi
cycle, P; underwent evolution in the subsequent successive cycles.contribution of P; became smaller and smaller as
the evolution progressed. In the 21st cyclg, whose corresponding subcomponent has the second largéghhtwalue,
underwent evolution. From Fig. 2a, two observations can lagenl) the subpopulations undergo evolution alterna@)y;
most computational resources are spenitprand Ps, whose corresponding subcomponents have the largest eoddskrgest
weight values, respectively. Fgg, according to the dynamic contributions of the subpopoietj CCFR can adaptively allocate
computational resources among the subpopulations.

For f19, it can be seen in Fig. 2b th&t s, whose corresponding subcomponent has the largest weigie {47], underwent
evolution in several successive cycles. Because SaNSkREpptimizer used by CCFR, was not able to solve this function
effectively, P;o was stagnant. The distribution @, remained unchanged for several successive generationise Ifourth
cycle, CCFR considered;» to be stagnant according to Eq. (6) and excluded it from theseguent cycles. In the 152nd
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(b) The box plot of the function evaluations used by each spbfation to optimize its corresponding subcomponent @&eimdependent runs, where
the circle point indicates the mean number of function eidms used by each subpopulation over 25 independent runs.

Fig. 3. The computational resource allocation among the@apilations in CCFR-I on four selected CEC’2013 functions.

cycle, all the subpopulations were stagnant. The co-eeviuestarted from the first cycle. All the subpopulationslemvent
evolution one by one.

Fig. 3 shows the resource allocation in CCFR-I on four CE@2(unctions f{s—f11), which have 20 separable
subcomponents. The weight values of the subcomponentsigmdicantly different (see Fig. 3a), which results in the
significantly different contributions of the subpopulatioto the improvement of the best overall objective valueatt be seen
in Fig 3 that for fs—f11 exceptfio, the larger the weight value of a subcomponent is, the maeurees its corresponding
subpopulation uses for evolution. As discussed beforegpitienizer used in CCFR was not able to solfig effectively, so all
the subpopulations were stagnant after some cycles. Alstiopulations then underwent evolution one by one. Theref
for fi9, the computational resources allocated to different spbfations do not differ greatly (see Fig. 3b).

B. Comparison Between CCFR and Other CC Frameworks

In this section, CCFR is compared with two variants of CBC@®QC1 and CBCC2) [9] and the traditional CC [7]. The
grouping of variables for CCFR-I, CBCC-I and CC-l is an idé@icomposition, which was done manually using the prior
knowledge of the functions. All the function evaluations aised for optimization. For the separable variables, CORRGC
optimize the variables separately, while CBCC optimizes vhriables together [28]. The only difference between CGFR
CBCC-I and CC-I is the cooperatively co-evolutionary frameks they employ. Table | summarizes the results of CCFR-I,
CBCC1-1, CBCC2-l and CC-I.

1) Comparison on the IEEE CEC' 2010 Functions: The results show that CCFR-I performs significantly bettantthe other
peer algorithms on 13 out of 20 functions. CCFR-I outperfothe other peer algorithms on all the separable functidisf§)
and most of the partially separable functiorfg<{fis). For the partially separable functions on which CCFR-fpens worse,
the differences between the results of CCFR-I and the other plgorithms are not significant. For the functions on Whic
CCFR-I performs better, the differences are significampeewlly for f;, fi2, fi3 and fi7. For the nonseparable functions
(f19 and fo), all the variables are grouped into one subcomponent amdptimized together, hence there is no issue of
computational resource allocation. CCFR-I, CBCC-I and IG@ve similar performance on the nonseparable functions.

Fig. 4 shows the convergence of four CC algorithifigs a fully separable function in which each variable has ajiveialue.
These weight values grow as the indices of the variablegasa.f12 is a partially separable function with 10 nonseparable
subcomponents and 500 separable variables.

CC cannot save computational resources on stagnant sulfiops. As can be seen in Fig. 4, the convergence speed of
CC-l is very slow. In contrast, CCFR can stop stagnant sublatipns from evolving. As a result, CCFR spends much less
computational resources on the separable variables anems faster than CC-I. In the beginning of the evolutigiaocess,
CCFR-I converges slowly. This is because CCFR-I optimizktha subcomponents including the separable variablesbgne
one in the first co-evolutionary cycle. When the first cycle®about2.5 x 10° function evaluations forf;; about1.3 x 10°
function evaluations fotf;2), CCFR-I starts to select the subpopulation with the gsgatentribution to undergo evolution,
hence the convergence speed of CCFR-I increases. CBCCgatiithe separable variables into one subcomponent ankeall t
separable variables are optimized together [28], whickddke power of the divide-and-conquer strategy of CC. In &g
it can be seen that CBCC1-l1 and CBCC2-I converge slowlyfanThe best overall objective value ¢f drops sharply when
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TABLE |
THE AVERAGE FITNESS VALUEST STANDARD DEVIATIONS ON THECEC’2010AND CEC’2013FUNCTIONS OVER25 INDEPENDENT RUNS THE
SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION, @=0.05).RT, R~ AND
p-VALUE ARE OBTAINED THROUGH MULTIPLE-PROBLEM ANALYSIS BY THE WILCOXON TEST BETWEENCCFR-IAND ITS COMPETITORS

CEC'2010 Functions

F CCFR-I CBCC1-I CBCC2- CC-1
fi 1.2e-05+4.9e-06 9.9e+06:1.3e+07  9.9e+06:1.3e+07  3.5e+112.0e+1@
f2 2.7e+01+£5.2e+00 4.7e+03t4.8e+0Z  4.7e+03t4.8e+0Z2  9.4e+03t2.1e+02
f3 4.6e+00+4.6e-01 1.2e+01:3.7e-01 1.2e+04-3.7e-01 2.0e+041-4.4e-02
fa 8.3e+10:6.2e+10  6.0e+184.4e+10 9.9e+102.7e+1q  3.4e+14t7.5e+13
fs 7.2e+0%1.3e+07  6.8e+0%1.0e+07 6.7e+0%9.1e+06 4.9e+082.4e+07
fe 7.7e+05+7.1e+t05 1.3e+06t6.4e+05  1.3e+06:6.8e+03  1.1e+0#7.5e+0%
fr 15e-03+2.5e-04  5.9e+04:9.3e+03  8.4e+04t1.9e+04  7.7e+10E9.6e+09
I3 3.2e+05+1.1e+t06  8.6e+05:1.6e+06  1.0e+06:t1.7e+06  1.8e+14:9.3e+13
fo 9.4e+06:1.2e+06  1.7e+0%2.1e+07 2.8e+091.8e+09  9.4e+08:7.1e+07
fio 1.4e+03+1.0et02  3.0e+03:1.7e+02  4.5e+03:6.6e+02  4.8e+03:6.7e+01
fu 1.0et01+2.7e+t00  2.2e+01:3.2e+0Q  2.4e+01-2.7e+0Q  4.1e+01:1.5e+0Q
fiz 1.2e+00+4.6e+t00  1.8e+04:6.5e+03  2.5e+04:7.3e+03  4.9e+05:-3.4e+04
fis 3.2e+02+£9.9e+01  1.9e+04t6.3e+03  2.8e+04t5.4e+03  1.5e+07-4.1e+06
fia 2.5e+07+2.9e+t06  2.8e+07A2.1e+06  9.5e+09:5.2e+08  2.7e+07:-2.1e+06
fis 2.8e+03+1.3e+02 4.0e+03t1.5e+0Z  4.2e+03t1.6e+0Z  4.0e+03t1.6e+02
fie 2.0e+012.6e+00  1.9e+01t3.2e+00 2.0e+0%3.4e+00 2.0e+01t4.0e+00
fi7 9.8e+00+1.1et01  3.5e+014.9e+0%  1.4e+02t4.4e+01  2.2e+01:3.7e+01
fis 1.1e+03:1.8e+02  1.1e+081.8e+02 1.4e+081.9e+0Z  1.0e+03t1.7e+02
fi9 1.2e+06:£9.5e+04  1.2e+069.5e+04 1.2e+069.5e+04 1.2e+069.5e+04
f20 1.0e+09:9.0e+08  1.0e+029.0e+08 1.0e+029.0e+08 1.0e+029.0e+08
Rt — 167.0 194.0 204.0
R- — 43.0 16.0 6.0
p-value | — 2.06e-02 8.92e-04 2.19e-04

CEC' 2013 Functions
F CCFR-I CBCC1-I CBCC2-I CC-l
fi 1.3e-05+3.2e-06 1.4e+073.6e+07  1.4e+073.6e+07  3.7e+11:1.5e+1Q
f2 5.5e-014-1.5e+00 2.1e+04:9.9e+02  2.1e+04:9.9e+0Z  8.5e+04t5.1e+03
f3 2.0e+01+3.1e-07 2.1e+0Hk1.1e-02 2.1e+0k1.1e-02 2.1e+0H19.1e-03
fa 4.5e+07+1.7e+07  1.6e+08t6.0e+07"  6.6e+1GE5.6e+09  1.7e+12-4.8e+11
fs 2.5e+06:-2.7e+05  2.5e+064.2e+05 2.4e+064.5e+05 1.2e+0%6.9e+0%3
fe 1.1e+06:1.2e+03  1.1e+061.9e+03  1.1e+06:1.7e+03  1.1e+06:1.6e+03
fr 8.6e+06+1.9e+07 1.9e+0A2.4e+07  9.6e+073.7e+08  4.2e+09%1.1e+09
f3 9.6e+09+1.6e+10 2.0e+13t2.8e+13  1.0e+12t1.3e+1l 4.7e+13:2.8e+13
fo 1.9e+08+2.8et07 2.5e+08:3.8e+07°  2.2e+08:2.8e+07  2.9e+08t5.2e+07
f1o 9.5e+0%1.9e+05  9.4e+0%2.8e+05  9.4e+07%2.3e+05  9.4e+072.9e+05
fi1 3.3e+08+3.2e+08  3.0e+09t1.0e+1Q  4.9e+1@9.5e+1@  2.2e+09:8.4e+09
fiz 6.0e+08:7.1e+08  6.1e+087.1e+08 6.1e+087.1e+08 6.1e+087.1e+08
fi3 9.3e+08:5.3e+08  9.5e+085.4e+08 9.5e+085.4e+08 9.5e+085.4e+08
f1a 2.1e+09:2.1e+09  2.2e+092.1e+09 2.2e+092.1e+09 2.2e+092.1e+09
fis 8.2e+06:3.3e+06  8.3e+063.3e+06 8.3e+063.3e+06 8.3e+063.3e+06
Rt — 109.0 107.0 115.0
R — 11.0 13.0 5.0
p-value 3.36e-03 5.37e-03 6.10e-04

The symbols} and| denote that the CCFR-I algorithm performs significantlytdrethan and worse
than this algorithm by the Wilcoxon rank sum test at the digance level of 0.05, respectively.
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Fig. 4. The average convergence on two selected CEC’201didms over 25 independent runs.

CCFR-I completes the first co-evolutionary cycle. Hgs, CCFR-I converges faster than CBCC1-1 and CBCC2-I (see Fig.
4b). CBCC allocates computational resources among sultgtggns according to the accumulated contributions. Ersjaireg
the recent contributions, CCFR adapts the computatiorsaluree allocation to the real-time contributions of suhpatons
better than CBCC. The experimental results in a single rurf,gnshowed that for the third subpopulation, CBCC1-1 and
CBCC2-l used aboui x 10° and1 x 10° function evaluations to improve the best overall objectiaie by6.9 x 10°. CCFR-I
used aboul.9 x 10° function evaluations to make the improvementdf x 10°. When the real-time contribution of the third
subpopulation was relatively small, CBCC still allocatemmputational resources to the subpopulation, while CCHétated
resources to some other subpopulation which made a rdiativeater real-time contribution.

2) Comparison on the IEEE CEC' 2013 Functions: To further investigate the effect of imbalance, CCFR-I, @BlCand CC-I
were tested on the CEC’2013 functions. The results showGR&R-1 significantly outperforms the other peer algorittons3
out of 15 functions. CCFR-I performs significantly bettearththe other peer algorithms on all the separable functifis{)
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Fig. 5. The average function evaluations used by each sultgtam to optimize its corresponding subcomponent on a '@&L3 function (fg) over 25
independent runs.

TABLE I
AVERAGE RANKINGS ON THECEC’2010AND CEC’2013FUNCTIONS(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT

CCFR-I CBCC1-l CBCC2-1 CC-lI | p-value
Average Ranking| 1.4000 2.3714 2.8286 3.4000 1.15e-10

and most of the partially separable functiorfs<f,1). CCFR-I, CBCC-I and CC-I have similar performance on npasable
functions f12—f15. For the partially separable functions on which CCFR-I garfs worse, the differences between the results
of CCFR-I and the other peer algorithms are not significaot.tke functions on which CCFR-I performs better, the dédferes
are significant, especially fofy, f7, fs and f11, where CCFR-I outperforms the other peer algorithms by re¢varders of
magnitude.

Fig. 5 shows the average function evaluations used by edgpopulation to optimize its corresponding subcomponent
for CBCC1-l, CBCC2-l and CC-l onfs over 25 independent runs. Fgg, the weight values of the subcomponents are
significantly different (see Fig. 3a). It can be seen in Figth&t CC-| allocates equal computational resources to &l th
subpopulations. CBCC1-l1 and CBCC2-| allocate equal coatpuial resources to all the subpopulations except thd thie
(Ps). In the beginning of the evolutionary procedd, makes the greatest contribution. Therefore, CBCC1-l an€CCBI
allocate more computational resourcesia In the subsequent co-evolutionary cycles, the contdoutf P; in one cycle
drops, but CBCC1-1 and CBCC2-I still deei®s makes the greatest contribution and allocate resourc€s tather than some
other subpopulation which makes the greatest real-timéribotion. In contrast, CCFR-I allocates computationaowrces
to P; with the greatest real-time contribution when the realetioontribution of P5 is small. Allocating more computational
resources to the subpopulation with the greatest conimibincreases the probability of making a greater improvenoé the
best overall objective value. In short, fdg, the result of CCFR-I is significantly better than those ofGTR.-I, CBCC2-I and
CC-I (see Table I).

The average ranking of CCFR-I is the best among the four CGristigns on the CEC’2010 and CEC’2013 functions (see
Table 1). The results in this section show that CCFR can nistéer use of computational resources than CBCC and CC on
both the CEC’2010 and CEC’2013 functions.

In order to show the effect of the contribution-based resewllocation (see Sect. IlI-B) on the overall performante o
CCFR, we compared CCFR-I with ICBCC2-I, ICBCC1-1 and ICGalhich are the improved CBCC1-l, CBCC2-I and CC-
I, respectively. ICBCC2-I, ICBCC1-I and ICC-I adopt the gooments of CCFR (see Sect. IlI-A to Sect. 11I-C) except the
contribution-based resource allocation. Table 11l sumpearthe results on partially separable CEC’2013 functi@rgi,. The
comparison between the results in Table | and Table Il shinasthe components of CCFR proposed in Sect. IlI-A and Sect.
[1I-C improve the performance of CBCC1-I, CBCC2-I and CCH e four CEC'2013 functionsf¢—f11). However, CCFR-I
still outperforms the other CC algorithms on most of the flwnctions due to its better contribution-based resouriceation.

The scalability study of CCFR-I on the block-rotated eldijus function [53] is provided in Sect. Il in the supplementar
material listed in the appendix. The results show that folFR@, the number of function evaluations increases linead
the dimensionality of the function and the number of subcongnmts increase. CBCC1-I, CBCC2-lI and CC-I have similar
performance to CCFR-I, but for CCFR-I, as the dimensiopalit the function and the number of subcomponents increase,
the number of function evaluations increases less rapidin the other three CC algorithms.

C. CCFR with IDG2

The experimental results of CCFR with two grouping methgate\ided in Sect. Il in the supplementary material listed
in the appendix) show that a high grouping accuracy can irgthe performance of CCFR, especially for nonseparable
variables.

In this section, the performance of CCFR-IDG2 is presentBd52 [54], which is an improved variant of differential
grouping (DG) [28], is able to group interdependent vagahiogether with a very high accuracy and correctly identify
indirect interaction between decision variables. CCF&Dis compared with seven CC algorithms (DECC-G [13], MLCC
[49], DECC-D [23], DECC-DML [23], DECC [28], CBCCL1 [9] and GBC2 [9]) and two memetic algorithms (MA-SW-Chains
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TABLE IlI
THE AVERAGE FITNESS VALUESH STANDARD DEVIATIONS ON FOUR PARTIALLY SEPARABLECEC’2013FUNCTIONS(fg—f11) OVER 25 INDEPENDENT
RUNS. THE SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION, @=0.05).R*, R~
AND p-VALUE HAVE SIMILAR MEANINGS AS IN TABLE .

F CCFR-I ICBCC1-I ICBCC2-I ICC-I

f8 9.6e+09+1.6e+10  1.9e+13t2.7e+13  9.9e+11t1.3e+1l 4.7e+13:2.6e+13
fo 1.9e+08+2.8et07  2.5e+08:3.8e+07  2.2e+08:2.9e+07  2.8e+08t5.4e+07
fio 9.5e+07%1.9e+05 9.5e+0¥2.8e+05  9.5e+07:3.1e+08  9.5e+07:-2.8e+05
fi1 3.3e+08:3.2e+08  5.2e+084.6e+08 7.9e+091.2e+1q  1.8e+09:6.1e+09
Rt — 9.0 9.0 9.0

R~ —_ 1.0 1.0 1.0

p-value | — 2.50e-01 2.50e-01 2.50e-01

The symbolst and | have similar meanings as in Table I.

TABLE IV
THE AVERAGE FITNESS VALUESt STANDARD DEVIATIONS ON THECEC’2010AND CEC’2013FUNCTIONS OVER25 INDEPENDENT RUNS THE
SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT(WILCOXON RANK SUM TEST WITHHOLM p-VALUE CORRECTION, @=0.05).R*, R~ AND
Pp-VALUE HAVE SIMILAR MEANINGS AS IN TABLE |.

CEC’2010 Functions

F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML
f1 2e-5+7e-6 4e-Fle-7| 8e-T+4e-7, 1e-22+9%-21| 3e-7+9e-7,
f2 1.7e2:9e0 1.3e33el; 3e-3+5e-3) 6.5ek-4el| 1.0e:2el]
f3 1.2et4e-1 l.lef-4e-1] le24+3e2|  2.3eGt2e-1 3e-1+7e-1
fa 1e11+8e10 2e13t5el12  leldt4el3d  3el2t9ellt lel4t2eld
5 9.2e7+2e7 2.5e8t7e7t 5.0e8t1e8 2.9e8t1e8 5.0e8t1e8
fe 6.8e5+7€5 5.3e6t1e6t 1.9e#-2e6! 5.9e6t+5e6! 1.7eH-6e6!
f7 2e-3+3e4 8.1e8t5e8" 5e10t2el0  1.5e5+2e5h 3elGt5e10
I8 3.2e5+1e6 6.8e7=3e7t 8.2e8t2e8 1.3e8t1e8; 3elQGt7el0r
fo 1.3e7+2e6 4.5e8t5e7  1.7e%t2e8"  1.0e8t9e6: 1.0e9t1e9t
fio0 1.8e3+1e2 1.1e4t-4e2t 5.2e3t2e3" 4.1e3t1e3r 4.3e3t2e3t
f11 2.0e1+3e0 2.6et-1e0r  2.0e2:2e0r  1.0e2tle2; 1.9e2t3elt
fi2 2.0el+2el 9.9e4tle4t  8.7e5tle5r  9.1e3tle3r 4.8e5t5e5¢
fis 5.3e2+1e2 5.3e3t3e3" 3.2e4+-3e4 5.4e3t3e3" 8.6e4t-2e5H
fia 3.1e7+3e6 9.8e8:8e7  3.6e9:5e8"  3.0e8:2e7t 2.2e9:2e9r
fis 3.2e3+2e2 1.2e4t7e2r  1.2e4t2e3  1.3e4t2e2t 1.1e4t3e3t
fie 2.0e1+3e0 6.9et-5e0r  4.0e2:3e0r  2.0e2t2e2; 3.6e2t1e2r
fir 6.7e1+9el 3.1le5-2e4t 1.8e6t-2e5! 7.5e4+5e3 9.7e5t1e6
fis 1.4e3+2e2 3.5e4tled4t  1.1e5t3edt  1.4edtledt 7.8e4t2e5"
fi9 1.3e6k1e5 1.1e6-6e4,  3.0e6:4e5t  1.6e6:1e6 2.7e6-3e6;
f20 2.0e9t2e9 45e38e2,  1.8e5t2eh,  2.3e3+2e2| 5.4e3t1ed|
Rt — 176.0 187.0 184.0 188.0
R~ — 34.0 23.0 26.0 22.0
p-value | — 8.03e-03 2.20e-03 3.19e-03 1.94e-03
CEC' 2013 Functions
F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML
fi 2e-5+5e-6 3e-6-2e-6, le-6+6e-7| le-17t1e-17,  7e-8t3e-7,
f2 3.6e2t2el 1.3e3-3el 2e-2+4e-2, 7.lek-3el] 4.9eQt2el]
fa 2.let-1le-2 2.0et7e-3  2.0et-9e-4, 2.0eh-2e-3 2.0et-2e-2,
fa 9.6e7+4e7 2elltlell 2el2t8ell  3elGt2ellr lel2+lel2s
fs 2.8e6+3¢5  8.6e6-1e6’  1.9e75e6]  6.1e6t2e6f 1.9e7+8e6!
fe 1.1e6t1e3 1.1le6-1e3, 1.1e6+3e3] 1.1e6+2e3] 1.0e6+5€3|
7 2.0e7+3e7 1.0e9t5e8; 8.4e9t4e9r 9.0e?-4e7t 3.7e9:5e9
fs 7e10tlell  9el5t4el5  8elGtdel6  2el4t9el3 5e16+8e16"
fo 1.9e8+3e7 6.1e8t1e8t 1.2e9+3e8 5.1e8t1e8" 1.2e9+4e8"
f1o 9.5e2e5 9.3e#5e5, 9.3e7-5e5, 9.3e?6e5, 9.3e?6e5,
f11 4e8+3e8 2el19el0r  lel2t5ell 9e8t5e8; 6elltt7elly
fi2 1.6e9t2e9 4.4e37e2,  8.8e4t:3ed,  2.3e3t2e2| 5.2e3t1ed,
fis 1.2e9+-6e8 9.6e9t3e9r 5el0t1elOd  1.7e9:5e8) 2e10t2el0r
f1a 3.4e%t3e9 2el#5el10 9elitdell  7.4e9t9e9 2eli5ellt
fis 9.8e6t4e6 1.2etle6f  3.7e8:3e8  6.9e6+7€5] 3el0tlellt
Rt — 98.0 96.0 87.0 97.0
R~ — 22.0 24.0 33.0 23.0
p-value | — 3.02e-02 4.13e-02 1.35e-01 3.53e-02

The symbolsf and | have similar meanings as in Table I.

[50] and MOS-CEC2013 [51]). It is shown in [55] that the two mmetic algorithms are competitive for solving large-scale
optimization problems. Note that, for the algorithms withd2, the function evaluations spent on groupings are cauase
part of the computational budget.

Table IV summarizes the results of CCFR-IDG2, DECC-G, ML@IECC-D and DECC-DML. CCFR-IDG2 performs
significantly better than the other peer algorithms by s@Everders of magnitude on all the CEC'2010 partially sepkerab
functions (f,—f1s) and most of the CEC’2013 partially separable functiofis-(11). This indicates that an efficient grouping
method and an efficient resource allocation strategy cgm @EIFR achieve competitive performance. The average rgriin
CCFR-IDG2 is the best among the five CC algorithms on the CBET)2and CEC’2013 functions (see Table V).

CCFR is compared with CBCC1, CBCC2 and DECC, which adopt tremging methods (i.e., DG [28] and IDG2 [54]).
The detailed results are provided in Sect. Il in the supgletary material listed in the appendix. For IDG2, the corigoar
results are similar to the comparison results between CCaRl} its competitors (CBCC1-1, CBCC2-I and CC-l) in Sect:BV
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TABLE V
AVERAGE RANKINGS ON THECEC’2010AND CEC’2013FUNCTIONS(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT

CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML| p-value
Average Ranking| 2.1429 3.0286 4.0000 2.3143 3.5143 5.66e-07

The results show that CCFR-IDG2 performs significantly dretthan CBCC1-IDG2, CBCC2-IDG2 and DECC-IDG2 on most
of the fully separable and partially separable functiortee dverall performance of CCFR-DG is also better than CBOGL-
CBCC2-DG and DECC-DG on the CEC'2010 and CEC’2013 functidr®e algorithms with IDG2 perform better than the
ones with DG. This is because IDG2 is able to identify intpetelence between variables with higher accuracies.

The comparison between CCFR-IDG2 and the two memetic alhgosi (MA-SW-Chains and MOS-CEC2013) is provided
in Sect. IV in the supplementary material listed in the apldenThe experimental results show that the overall per&oroe
of CCFR-IDG2 is worse than MA-SW-Chains and MOS-CEC2013 lem €EC’2013 functions. However, when we replace
SaNSDE with another optimizer (i.e., CMAES [56]), the penfiance of CCFR-IDG2 is improved. Overall, CCFR-IDG2 with
CMAES performs better than MA-SW-Chains and MOS-CEC201doth the CEC'2010 and CEC’2013 functions.

V. CONCLUSION

In this paper, we presented a new CC framework named CCFRd&linig large-scale global optimization problems. CCFR
aims to make efficient use of computational resources amamgopulations. Unlike the traditional CC where the compaiteal
resources are equally allocated among subpopulations B@{CGvhere the computational resources are allocated aogord
to the accumulated contributions of subpopulations froemtibginning of the evolutionary process, CCFR allocatesuress
to subpopulations according to the previous and currentriborions of the subpopulations. The CEC'2010 and CEC201
large-scale benchmark functions were used to evaluate ¢éifermance of CCFR. From our experimental results, several
conclusions can be drawn.

Firstly, CCFR can detect stagnant subpopulations and samgutational cost on stagnant subpopulations. Secondly,
according to the previous and current contributions of spljfations to the improvement of the best overall objectiatie,
CCFR can make a more efficient computational resource ditlocamong subpopulations and obtain better solutions than
other CC frameworks. Finally, the performance of CCFR dedpeon the performance of grouping methods. Grouping the
interdependent decision variables together with a highraoy can improve the performance of CCFR. CCFR with an ivguto
differential grouping method is a highly competitive CC @iighm for solving the large-scale optimization problems.

In the future, we are planning to investigate the potentialsing the racing algorithm [57], reinforcement learnig@] and
the techniques adopted in adaptive selection of operad®isf¢r allocating computational resources among subaijmns.

APPENDIX
SUPPLEMENTARY MATERIAL AVAILABLE ON THE WEB

The experiments in the supplementary material consist@falowing parts.

1) The sensitivity study of the parametérof CCFR.

2) The scalability study of CCFR.

3) The performance of CCFR with DG and IDG2.

4) The comparison between CCFR-IDG2 and non-CC algorithms.
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TABLE I: The average fitness valueis standard deviations on the CEC'2010 and CEC’2013 functaves 25 independent
runs. The significantly better results are in bold font (\Wion rank sum test with Holm-value correctione=0.05). R*, R~
andp-value are obtained through multiple-problem analysishHgyWilcoxon test between CCFRW/€D;) and its competitors.

CEC' 2010 Functions

F CCFR-l U = Dy) CCFR-l U =2D;) CCFR-lI U = 10D;)
fi 1.20e-05-4.89e-06 1.31e-065.19e-06 1.68e-066.54e-06
fo 2.75e+01+£5.25e+00  5.13e+01:5.04e+0@  1.52e+02-7.22e+0Q
f3 4.56e+00+4.63e-01  5.56e+0@:4.63e-03  8.10e+0@:4.65e-01
fa 8.33e+10-6.16e+10  8.69e+1P4.68e+10 1.06e+114.31e+10
f5 7.23e+071.32e+07  7.32e+0F1.22e+07 9.12e+0F1.74e+07
fe 7.74e+0%:7.15e+05  7.83e+0b8.28e+05 7.28e+0b8.51e+05
f7 1.49e-03+2.47e-04 1.66e-03-2.78e-04 2.14e-03-3.90e-04
fs 3.19e+0%:1.08e+06  6.38e+0b1.46e+06 9.57e+0b1.70e+06
fo 9.38e+06:1.18e+06  8.81e+0b61.05e+06 1.05e+Q#1.44e+06
f1o0 1.41e+03-1.01e+02  1.42e+0B7.83e+01 1.61e+081.10e+02
fi1 1.03e+01-2.71e+00  9.72e+0P2.11e+00 1.00e+02.59e+00
f12 1.17e+00+4.57e+00  4.72e+0&t1.75e+0F  7.49e+0@:2.30e+03
fi3 3.18e+02-9.91e+01  3.25e+0R21.01e+02 4.03e+029.45e+01
f1a 2.48e+07-2.85e+06  2.48e+0F2.85e+06 2.48e+072.85e+06
fis 2.81le+03x1.31e+02 2.81e+0B1.31e+02 2.81e+0B1.31e+02
fi6 2.01e+032.62e+00 2.01e+0#2.62e+00 2.01e+042.62e+00
fi7 9.78e+00-1.09e+01  9.78e+(GD1.09e+01 9.78e+0D1.09e+01
fis 1.14e+03:1.82e+02  1.14e+(GB1.82e+02 1.14e+0B1.82e+02
f19 1.16e+06:-9.47e+04  1.16e+069.47e+04 1.16e+069.47e+04
f20 1.01e+09-8.96e+08  1.01e+0D8.96e+08 1.01e+0B8.96e+08
Rt — 168.0 170.0
R~ — 42.0 40.0
p-value | — 2.66e-02 1.71e-02

CEC’ 2013 Functions
F CCFR-l U = D;) CCFR-l U =2D;) CCFR-lI U = 10D;)
fi 1.30e-05-3.18e-06 1.40e-063.49e-06 1.80e-0b4.65e-06
fo 551e-014+1.47e+00  5.33e+011.70e+0F  3.14e+02-2.05e+01
f3 2.00e+03-3.06e-07 2.00e+014-3.23e-07]  2.00e+01-3.89e-04
fa 4.50e+07A1.66e+07  5.26e+QF2.22e+07 7.47e+0%2.31e+07
fs 2.53e+06:2.67e+05  2.47e+0B3.75e+05 2.62e+063.88e+05
fe 1.06e+06-1.19e+03 1.06e+06+1.30e+03] 1.07e+06-1.64e+03
f7 8.60e+06-1.90e+07  9.94e+0b2.64e+07 1.04e+0Q71.85e+07
fs 9.61e+09¢1.59e+10 9.61e+(B1.59e+10 9.61e+0P1.59e+10
fo 1.85e+08:2.79e+07  1.84e+0B2.70e+07 1.84e+0B2.73e+07
f1o 9.47e+07-1.86e+05 9.46e+0F3.84e+05  9.43e+074-3.44e+05]
f11 3.25e+08:3.24e+08 2.53e+083.33e+08 3.28e+0B3.38e+08
f12 6.00e+08:7.09e+08  6.00e+(G87.09e+08 6.00e+0B7.09e+08
fi3 9.28e+08-5.33e+08  9.28e+085.33e+08 9.28e+0B5.33e+08
f1a 2.14e+09£2.11e+09  2.14e+0B2.11e+09 2.14e+002.11e+09
fis 8.25e+06:3.28e+06  8.25e+063.28e+06 8.25e+063.28e+06
Rt — 49.5 89.5
R — 70.5 30.5
p-value | — 6.25e-01 1.60e-01

The symbolst and | denote that the CCFR-IL{ = D;) algorithm performs
significantly better than and worse than this algorithm kg Wilcoxon rank sum
test at the significance level of 0.05, respectively.

I. SENSITIVITY STUDY OF THE PARAMETER U OF CCFR

Table | summarizes the results of CCFR-I with different eslwf the parametell (see Eq. (6a) in the paper) on the
CEC’2010 and CEC’2013 large-scale functions [1], [B); is the dimensionality of thé-th subcomponent.

For the functions with separable variables (i.e., the CBC®functionsf;—f13 and the CEC'2013 functiong;—f), the
smaller the value olU is, the better the performance of CCFR is in general. Thisisabhse CCFR with a small value &f
can early stop the evolution of stagnant subpopulationsaiit save more computational resources on stagnant vaitiza
CCFR with a larger value of/. Therefore, we usé&/ = D, as the default setting d¥. For the functions without separable
variables, the subpopulations hardly enter a stagnarg, satthere are no differences between the performance oREGCF
with different values ofU. Overall, the CCFR-I algorithms with different values Gfhave similar performance on most of
the CEC’2010 and CEC’2013 functions.

II. SCALABILITY STuDY OF CCFR

We used the block-rotated ellipsoid function [3] to studg terformance of CCFR-I, CBCC1-I, CBCC2-1 and CC-I with
the scale-up dimensionality of the function and the scalesumber of subcomponents. The dimensionality of the foncti
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Fig. 1: The average function evaluations used by CCFR-I, CBC CBCC2-| and CC-I on the block-rotated ellipsoid fupaot
over the successful runs out of 10 runs.

(i.e., D) ranges fron2* to 2!°. The numbers of subcomponents 4fe2,4,8D}. Within 107 function evaluations, if the best
overall objective value is smaller than a target value,(D€l) in a run, CCFR-I stops running and this run is considl¢éoebe
successful. Fig. 1 shows the average number of functioruatiahs over successful runs out of 10 runs. CCFR-I can reach
the target value within0” function evaluations when there are less than 64 variabl@essubcomponent. When the number
of the variables in a subcomponent is equal to or smaller #igint, the number of function evaluations increases ligezs

the dimensionality of the function and the number of subcongmts increase. When there are more than eight variables in
a subcomponent, the number of function evaluations ineseeapidly and linearly as the dimensionality of the functand

the number of subcomponents increase. It can be seen in Egt CBCC1-lI, CBCC2-l1 and CC-I have similar performance
to CCFR-I, but for CCFR-I, as the dimensionality of the fuantand the number of subcomponents increase, the number of
function evaluations increases less rapidly than the dtivee CC algorithms.

IIl. PERFORMANCE OFCCFRWITH DG AND IDG2

In order to study the effect of decomposition on the perfarageof CCFR, we tested CCFR with two grouping methods (DG
[4] and IDG2 [5]). DG is a differential grouping method withtaeoretical foundation, which is able to group the intefegent
variables together with a high accuracy. In DG, the parametgas set tol03, which is recommended in [4]. IDG2 is an
improved variant of DG, which is able to group the interdegestt variables together better than DG. Table Il summatizes
grouping results of IDG2 and DG.

Table Il summarizes the optimization results of CCFR, CAJ6E], CBCC2 [6] and DECC [4] with IDG2 and DG. Note
that, for the algorithms with IDG2 and DG, the function ealans spent on groupings (see the ‘FEs’ column in Table I1)
are counted as part of the computational budget. The reslttes that CCFR-IDG2 and CCFR-DG perform better than the
other peer algorithms on the CEC’2010 and CEC’2013 funstion

CCFR-DG performs significantly better than the other pegorhms with DG on most of the separable functiorfs~(
f3). For almost all the partially separable functions (the GO functions fs—fis; the CEC’2013 functions,—f11), the
differences between the results of the algorithms with D& raot significant. For the CEC’2010 functiorfs, fs and fi3,
because DG is not able to identify the interdependence legtwariables, there is interdependence between the sulocemis
formed by DG. CCFR-DG performs worse than CBCC1-DG and DHEE&Z by several orders of magnitude. This indicates
that if there is interdependence between subcomponentimining each subcomponent one by one may be a good way.

CCFR-IDG2 outperforms the other peer algorithms on moshefseparable and partially separable functions (the CE®'20
functions f1—f1s; the CEC’2013 functiong1—f11), especially on the separable functiorfs<fs). For the partially separable
functions on which CCFR-IDG2 performs worse, the diffesbetween the results of CCFR and the other peer algoritrams a
not significant. For the functions on which CCFR-IDG2 penisrbetter, the differences are significant. For the nonsbpear
functions (the CEC’2010 functiongio—f20; the CEC’2013 functionsfi>—f15), all the variables are grouped into one
subcomponent. Therefore, the algorithms with IDG2 havelainperformance on these nonseparable functions.

For most of the functions, the algorithms with IDG2 perforettbr than the ones with DG. This is because IDG2 can identify
the interdependence between variables with higher adesréitan DG (see Table 11). The results show that comparell wit
DG, IDG2 makes CCFR perform much better than the other pgeritims. For most of the functions on which CCFR-IDG2
performs worse than CCFR-DG, the performance of CCFR-ID68@ @CFR-DG does not differ greatly. For most of the
functions on which CCFR-IDG2 performs better than CCFR-DEFR-IDG2 significantly outperforms CCFR-DG by several
orders of magnitude due to the higher grouping accuraci¢®@® in identifying the interdependence between varialgeg.,
the CEC’2010 functiong’;, fs, fi3 and fis; the CEC’2013 functiongy, f7, fs and fi1). The experimental results show that
the performance of CCFR is dependent on the decomposititimagheA high grouping accuracy can improve the performance
of CCFR, especially for the nonseparable variables.

IV. COMPARISONBETWEEN CCFR-IDG2AND NON-CC ALGORITHMS

Table IV summarizes the results of CCFR-IDG2, MA-SW-Chdirisand MOS-CEC2013 [8]. MA-SW-Chains and MOS-
CEC2013 were ranked the first in the IEEE CEC'2010 and CEQ20ampetitions on large-scale global optimization,



TABLE II: The grouping results on the CEC’2010 and CEC’201@dtions. The values of IDG2 and DG are separated by
“I". The bold font indicates IDG2 performs better than DGe thray background indicates IDG2 performs worse than DG.

CEC'2010 Functions

IDG2 / DG (e = 1073)
Sep Non-Sep
F Vars FE Sep Non-sep
vars | Grouns s Formed Captured Accurac Formed Captured Accurac
P Vars Vars y Subcomponenty Subcomponentg Yy
f1 1000 0 0 | 500501 / 1001000 1000 / 1000| 1000 / 1000 | 100.0% / 100.0% 0/0 0/0 | 100.0% / 100.0%
fa 1000 0 0 | 500501 / 1001000| 1000 / 1000| 1000 / 1000 | 100.0% / 100.0% 0/0 0/0 | 100.0% / 100.0%
f3 1000 0 0 | 500501 / 1001000 0 /1000 0 /1000 0.0% / 100.0% 1/0 0/0 | 100.0% / 100.0%
fa 950 50 1 500501 / 14554 950/ 33 950/ 33 100.0% / 3.5% 1/10 1/1 | 100.0% / 100.0%
fs 950 50 1 500501 / 905450 950 / 950 950 / 950 | 100.0% / 100.0% 1/1 1/1 | 100.0% / 100.0%
fe 950 50 1 500501 / 906332 854 / 950 854 /950 | 89.9% / 100.0% 2/1 1/1 | 100.0% / 100.0%
f7 950 50 1 500501 / 67742 950 / 248 950 / 248 | 100.0% / 26.1% 1/4 1/0 100.0% / 0.0%
fs 950 50 1 500501 / 23286 950/ 134 950 / 133 | 100.0% / 14.0% 1/5 1/0 100.0% / 0.0%
fo 500 500 10 500501 / 270802 500 / 500 500 / 500 | 100.0% / 100.0% 10/ 10 10/ 10 | 100.0% / 100.0%
fio 500 500 10 500501 / 272958 500 / 500 500 / 500 | 100.0% / 100.0% 10/ 10 10/ 10 | 100.0% / 100.0%
f1n 500 500 10 500501 / 270640 0/501 0 /500 0.0% / 100.0% 11/10 10/9 | 100.0% / 90.0%
Ji2 500 500 10 500501 / 271390 500 / 500 500 / 500 | 100.0% / 100.0% 10/ 10 10/ 10 | 100.0% / 100.0%
f13 500 500 10 500501 / 50328 500 / 131 500/ 107 | 100.0% / 21.4% 10/ 34 10/0 100.0% / 0.0%
fia 0 | 1000 20 500501 / 21000 0/0 0/0 | 100.0% / 100.0% 20/ 20 20 /20| 100.0% / 100.0%
fis 0 | 1000 20 500501 / 21000 0/0 0/0 | 100.0% / 100.0% 20/ 20 20 /20 | 100.0% / 100.0%
fie 0 | 1000 20 500501 / 21128 0/4 0/0 | 100.0% / 100.0% 20/ 20 20/ 16 | 100.0% / 80.0%
fi7 0 | 1000 20 500501 / 21000 0/0 0/0 | 100.0% / 100.0% 20/ 20 20/20 | 100.0% / 100.0%
fis 0 | 1000 20 500501 / 39624 0/78 0/0 | 100.0% / 100.0% 20/ 50 20/0 100.0% / 0.0%
fi9 0 | 1000 1 500501 / 2000 0/0 0/0 | 100.0% / 100.0% 1/1 1/1 | 100.0% / 100.0%
f20 0 | 1000 1 500501 / 155430 0/33 0/0 | 100.0% / 100.0% 1/241 1/0 100.0% / 0.0%
CEC’' 2013 Functions
IDG2 / DG (e = 1073)
Sep Non-Sep
F Vars FE Sep Non-sep
vars | Groups s Formed Captured Accurac Formed Captured Accurac

up Vars Vars uracy Subcomponenty Subcomponents uracy
f 1000 0 0 | 500501 / 1001000| 1000 / 1000| 1000 / 1000 | 100.0% / 100.0% 0/0 0/0 | 100.0% / 100.0%
f2 1000 0 0 | 500501 / 1001000, 1000 / 1000| 1000 / 1000 | 100.0% / 100.0% 0/0 0/0 | 100.0% / 100.0%
I3 1000 0 0 | 500501 / 1001000 0 /1000 0 /1000 0.0% / 100.0% 1/0 0/0 | 100.0% / 100.0%
fa 700 300 7 500501 / 15792 700 / 40 700/ 40 100.0% / 5.7% 7113 7 /3 | 100.0% / 58.3%
fs 700 300 7 500501 / 527026 700 / 707 700/ 700 | 100.0% / 100.0% 7110 716 | 100.0% / 66.7%
fe 700 300 7 500501 / 579848 0/752 0/700 0.0% / 100.0% 8/5 7713 | 100.0% / 50.0%
fr 700 300 7 500501 / 11452 700 / 64 700 / 64 100.0% / 9.1% 7110 710 100.0% / 0.0%
fs 0 | 1000 20 500501 / 22682 200/ 4 0/0 | 100.0% / 100.0% 18/ 25 18/ 14 80.0% / 65.0%
fo 0 | 1000 20 500501 / 17650 0/0 0/0 | 100.0% / 100.0% 20/ 20 20 /20| 100.0% / 100.0%
fio 0 | 1000 20 500501 / 48650 0/152 0/0 | 100.0% / 100.0% 20/ 18 20 /14| 100.0% / 65.0%
S 0 | 1000 20 500501 / 9102 0/1 0/0 | 100.0% / 100.0% 20/ 18 20/0 100.0% / 0.0%
fi2 0 | 1000 1 500501 / 149894 0/50 0/0 | 100.0% / 100.0% 1/222 1/0 100.0% / 0.0%
f13 0 905 1 409966 / 18786 0/0 0/0 | 100.0% / 100.0% 1/20 1/0 100.0% / 0.0%
f1a 0 905 1 409966 / 26698 0/0 0/0 | 100.0% / 100.0% 1/19 1/0 100.0% / 0.0%
fis 0 | 1000 1 500501 / 2000 0/0 0/0 | 100.0% / 100.0% 1/1 1/1 | 100.0% / 100.0%

respectively. For the partially separable functions (tfeCQ010 functionsf,—f1s; the CEC’2013 functiongs—f11) on which
CCFR-IDG2 performs better than MA-SW-Chains, the diffeenbetween the results of CCFR-IDG2 and MA-SW-Chains are
significant. For the partially separable functions on whitBFR-IDG2 performs worse than MA-SW-Chains, the diffeesnc
are not significant except for the CEC’2010 functifnn. CCFR-IDG2 performs worse than MOS-CEC2013 on most of the
CEC’2010 and CEC'2013 functions. For the nonseparabletime (the CEC'2010 functiong,o—f2o; the CEC'2013 functions
f12—f15), CCFR-IDG2 optimizes all the decision variables togets performs significantly worse than MA-SW-Chains and
MOS-CEC2013. This indicates that the optimizer used by CUP&2 (i.e., SaNSDE) is inferior to MA-SW-Chains and MOS-
CEC2013. The results show that CCFR-IDG2 performs worsa MA-SW-Chains and MOS-CEC2013 on the CEC'2013
functions. This may be because that the optimizer used byREIDEG2 performs worse than MA-SW-Chains and MOS-
CEC2013. The previous experimental results have shownfohat given optimizer (i.e., SaNSDE), CCFR is superior to the
other peer algorithms with the same optimizer.

Fig. 2 shows the convergence of CCFR-IDG2, MA-SW-Chains si@5-CEC2013. Because CCFR-IDG2 spends 500501
function evaluations grouping the decision variables, it E the convergence lines of CCFR-IDG2 start from 50050 fion
evaluations. For separable functigp, CCFR-IDG2 optimizes each separable variable one by onecanderges slowly, but
when CCFR-IDG2 finishes optimizing the last variable witle fhrgest weight value, the best overall objective valugsiro
sharply.fs is a partially separable function with imbalance betwedtsmponents. Fofs, compared with MA-SW-Chains and
MOS-CEC2013, in the beginning of the evolutionary proc&SFR-IDG2 converges very slowly. When the first evolutignar
cycle ends (aboul.8 x 10 function evaluations), CCFR-IDG2 starts to select the sphjation with the greatest contribution



TABLE IlI: The average fitness values standard deviations on the CEC'2010 and CEC’2013 functomes 25 independent
runs. The significantly better results are in bold font (\WHon rank sum test with Holm-value correctionp=0.05). R,

R~ andp-value have similar meanings as in Table I.

CEC'2010 Functions

F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG
f 1.6e-05+-6.5e-06 1.7e+0%2.1e+07°  1.7e+0%2.1e+07  1.7e+07-2.1e+07 | 4.8e+08:-9.8e+07  2.9e+0¥3.1e+07 2.9e+0%43.1e+07  2.9e+0%3.1e+07
fa 1.7e+t02+8.6e+00 4.7e+03t4.8e+07  4.7e+03:4.8e+07  4.7e+03:4.8e+07 | 3.2e+02+£1.7e+01  4.7e+03t4.8e+02  4.7e+03t4.8e+02  4.7e+03t4.8e+02
f3 1.2e+01#3.7e-01  1.2e+0%3.7e-01 1.2e+013.7e-01 1.2e+013.7e-01 1.1e+01+3.8e-01  1.2e+01-3.7e-01r  1.2e+0H-3.7e-01  1.2e+0H-3.7e-01
fa 1.3e+117.5e+10 7.4e+184.8e+1Q  1.1e+112.9e+10 8.9e+104.6e+1Q | 4.3e+10t1.6e+10 3.5e+1%2.0e+1%  5.1e+106t3.1e+10 7.8e+115.5e+11
s 9.2e+0%1.6e+07 6.8e+0¥1.1e+07  6.8e+07%9.4e+06  6.7e+0741.0e+07 | 4.9e+08:2.4e+07  6.9e+0¥1.0e+07  6.9e+071.0e+07  6.9e+071.1e+07
fe 6.8e+05:7.1e+05 1.1e+067.9e+0%  1.1e+06:6.9e+03  6.4e+05:-6.8e+05 | 1.1e+077.5e+05 1.3e+066.4e+05  1.3e+06:6.4e+05  8.1e+05+7.2e+05)
fr 2.0e-03+-3.5e-04 7.9e+04t1.0e+04  1.1e+05:-1.8e+04  4.2e+04:1.2e+04 | 2.7e+077.0e+07 1.1e+058.5e+04  7.6e+09:6.6e+09  6.0e+04+3.3e+04,
fs 3.2et05+1.1e+06 8.8e+05:1.6e+0§  1.1e+06:1.7e+06  5.2e+05:-1.3e+0§ | 2.6e+08:1.9e+08 4.6e+06+8.8e+06] 6.3e+0#6.0e+07  1.5e+0#2.3e+07
fo 1.3e+0#1.7e+06  2.1e+0¥2.2e+07 4.4e+097.0e+08  5.4e+0#-6.4e+07 | 1l.1e+0#-1.4e+06  1.8e+0¥2.1e+07 1.8e+0¥2.1e+07 3.3e+0¥2.0e+07
fio 1.8e+t03+1.4e+02  3.4e+03t1.7e+07  4.6e+03:7.7e+02  4.3e+03:1.8e+0Z | 1.6e+03+1.2e+02 3.2e+03t1.7e+02  3.2e+03t1.7e+02  4.1e+03t1.7e+02
f 2.0et01+33e+00 2.4e+012.4e+0¢  2.5e+01-2.3e+00  2.3e+0H1-2.1e+0Q | 1.1e+01+2.5e+00 2.3e+012.2e+0Q  2.3e+01:2.1e+0G  2.3e+012.7e+0Q
f12 2.0et01+2.2e+01  2.6e+04t7.4e+03  3.7e+04:9.7e+03  2.3e+04:8.8e+03 | 4.6e+00+£6.9e+00 2.2e+04:6.3e+03  2.2e+04t6.3e+03  1.9e+04t7.3e+03
fis 53e+02+1.0e+02 2.6e+04:7.8e+03  3.9e+04:6.2e+03  2.5e+04-7.8e+03 | 2.8e+06:9.2e+05 5.8e+03+4.4e+03| 1.6e+04:7.8e+03  8.7e+03t3.9e+03
f1a 3.1et07+33et06  3.5e+0#2.6e+06  9.5e+09%5.2e+08  3.3e+07-2.7e+0§ | 2.5e+07+£2.9et06 2.8e+072.1e+0§  2.8e+0#2.1e+0§  2.7e+0#2.2e+06
fis 3.2et03+1.5e+t02 4.4e+03t1.5e+0Z  4.6e+03:1.7e+02  4.4e+03t1.9e+0Z | 2.8e+03+1.3e+02 4.0e+03t1.5e+0Z  4.0e+03t1.5e+0Z  4.0e+03:1.6e+02
fi6 2.0e+012.6e+00  1.9e+0%3.2e+00 2.0e+013.4e+00 2.0e+0%4.0e+00 | 2.4e+014.3e+00 2.0e+0i3.4e+0Q  2.1e+01-3.1e+00 2.1e+0%3.4e+00
fir 6.7e+t01+8.7e+01  1.3e+02:8.9e+01  7.2e+02:3.4e+0Z  8.0e+0H-5.2e+01 | 1.le+011.1e+01  3.6e+0t4.9e+01  3.6e+014.9e+01  2.4e+01-3.7e+01
fis 1.4e+03:1.9e+02  1.3e+081.9e+02 1.7e+082.4e+02  1.2e+03t1.5e+03 | 1.3e+08+9.9e+07 6.9e+09:2.3e+09  1.4e+10:2.0e+09  2.1e+1G:3.9e+09
f19 1.3e+06£1.0e+05 1.3e+061.0e+05 1.3e+061.0e+05 1.3e+061.0e+05 1.2e+06:9.5e+04  1.2e+069.5e+04 1.2e+069.5e+04 1.2e+069.5e+04
f20 2.0e+09:1.8e+09  2.0e+021.8e+09 2.0e+021.8e+09 2.0e+021.8e+09 | 3.1et07+6.6e+t06 1.4e+1@2.7e+09  1.6e+08:-1.5e+0§  3.3e+10G:5.9e+09
Rt — 165.0 174.0 153.0 — 123.0 137.0 123.0
R~ — 45.0 36.0 57.0 — 87.0 73.0 87.0
p-value | — 2.51e-02 1.00e-02 7.31e-02 — 5.02e-01 2.32e-01 5.02e-01
CEC’'2013 Functions
F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG
f1 1.8e-05+4.5e-06 4.6e+0#1.3e+0§  4.6e+071.3e+08 4.6e+0#-1.3e+08 | 4.8e+08:6.9e+07 6.2e+0¥1.3e+0§ 6.2e+0A1.3e+08  6.2e+0#1.3e+08
f2 3.6et02+2.1et01  2.1e+04t1.0e+03  2.1e+04:1.0e+03  2.1e+04:1.0e+03 | 7.4e+t02+£4.0et01  2.1e+04t1.0e+03  2.1e+04t1.0e+03  2.1e+04t1.0e+03
f3 2.1e+011.2e-02 2.1e+0%t1.2e-02 2.1e+0%1.2e-02 2.1e+0%1.2e-02 2.0e+01+6.0e-07 2.1e+0H-1.1e-02 2.1e+011.1e-02 2.1e+0H1.1e-02
fa 9.6e+07+4.0e+07  2.2e+08:6.0e+07  6.6e+1@-5.6e+09  2.9e+08:9.7e+07 | 9.1e+1G:5.6e+10  8.7e+185.1e+10 4.6e+1t2.8e+1l  8.3e+1@:4.7e+10
s 2.8e+06:3.2e+05  2.6e+064.3e+05 2.5e+064.7e+05  3.0e+06:4.7e+05 | 3.0e+06:5.2e+05  2.8e+063.6e+05 2.6e+064.4e+05  3.3e+06:4.0e+0%
f6 1.1e+06:1.0e+03  1.1e+061.7e+03  1.1e+06:1.8e+03  1.1e+06:1.6e+03 | 1.1e+06:1.6e+03  1.1e+062.1e+03  1.1e+06:1.5e+03  1.1e+06:2.3e+03
fr 2.0e+0#2.9e+07  2.2e+0¥2.6e+07 9.9e+0¥3.7e+08 2.4e+0¥3.8e+07 1.4e+08:9.7e+07  1.2e+083.9e+07 1.6e+181.4e+1Q  1.4e+08:7.1e+07
I8 6.6e+10+9.5e+10  2.3e+13t1.6e+13  1.le+12:1.7e+1l  7.4e+13:5.8e+13 | 1.6e+15:1.0e+15 2.0e+151.5e+15 5.9e+154.3e+1%  2.0e+15t1.4e+15
fo 1.9e+t08+2.8e+07  2.6e+08:4.0e+07  2.3e+08:3.0e+07  3.0e+08:5.7e+07 | 1.9e+08+2.8e+07  2.5e+08:3.8e+07  2.2e+08:2.9e+07  2.9e+08t5.2e+07
fio 9.5e+07%1.8e+05 9.4e+0¥2.8e+09  9.4e+0%2.5e+05  9.5e+0%-3.0e+05 | 9.5e+073.1e+05 9.4e+0¥6.1e+05  9.4e+07%6.6e+05  9.4e+072.4e+08
fi1 4.2e+08:3.4e+08  5.0e+021.5e+10 7.3e+181.2e+11  2.8e+0%t1.1e+10 | 2.8e+10+6.0e+10 4.5e+1G:6.1e+1@  5.2e+12:3.7e+17  4.7e+1@:5.7e+1Q
fiz 1.6e+09:1.6e+09  1.6e+021.6e+09 1.6e+021.6e+09 1.6e+021.6e+09 8.0e+t07+8.3et06  6.0e+10:8.3e+09  6.6e+08:1.3e+08  1.2e+1H-1.4e+1Q
fi3 1.2e+09:6.0e+08  1.2e+096.0e+08 1.2e+096.0e+08 1.2e+086.0e+08 | 2.0e+09+1.0e+09 4.0e+09:1.5e+09  4.1e+1@:2.7e+1Q  6.3e+09:1.9e+09
f1a 3.4e+09:3.1e+09  3.5e+083.2e+09 3.5e+093.2e+09 3.5e+083.2e+09 | 7.4e+09-8.5e+09 1.3e+181.2e+1@¢ 5.0e+1i1.2e+1Z  8.9e+09-6.8e+09
fis 9.8e+06:3.7e+06  9.9e+063.7e+06 9.9e+063.7e+06 9.9e+063.7e+06 | 8.3e+06:3.3e+06  8.3e+063.3e+06 8.3e+063.3e+06 8.3e+063.3e+06
Rt — 107.0 107.0 112.0 — 80.0 99.0 91.0
R~ — 13.0 13.0 8.0 — 40.0 21.0 29.0
p-value | — 5.37e-03 5.37e-03 1.53e-03 — 2.77e-01 2.56e-02 8.33e-02
The symbolst and | have similar meanings as in Table I.
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Fig. 2: The average convergence on two selected CEC'201&ifuns over 25 independent runs.

to undergo evolution. CCFR-IDG2 then converges much fabkear MA-SW-Chains and MOS-CEC2013. This indicates that if
the optimizer used by CCFR-IDG2 performs well on a funct@@FR might outperform MA-SW-Chains and MOS-CEC2013
on that function.

To improve the performance of CCFR-IDG2, we replaced SaN8iE CMAES [9]. Table V summarizes the results of
CCFR-IDG2 with CMAES. CCFR-IDG2 with CMAES significantly tperforms MA-SW-Chains on almost all the CEC'2010
and CEC’2013 functions. CCFR-IDG2 with CMAES performs dfigantly better than MOS-CEC2013 by several orders of
magnitude on most of the partially separable functions GE€’2010 functionsf,—fis; the CEC'2013 functiong,—f11).



TABLE IV: The average errors- standard deviations on the CEC’2010 and CEC’2013 functawes 25 independent runs.
The significantly better results are in bold font (Wilcoxamk sum test with Holnp-value correctionp=0.05). R, R~ and

p-value have similar meanings as in Table I.

CEC' 2010 Functions

F CCFR-IDG2 MA-SW-Chains MOS-CEC2013
fi 1.62e-05:6.55e-06 3.88e-1#43.5%e-14 0.00e+00-+0.00e+004,
f2 1.73e+02:8.62e+00  8.63e+0R5.84e+01  0.00e+0040.00e+00]
f3 1.22e+0#3.66e-01  5.41e-13+2.13e-13| 1.65e-12-6.73e-14
fa 1.26e+11#7.50e+10  2.94e+119.32e+1Q  1.56e+10+6.02e+09]
f5 9.15e+07+1.61e+07  1.75e+08-1.03e+08  1.11e+08-2.25e+07
f6 6.85e+05-7.05e+05  3.52e+Q41.72e+05  1.22e-07+6.43e-08|
f7 2.04e-03-3.45e-04 3.30e+021.40e+03  0.00e+00+0.00e+00]
fs 3.19e+0%:1.08e+06  9.28e+062.36e+07  1.95e+00+8.03e+00]
fo 1.34e+0%4:1.68e+06  1.45e+Qff1.59e+06  3.46e+06+4.49e+05]
f1o0 1.81e+03+1.43e+02  2.06e+03-1.19e+02  3.78e+031.47e+02
fi1 1.99e+014+3.26e+00  3.69e+01-8.24e+0Q  1.91e+02:4.07e-01
f12 2.03e+012.23e+01  3.19e-065.32e-07 0.00e+00-+0.00e+004,
fi3 5.26e+02:1.04e+02  1.09e+Q86.29e+02  7.14e+02:5.68e+02
f1a 3.08e+07-3.35e+06  3.34e+0Q#3.37e+06  9.80e+06+1-6.03e+05]
fis 3.18e+0%1.51e+02 2.69e+03+9.75e+01|  7.44e+031.84e+02
fi6 2.01e+01+2.62e+00  1.08e+02:1.51e+01  3.82e+02:1.55e+01
fi7 6.72e+018.68e+01  1.26e+Q09.45e-02  2.83e-07+7.97e-08|
fis 1.37e+03:1.93e+02  1.87e+(@B5.79e+02  1.54e+03:-7.46e+02
f19 1.28e+06:-1.01e+05 2.85e+0b1.74e+04  2.91e+04+2.14e+03]
f20 1.97e+09:1.83e+09  1.05e+@87.59e+01  3.52e+02+4.43e+02]
Rt — 143.0 73.0
R~ — 67.0 137.0
p-value | — 1.56e-01 2.32e-01

CEC’ 2013 Functions
F CCFR-IDG2 MA-SW-Chains MOS-CEC2013
fi 1.77e-05:4.52e-06 8.49e-131.09e-12. 1.27e-22+7.41e-23|
f2 3.64e+02+2.06e+01  1.22e+031.14e+02  8.32e+02-4.48e+0%
f3 2.07e+011.21e-02  2.14e+0G#5.62e-02  9.18e-13+5.12e-14
fa 9.56e+07+4.03e+07  4.58e+09-2.46e+09  1.74e+08:-7.87e+07
f5 2.80e+06-3.18e+05 1.87e+06+3.06e+05, 6.94e+06-8.85e+0%
fe 1.06e+06-1.05e+03  1.01e+061.53e+04  1.48e+05+6.43e+04,
f7 2.03e+07-2.94e+07  3.45e+Qb61.27e+06  1.62e+0449.10e+03|
fs 6.63e+10+9.52e+10  4.85e+131.02e+13  8.00e+12-3.07e+12
fo 1.89e+08-2.83e+07 1.07e+08+1.68e+07)  3.83e+08-6.29e+07T
f1o0 9.48e+07-1.82e+05 9.18e+QF1.06e+06  9.02e+05+5.07e+05]
f11 4,17e+08:3.43e+08  2.19e+0QB2.98e+07  5.22e+07+2.05e+07]
fi2 1.56e+09%:1.58e+09  1.25e+0B1.05e+02  2.47e+02+2.54e+02]
fi3 1.21e+09:6.00e+08  1.98e+Q#1.82e+06  3.40e+06+1.06e+06]
f14 3.39e+09:3.06e+09  1.36e+0B2.11e+07  2.56e+07+7.94e+06]
fis 9.82e+06:3.69e+06  5.71e+067.57e+03  2.35e+06+1.94e+05]
Rt — 34.0 41.0
R — 86.0 79.0
p-value | — 1.51e-01 3.03e-01

The symbolsf and | have similar meanings as in Table I.
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TABLE V: The average errors standard deviations on the CEC’2010 and CEC’2013 functawes 25 independent runs.
The significantly better results are in bold font (Wilcoxamk sum test with Holmp-value correctionp=0.05). R, R~ and

p-value have similar meanings as in Table I.

CEC’ 2010 Functions

F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013
f 5.50e-1%-2.15e-17 3.88e-143.5%-14 0.00e+00-+0.00e+00),
f2 5.41e+02-4.80e+01 8.63e+025.84e+01  0.00e+00+40.00e+00)
f3 1.02e+06:3.98e-01 5.41e-13+2.13e-13| 1.65e-12-6.73e-14
fa 4.28e-03+4.98e-03 2.94e+119.32e+1@¢  1.56e+1@:6.02e+09
f5 1.10e+08-1.60e+07 1.75e+0B1.03e+08  1.11e+08-2.25e+07
fe 9.58e+0&:8.51e-01 3.52e+041.72e+05  1.22e-07+6.43e-08]
fr 4.47e-0%1.73e-06 3.30e+021.40e+03  0.00e+0040.00e+00,
I3 1.25e+06:1.85e+06 9.28e+062.36e+07  1.95e+0@:8.03e+00
fo 9.28e-06+-5.47e-06 1.45e+0A1.59e+06  3.46e+06-4.49e+0%
f1o 1.29e+03+6.14e+01 2.06e+03-1.19e+02  3.78e+03-1.47e+02
i1 2.35e-01+4.08e-01 3.69e+01-8.24e+0q  1.91e+02-4.07e-01
f12 1.28e-10:-9.64e-11 3.19e-065.32e-07 0.00e+0040.00e+00,
f13 4.73e+00+3.79e+00 1.09e+03:6.29e+02  7.14e+02-5.68e+02
f1a 2.61e-19+3.26e-20 3.34e+0A-3.37e+06  9.80e+06-6.03e+0%
fis 2.04e+03£8.22e+01 2.69e+039.75e+01  7.44e+031.84e+02
fie 8.07e-13+-2.60e-14 1.08e+02-1.51e+0T  3.82e+02:1.55e+01
fir 7.42e-24+1.63e-25 1.26e+0@-9.45e-02  2.83e-04-7.97e-08
f18 1.09e+01+£6.87e+00 1.87e+035.79e+02  1.54e+037.46e+02
fi9 2.12e+04+2.21e+03 2.85e+05%-1.74e+04  2.91e+04:2.14e+03
f20 8.50e+02:2.50e+01 1.05e+@B7.59e+01  3.52e+02+4.43e+02]
R* — 207.0 157.0
R~ — 3.0 53.0
p-value | — 1.40e-04 5.22e-02

CEC’'2013 Functions
F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013
f1 5.52e-17-5.70e-18 8.49e-181.09e-12  1.27e-22+7.41e-23|
f2 4.35e+024-3.55e+01 1.22e+031.14e+02  8.32e+02-4.48e+071
f3 2.04e+01:5.30e-02 2.14e+0#5.62e-02  9.18e-13+5.12e-14|
fa 5.58e+03+2.73e+04 4.58e+09-2.46e+09  1.74e+08-7.87e+07
s 2.19e+06:3.11e+05 1.87e+06+3.06e+05)  6.94e+06-8.85e+0%
fe 9.99e+0%:1.26e+04 1.01e+@b61.53e+04  1.48e+05+6.43et+04]
fr 2.22e-08+4.21e-08 3.45e+06-1.27e+06  1.62e+04-9.10e+03
fs 4.8%9e+03+1.23e+03 4.85e+13-1.02e+13  8.00e+12:3.07e+12
fo 1.59e+08:3.33e+07 1.07e+08+1.68et+07)  3.83e+08:6.29e+07
f1o 9.11e+07-1.35e+06 9.18e+Q71.06e+06  9.02e+05+5.07e+05]
f11 4.64e-05+7.47e-05 2.19e+08-2.98e+07T  5.22e+0#A2.05e+0T
f12 1.01e+035.20e+01 1.25e+0QB81.05e+02  2.47e+02+2.54e+02|
f13 2.58e+06+3.00e+05 1.98e+0%A-1.82e+06  3.40e+06:1.06e+06
Fia 3.63e+0%-3.21e+06 1.36e+0B2.11e+0T  2.56e+07-+7.94e+06)
fis 2.80e+06:2.77e+05 5.71e+067.57e+05  2.35et+06+1.94e+05]
Rt — 103.0 77.0
R~ — 17.0 43.0
p-value | — 1.25e-02 3.59e-01

The symbolst and| have similar meanings as in Table I.



