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ABSTRACT 

Deep vein thrombosis (DVT) with its major complication, pulmonary embolism, is a 

global health problem. Mechanisms of DVT remain incompletely understood. Platelets 

play a role in DVT but the impact of specific platelet receptors remains unclear. Platelet 

C-type lectin-like receptor 2 (CLEC-2) is known to maintain the physiological state of 

blood vasculature under inflammatory conditions. DVT is a thromboinflammatory 

disorder developing largely as sterile inflammation in the vessel wall. We hypothesized 

therefore that CLEC-2 might play a role in DVT. Here, using a murine DVT model of 

inferior vena cava (IVC) stenosis, we demonstrate that mice with general inducible 

deletion of CLEC-2 or platelet-specific deficiency in CLEC-2 are protected against DVT. 

No phenotype in the complete stasis model was observed. Transfusion of wild-type 

platelets into platelet-specific CLEC-2 knockout mice restored thrombosis. Deficiency in 

CLEC-2 as well as inhibition of podoplanin, a ligand of CLEC-2, was associated with 

reduced platelet accumulation at the IVC wall after 6 h stenosis. Podoplanin was 

expressed in the IVC wall, where it was localized in the vicinity of the abluminal side of 

the endothelium. The level of podoplanin in the IVC increased after 48 h stenosis to a 

substantially higher extent in mice with a thrombus vs. those without a thrombus. 

Treatment of animals with an anti-podoplanin neutralizing antibody resulted in 

development of smaller thrombi. Thus, we propose a novel mechanism of DVT, 

whereby CLEC-2 and up-regulation of podoplanin expression in the venous wall trigger 

thrombus formation. 
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INTRODUCTION 

Platelets are responsible for primary hemostasis and are among the first cells arriving to 

the site of vascular injury. After adhesion to the exposed subendothelial proteins, such 

as collagen, and capture of von Willebrand factor (VWF), platelets become activated 

and develop a clot sealing the damaged vascular wall.  Platelet activation is initiated by 

various stimulatory ligands, such as ADP and collagen, which trigger a signaling 

cascade leading to conformational change in the integrin IIb3 (known as inside-out 

signaling).  

One mechanism of platelet activation is through receptors containing an 

immunoreceptor tyrosine-based activation motif (ITAM) or the structurally related 

(hem)ITAM. Murine platelets express one ITAM- and one (hem)ITAM-bearing receptors, 

GPVI and CLEC-2, respectively, whereas human platelets have an additional ITAM-

containing protein, FcRIIA. CLEC-2 is a receptor for podoplanin, which is expressed on 

various cell types including lymphatic endothelium and tumor cells, but is absent from 

the blood vascular endothelial cells.1,2 

CLEC-2 seems to play only a minimal role in normal hemostasis. One report 

demonstrated that CLEC-2 deficiency prolonged tail bleeding time,3 whereas others 

found an insignificant trend or no increase in blood loss.4-6  

In addition to their role in hemostasis, platelets participate in a number of non-

hemostatic processes. Platelets have been shown to maintain vascular integrity, 

regulate endothelial permeability and prevent hemorrhage at sites of inflammation in the 

vasculature.7-9 Hillgruber et al. found that breaching of the endothelial barrier by 
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neutrophils is a central mechanism of hemorrhage under thrombocytopenic conditions.10 

Recent studies demonstrated the critical role of GPVI and CLEC-2 in prevention of 

hemorrhaging induced by inflammation.11 Thus, platelet ITAM and hem(ITAM) receptors 

modulate the functional state of endothelium in inflammatory settings. 

Deep vein thrombosis (DVT) with its deadly complication pulmonary embolism (PE), 

designated together as venous thromboembolism (VTE), are a disastrous health 

problem. Hundreds of thousands of individuals develop VTE in the US annually and, 

despite new therapeutic modalities, the overall prevalence of VTE has not substantially 

decreased within last 2.5 decades.12,13 In contrast to arterial thrombosis, which is based 

on platelet accrual at the ruptured atherosclerotic plaque, the thrombosis in veins occurs 

without visible endothelial denudation or injury.14 One of the central triggering 

mechanisms of DVT (with the exception of cancer, trauma, or hereditary 

hypercoagulability-related venous thrombosis) is stagnancy of blood flow in venous 

valves, a part of the Virchow’s triad.15 Hypoxia developed as a result of flow distortion, 

may render the local environment even more prothrombotic. Blood inside valvular 

pockets has been shown to rapidly become hypoxic at static conditions with pO2 

returning back to luminal levels when flow is pulsatile.16 Hypoxia induces release of 

Weibel-Palade bodies (WPB), which are endothelial granules containing factors 

implemented in inflammation.17 We have recently demonstrated that release of WPB 

and cell recruitment to the vein endothelium is a crucial step in a murine model of 

DVT,18 whereas prevention of WPB liberation through the Scavenger Receptor B1 - 

eNOS pathway,19 protects against DVT in mice.20 In fact, DVT develops similarly to 

sterile inflammation starting with and depending on recruitment of immune cells and 
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platelets to the vessel wall.21 Consequently, venous thrombosis is tightly associated with 

inflammatory mechanisms and can be described as thromboinflammation.22 It is known 

that platelet depletion is protective in murine DVT,21 indicating the central role of 

platelets in this type of thrombosis. Thus, we hypothesize that platelet receptors, 

regulating functional properties of the vessel wall in inflammation, could play a role in 

DVT. 

In this study, we used a well-established DVT model of inferior vena cava (IVC) 

stenosis, mimicking blood flow distortion in venous valves, to study the role of CLEC-2 

venous thrombosis. In this model, thrombosis is triggered by endothelial activation in the 

absence of endothelial denudation or visible injury.21,23,24 We demonstrate a critical role 

of CLEC-2 in DVT with complete protection of inducible knockout mice and partial 

protection of platelet-specific knockouts. No phenotype in the complete stasis model 

was observed. The CLEC-2 ligand podoplanin was expressed in the IVC wall, 

upregulated during thrombosis, and its pharmacological inhibition decreased DVT 

thrombus size. These results demonstrate that targeting CLEC-2 could be beneficial for 

prophylaxis of DVT in the absence of major effect on hemostasis. 
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METHODS 

Mice  

All animal experimentation was performed after ethical approval from Animal Welfare 

Ethical Review Body and the UK Home Office (Project Licenses 70/8286 and 40/3745). 

Mice 7-10 weeks old of both genders were used. All mice were on C57BL/6 

background. For inducible deletion of CLEC-2 expression, 4-5 week-old Clec1bfl/fl × 

Rosa26+/ERT2cre mice and their Clec1bfl/fl x Rosa26+/+ control littermates were fed with 

tamoxifen-supplemented diet TAM 400 (400 mg tamoxifen in citrate form per Kg of diet, 

Harlan, UK) for 2 weeks, followed by 4 weeks of regular diet.as previously described.25 

Clec1bfl/fl Pf4Cre+ mice (platelet-specific CLEC-2 deletion) have been described 

elsewhere.26 Vav1Cre+ pdpnfl/fl (hematopoietic cell-specific knockout) and Tie2Cre+ pdpnfl/fl 

(knocks out podoplanin in cells of endothelial origin) mice were created by crossing 

pdpnfl/fl animals with Vav1cre+ mice27 and Tie2cre+ mice (Jackson Lab, strain 008863), 

respectively. Podocin-cre pdpnfl/fl mice were created in house by crossing pdpnfl/fl 

animals with podocincre+ (Jackson Lab, stock number 008205) mice. 

 

Flow restriction in the inferior vena cava (IVC): a model of DVT in mice 

The established flow restriction (stenosis) model of DVT was performed as described 

previously.18 Mice were anesthetized using isoflurane, placed in a supine position, and 

attached to a mask with a constant flow of anesthetics. An incision was made along the 

midline of the abdomen and the guts exteriorized. Saline was applied to the guts 

regularly throughout the experiment to prevent drying out. The IVC was gently 
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separated from the aorta. Any side branches were closed using a 7.0 polypropylene 

suture. To achieve stenosis (partial flow restriction) the IVC was ligated over a 30-gauge 

needle or ‘spacer’. The suture was tied over the spacer and then the spacer was 

removed. This procedure achieves ~90% closure of the vessel lumen but doesn’t cause 

endothelial injury. The peritoneum was then closed using a 6.0 suture, and the skin was 

stapled back together. After 48 hours, the mice were culled and the thrombi, if they 

developed in the IVC, were taken for analysis. Thrombosis prevalence in WT mice in 

this model is 65 – 100% after 48 h IVC stenosis.18,28 

The rodent stasis model of DVT has been described elsewhere.29,30 In brief, the IVC as 

well as side branches were completely ligated, whereas back branches were 

cauterized. Thrombus development was checked after 24 h. 

 

Transfusion of WT platelets into Clec1bfl/fl Pf4-Cre mice. 

Blood was collected from the retro-orbital plexus of WT C57Bl/6 mice, stabilized by 

sodium citrate and centrifuged at 100 g for 5 min to obtain platelet rich plasma (PRP). 

Red blood cells were sedimented by centrifugation (100 g; 3.5 min), the supernatant 

(PRP) was incubated with prostaglandin I2 (2 g/ml, 5 min, 37C) and centrifuged (1000 

g, 5 min). Platelet pellet was resuspended in modified Tyrode’s buffer (134 mM NaCl, 

2.9 mM KCl, 0.34 mM Na2HPO412H2O, 12 mM NaHCO3, 20 mM HEPES, 1 mM MgCl2, 

5 mM glucose, pH 7.35). After pooling platelets from a number of donor mice, platelets 

(8 x 108 in 200 l of buffer) were infused into recipient Clec1bfl/fl Pf4Cre+ mice through the 

tail vein. Transfusion of this amount of platelets results in recovery of more than 50% of 
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circulating platelets.11 Immediately after that, recipient mice were subjected to IVC 

stenosis, and thrombus formation was checked after 48 h. 

 

Treatment of mice with anti-podoplanin antibody 

In the DVT experiments, WT littermates were injected with anti-podoplanin antibody 

(Syrian hamster anti-mouse, clone 8.1.1) twice: 24 h and 30 min before surgery (100 

g/mouse and 50 g/mouse, i.v., respectively). In the intravital microscopy experiments, 

WT littermates received one injection of the antibody (100 g/mouse) immediately 

before surgery. Control mice received injection of the same dose of IgG. This antibody 

has been shown to block podoplanin in mice for at least 48 h at a dose of 100 

g/mouse.31 Specificity of the antibody was proven by abundant staining of podoplanin 

in kidneys of WT animals and absence of staining in mice with tissue-specific 

podoplanin deficiency (Suppl. Figure 1).  

 

Intravital microscopy of the IVC and calculation of the area covered with adhered 

platelets 

Mice underwent IVC stenosis and allowed recover consciousness. In 6 h, mice were 

anesthetized using tribromethanol as described above and syngeneic washed platelets 

(2.5% of the total number of circulating platelets) labeled with calcein AM were injected 

intravenously. The mouse was placed into the supine position and the IVC was exposed 

and covered with a round coverslip. Fluorescent platelets in the IVC were visualized by 
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a 3i VIVO-SDC confocal system with Yokogawa CSU-10 and Photometrics Evolve 

EMCCD camera on an Olympus BX61WI upright microscope with air objective x10. 

Focus was adjusted to the upper focal plane. Platelets were visualized 1-2 mm below 

the suture (in caudal direction) and recorded for at least 1 min. Fiji/ImageJ32 was used 

to quantify areas of adhered platelets. Median-based intensity projection from 10 

randomly chosen consecutive acquired images (corresponding to 1 s) was utilized to 

generate a single (median) projected image. After automatic set of threshold, total area 

of adhered platelets was measured by a Fiji incorporated function “Analyze particles”. 

 

Western blotting 

IVC were collected from non-operated mice or from mice after DVT surgery and lysed. 

DVT thrombi were separated from IVC and lysed. Fifty microgram of total protein were 

loaded per lane and separated in SDS-PAGE. Protein gels were blotted to PVC 

membranes in Turbo Blot Transfer system, blocked with 3% BSA and developed using 

following primary antibodies: hamster anti-mouse PDPN (eBioscience, clone 8.1.1), 

mouse anti-tubulin (Sigma). Densitometry of bands was performed and the result was 

normalized to the density of the corresponding tubulin band. 

 

Immunohistochemistry 

DVT thrombi including adjacent IVC were collected and fixed in formalin. Tissue was 

frozen in OCT. Cryosections (10 m thick) were blocked in 5% NGS, 1% BSA without 

permeabilization and stained using primary antibodies: hamster anti-mouse PDPN 
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(eBioscience), rabbit anti-human VWF (DAKO), following by Alexa-Fluor labeled 

secondary antibodies (Molecular probes). Nuclei were stained by ToPro3. Confocal 

images were taken by Leica confocal microscope using company software. Scanning of 

the whole thrombus was performed using Axio Scan.Z1 (Zeiss). Images were evaluated 

by Fiji/ImageJ.32 

 

Statistics and power calculation 

The sample size estimation was performed using G*Power 3.1.9.2.33 Based on our 

current experience with the model at the University of Birmingham, thrombi prevalence 

in control mice after 48 h IVC stenosis varies between 60 – 100%. Therefore, we 

assumed the expected difference (effect size) between experimental groups to be at 

least 0.8, error probability of 0.1 and the desired power value of 0.80. The calculated 

sample size for DVT experiments was 15 animals per group. 

Non-parametric data (weight and length of thrombi) were compared using the Mann-

Whitney test. Parametric results (area covered by platelets in the intravital microscopy 

of the IVC) were compared using two-tailed Student’s t-test. Thrombosis prevalence 

was compared by the Fisher’s exact square method. Difference was considered 

significant at p<0.05.   
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RESULTS 

CLEC-2 exacerbates DVT  

To address the impact of CLEC-2 in venous thrombosis we utilized a model of IVC 

stenosis. Forty eight hours after stenosis application, mice with a post-development 

inducible loss of CLEC-2 were completely protected from DVT with none of the mutant 

mice producing a thrombus as compared with 60% of mice in the littermate control 

group (Figure 1A). This frequency of thrombosis is similar to previous reports using this 

model and mouse strain (C57BL/6), where it ranges from 60 – 100%. To test the 

potential role of platelet CLEC-2, we subjected platelet-specific knockout mice and 

littermate controls to IVC stenosis. Prevalence of thrombi comprised 81% in controls vs. 

38% in knockouts (p < 0.05; Figure 1B). Transfusion of WT platelets (to approximately 

50% of circulating platelets) restored thrombosis, which further supports the importance 

of platelet CLEC-2 in DVT. No phenotype was observed in the stasis model (data not 

shown). Thus, CLEC-2, and platelet CLEC-2 in particular, is critically important for DVT 

development in the model of partial occlusion.  

 

Mice lacking CLEC-2 have a reduced level of platelet recruitment to the vessel 

wall  

Endothelial activation and resulting accrual of platelets and immune cells in the vicinity 

to the vessel wall is a central event in DVT development.18,21 We used intravital 

microscopy of the IVC 6 h after stenosis application to assess recruitment of platelets. 

In WT controls, adhered platelets covered the area of 7.8 ± 0.7% of the view field 
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(Figure 2A, Suppl. movie 1). In contrast, in mice lacking CLEC-2, most of the platelets 

did not attach firmly to the IVC wall and detached in the direction of blood flow (Figure 

2A, Suppl. movie 2). The average area covered by adhered platelets in these mice was 

1.3 ± 0.4% (Figure 2B, P < 0.003). Inhibition of podoplanin by a specific neutralizing 

antibody resulted in a similar phenotype (6.5 ± 1.3% in IgG controls vs. 2.6 ± 0.4% after 

antibody administration; P < 0.03; Figure 2C-D; Suppl. movies 3 and 4). This result 

implies that CLEC-2 and podoplanin expression is a prerequisite for platelet recruitment 

possibly through direct binding and by potentiating endothelial activation and Weibel-

Palade body release. 

 

IVC vessel wall expresses podoplanin  

Given that the lack of CLEC-2 and inhibition of podoplanin produce a similar phenotype 

in terms of cell recruitment, we next asked whether podoplanin is expressed in the IVC 

wall. Immunostaining revealed a minor podoplanin signal in the wall of sham-operated 

IVC (Figure 3A i). Microscopy with identical settings revealed that podoplanin 

expression in thrombosed IVC was substantially elevated (Figure 3A ii). Podoplanin was 

expressed exclusively in the vessel wall (not in the thrombus; Figure 3B) and localized 

in the vicinity to the abluminal side of the endothelium (Figure 3C i) recognized by 

positivity for PECAM-1 (CD31). At the used microscopy settings, no podoplanin signal 

was observed in thrombi, which could be identified by staining for VWF (Figure 3C ii). 

Platelets penetrated the vessel wall during DVT and had therefore an opportunity to 

interact with subendothelial matrix components including podoplanin (Figure 3D). 
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The presence of podoplanin in the vascular wall was confirmed by Western blotting. 

Podoplanin was absent in 4 out of 5 thrombi (Figure 4A), with the presence at trace 

level in the fifth thrombus, probably due to remnants of the vessel wall. Podoplanin was 

detected in the sham-operated IVC (that had not undergone stenosis) (Figure 4B, three 

left lanes). Application of stenosis for 48 h, resulting in thrombosis, increased 

podoplanin expression in the IVC wall from 3.6 ± 1.3 to 33.4 ± 8.3 arbitrary units (a.u., P 

< 0.004, Figure 4C) as measured by band densitometry normalized to corresponding 

tubulin loading control. Interestingly, application of stenosis for the same period of time 

but without thrombus formation at the end, was accompanied by a much smaller 

increase in podoplanin expression to 14.3 ± 4.7 a.u (p = 0.053 vs. intact IVC). Thus, 

podoplanin expression in the IVC wall is increased during flow restriction, and amplitude 

of this increase corresponds to the degree of thrombosis. 

 

Anti-podoplanin antibody decreased size of thrombi in DVT 

In order to evaluate the role of podoplanin in DVT, we treated mice with an anti-

podoplanin blocking antibody (clone 8.1.1).31 The antibody did not affect DVT 

prevalence (82% in the antibody-treated mice vs. 90% in littermate control mice treated 

with IgG, Figure 5). As no difference was observed in the percent of mice carrying 

thrombi, we compared the size of thrombi. Both the weight and the length of thrombi 

were significantly lower in the group of animals treated with the antibody. This result 

suggests that CLEC-2 major ligand podoplanin in the vessel wall is implicated in DVT 

initiation. 
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DISCUSSION 

Our study demonstrates a pivotal role of CLEC-2 and in particular platelet CLEC-2 in 

thrombosis. We report that the total lack of CLEC-2 mediates complete protection 

against DVT, whereas absence of the receptor specifically on platelets results in partial 

but significant protection. Inducible knockouts Clec1bfl/fl x Rosa26+/ERT2Cre do not have 

visible vasculature defects compared with litter-mate controls (S.P.W. unpublished 

data). Neutrophils have been reported to express CLEC-2 in one34 but not another 

study.25 The finding that platelet-specific knockout mice have decreased thrombosis 

suggests a predominant role of CLEC-2 on platelets in DVT initiation. The reason for 

different median thrombus size in the WT (Cre- littermates) groups of Clec1bfl/fl x 

Rosa26+/- and Clec1bfl/fl Pf4Cre+ is unclear. It might be due to different transgenes that 

these mice carry or tamoxifen treatment or genetic drift due to the lack of cross-

breeding between the colonies for years.  

It is known that platelet-specific CLEC-2 knockouts have blood-lymphatic mixing and it 

is tempting to hypothesize that it may contribute to the lack of thrombosis. However, the 

post-development inducible knockouts do not have such a defect and have a phenotype 

even stronger than the platelet-specific knockouts. Also, transfusion of wild-type 

platelets into the Clec1bfl/fl Pf4Cre+ mice restores DVT despite the remaining blood-

lymphatic mixture. Thus, it is unlikely that the blood-lymphatic defect affects DVT. 

It is known that the functional state of endothelium, a component of Virchow’s triad, is 

central in the DVT pathogenesis. We previously demonstrated that proinflammatory shift 

in the endothelium, including release of WPB and recruitment of platelets and 



15 

 

leukocytes to the vessel wall, are critical for DVT initiation.18,21 Therefore, mechanisms 

of DVT initiation and development are similar to aseptic inflammation. Platelets are 

predominantly recruited through VWF, a WPB constituent.35 Deficiency in CLEC-2 

prevents platelet accrual to the IVC wall after several hours of stenosis and before 

thrombus is formed (Figure 2A-B and Suppl. movie 1 and 2). This implies that platelets, 

in a CLEC-2-dependent fashion, directly interact with the vessel wall and that this 

interaction is required for their recruitment and thrombosis initiation. Stenosis produces 

elevated blood pressure and formation of a “bulb” with highly distorted flow of low rate. 

This may create local hypoxia, which, similarly to other tissues,36 might upregulate 

podoplanin expression in the vessel wall. Hypoxia may also render the endothelial cell-

cell junctions looser and open allowing for platelet CLEC-2 interaction with podoplanin 

and, possibly, with other ligands that are yet to be characterized. Indeed, stenosis 

facilitates infiltration of the IVC wall with platelets, during which interaction of CLEC-2 

with podoplanin or another ligand may take place promoting thrombus formation. 

Clarification of the mechanisms of platelet egression to the vascular wall in the course 

of DVT requires further investigation. Podoplanin upregulation can not only be a cause 

for thrombosis but might also be triggered by thrombus formation or both mechanisms 

may operate in parallel forming a positive feedback. 

Interestingly, the anti-thrombotic phenotype was observed only in the partial occlusion 

(stenosis) model, whereas no difference in thrombosis prevalence and/or thrombus size 

occurred in the complete stasis model. It is possible that a pro-inflammatory shift playing 

a central pathogenetic role in partial occlusion is less important in full stasis in which 

thrombosis is initiated by tissue factor-driven blood coagulation.37   
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It has been reported that platelets contribute to maintenance of vascular integrity under 

inflammatory conditions7 through GPVI and CLEC-2.11 Therefore, CLEC-2 is able to 

modify functional properties of the endothelium, which might be relevant to DVT 

development. A similar unique impact of CLEC-2 has been demonstrated in Salmonella 

infection-induced thrombosis and this is independent of GPVI.38 Marked upregulation of 

podoplanin in the IVC wall induced by stenosis may promote its interaction with CLEC-

2. The importance of the extent of podoplanin expression elevation following stenosis is 

confirmed by direct association between the magnitude of this elevation and incidence 

of thrombosis.  

Given that DVT can be considered a model of thromboinflammation, the prothrombotic 

effect of CLEC-2 may be mediated by neutrophils. Flow restriction in the IVC increases 

expression of various trafficking agents, such as CCL2 and CXCL1, attracting and 

activating neutrophils.21 Leukocytes are recruited to the IVC wall at the early stages of 

DVT, and platelets potentiate this recruitment. Neutrophils release Neutrophil 

Extracellular Traps (NETs),39 which provide a surface for activation of coagulation factor 

XII and form a scaffold in addition to fibrin thus stabilizing the thrombus.21,40 Neutrophils 

also release metalloproteinases and other enzymes that can rearrange vessel wall 

rendering it more attractive for platelet recruitment.9 Down-regulated platelet 

accumulation at the stenosed IVC wall in the absence of CLEC-2 could impair leukocyte 

recruitment and thus contribute to the protection against thrombosis.  

DVT can be considered a thromboinflammatory process rather than pure thrombosis. 

The key role of CLEC-2 in thrombosis in inflammatory settings has recently been 

reported.38 This study demonstrated that after infection with Salmonella, extensive 
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thrombosis develops in the liver of control mice through an inflammation driven pathway 

in a CLEC-2-dependent fashion. Thrombosis induced by the bacteria was associated 

with up-regulation of podoplanin. Both these findings and our results demonstrate 

important role of CLEC-2 in thrombosis under either septic or aseptic inflammatory 

conditions, presumably due to upregulation of podoplanin. 

At present, podoplanin is the only known natural ligand for CLEC-2. Its expression has 

been confirmed in lymphatic endothelium, glomerular podocytes in kidneys, type I 

alveolar cells in lungs and in several types of cancers, but not in vascular endothelium.2 

However, up-regulation of podoplanin in the tissues adjacent to blood vasculature has 

been reported in the salmonella-mediated inflammation model38 and CLEC-

2/podoplanin interactions have been shown to secure vessel wall in high endothelial 

venules.41 We demonstrate here that podoplanin is present in the IVC wall. It is 

localized immediately below the endothelium and is dramatically up-regulated following 

stenosis of the IVC. This up-regulation was substantially higher in those IVCs that had 

thrombi compared to IVCs, in which, despite stenosis, no thrombi developed. It can be 

speculated that exposure to podoplanin in the vessel wall triggers platelet accrual and 

activation which, in turn, may further up-regulate podoplanin expression. This 

suggestion is further supported by direct observation of reduced platelet accumulation 

after anti-podoplanin antibody administration. As podoplanin is located at the abluminal 

side of the endothelium, the mechanism of antibody penetration through endothelial 

monolayer remains to be elucidated. It is possible that, under the conditions of elevated 

blood pressure and stretched vessel wall, gaps between endothelial cells become 
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looser, which makes contact between the antibody and podoplanin in the vessel wall 

possible.42,43 Thus, podoplanin in the venous wall contributes to DVT propagation. 

Direct evidence of podoplanin involvement in exacerbation of DVT was obtained in 

experiments with an anti-podoplanin antibody. Administration of the antibody 8.1.1 

resulted in smaller size of thrombi whereas the percent of mice producing thrombi 

remained the same. Thus, the absence of CLEC-2 and inhibition of podoplanin do not 

produce identical phenotypes in DVT and it cannot be unambiguously concluded that 

they operate as receptor-ligand couple. However, as podoplanin binding to CLEC-2 

activates platelets, it cannot be excluded that when podoplanin is neutralized, platelets 

still interact with the vessel wall through other mechanisms but their activation is 

impaired, which results in limited ability to support thrombus growth. Another possibility 

is that, in addition to podoplanin, another CLEC-2 ligand is involved to mediate 

complete absence of thrombi observed in CLEC-2-null mice. Incomplete blockage of 

podoplanin by the antibody in vivo, which precludes downregulation of thrombosis 

prevalence, also cannot be ruled out.  

The source of podoplanin in the IVC remains to be defined. It is unlikely to be 

hematopoietic or endothelial cell-derived as mice lacking podoplanin specifically in 

these cells retained podoplanin expression in the vessel wall and had no phenotype in 

DVT (Suppl. Figures 2 and 3). The ubiquitous layer-like pattern of staining and the 

presence of podoplanin in Tie2-Cre pdpnfl/fl mice rules out lymphatic vessels and nodes 

as a potential source of podoplanin. Fibroblastic reticular cells that surround high 

endothelial venules have been shown to be rich in podoplanin.41 Podoplanin is also 

expressed on myofibroblasts of the prostate and cultured normal and cancer-associated 
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fibroblasts.2,44,45 Therefore, it might be supposed that podoplanin in the vein wall 

originates from cells of fibroblastic nature. Vascular smooth muscle cells (VSMC) 

express another potential CLEC-2 ligand, S100A13.46 S100A13 becomes expressed on 

VSMC subjected to oxidative stress, which may be present in the IVC as a result of 

local hypoxia due to stenosis. However, it is not likely that this mechanism is involved in 

our experiments because venous wall, in contrast to arterial, does not contain 

substantial amounts of VSMC. 

In conclusion, we have demonstrated a major impact of both CLEC-2 and podoplanin in 

DVT. Total deficiency in CLEC-2 completely protects mice against DVT, whereas the 

lack of platelet CLEC-2 mediates partial though significant protection. Vein wall 

expresses podoplanin and it is implicated in venous thrombosis although to what extent 

it operates through CLEC-2 remains to be defined. Given that CLEC-2-null mice have 

only minimally impaired normal hemostasis, this receptor may be a potential target for 

DVT prophylaxis. 
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FIGURE LEGENDS 

Figure 1. CLEC-2 exacerbates DVT in mice. 

(A) Clec1bfl/flxRosa26+/creERT2 (n=10) and their Clec1bfl/fl littermates (n=9) after 2 weeks 

of tamoxifen diet followed by 4 weeks of normal diet or (B) Clec1bfl/fl Pf4-Cre mice 

(n=13) and control littermates (n=11) were subjected to IVC stenosis for 48 h. Some of 

Clec1bfl/fl Pf4-Cre mice were transfused with 8 x 108 WT platelets prior to surgery. 

Panels i, ii and iii show thrombus weight, thrombus length and thrombosis prevalence, 

respectively. Lines in dot plots represent median. Note restoration of thrombosis after 

transfusion of WT platelets. 

 

Figure 2. Stenosis-induced platelet recruitment is reduced in the absence of CLEC-2 or 

after neutralization of podoplanin.  

IVC stenosis was applied to Clec1bfl/flxRosa26+/creERT2 and their Clec1bfl/fl littermates for 

6 h. Fluorescently labeled syngeneic platelets were infused and their deposition on the 

IVC wall was visualized by intravital microscopy. A, representative averaged images of 

adhered platelets (bright white); B, percent of area covered by immobilized platelets, 

n=3 to 4. Data are presented as mean ± SEM. C, the same experimental design was 

applied to WT mice injected with anti-podoplanin neutralizing antibody (100 g/mouse, 

i.v.) or IgG control before surgery. D, percent of area covered by recruited platelets; n = 

4 for both groups. 
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Figure 3. Podoplanin is expressed in the IVC vessel wall. 

Sham-operated IVC (A i) or 48 stenosis-induced thrombi together with the IVC (Aii, B 

and C) were excised and stained for podoplanin (green) and PECAM-1 (A i and ii, Ci; 

red) or VWF (C ii, red). Nuclei are blue in all images. A i and ii, sham-operated IVC and 

IVC with a thrombus, respectively, photographed under identical microscope settings. 

Note increased podoplanin expression in the thrombosed IVC. B, whole thrombus after 

48 h of stenosis within the IVC. C i and ii, co-staining of podoplanin with PECAM-1 and 

VWF, respectively. Note podoplanin localization below the endothelium and absence of 

podoplanin in the thrombus. D, staining of IVC with a thrombus after 48 h stenosis for 

podoplanin (green) and platelets (CD41, red). Note platelets penetrating the vessel wall 

and localizing in the vicinity to podoplanin. A, bar is 50 m; B, bar is 500 m; C, bar is 

100 m; n = 4 - 5. D, bar is 10 m, Representative images of n = 3 with 10-15 images 

from each IVC. T, thrombus, L, lumen. 

 

Figure 4. Expression of podoplanin in the IVC vessel wall increases with thrombosis. 

A-C, Thrombi and the IVC were taken separately for Western blotting. A, Western blot 

of 5 thrombi vs. 1 IVC after 48 h stenosis. Note complete absence of podoplanin in 4 out 

of 5 thrombi and abundant podoplanin signal in the IVC; B, intact IVCs (lanes 1-3), IVCs 

after stenosis with thrombi (St+T, lanes 4-6), IVC after stenosis without thrombi (St N/T, 

lanes 7-9). Loading is confirmed by blotting for tubulin. C, densitometry of podoplanin 
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bands normalized to tubulin; data in bar graph represent mean ± SD; n = 6 for each 

group.  

 

Figure 5. Anti-podoplanin antibody decreases size of thrombi in murine DVT. 

Wild-type mice were injected with neutralizing anti-podoplanin antibody (clone 8.1.1) 24 

h (100 g/mouse) and 30 min (50 g/mouse) prior to surgery and then subjected to IVC 

stenosis for 48 h. Control mice were administered isotype-matched IgG. Presented are 

(left to right): thrombus weight, length and thrombosis prevalence. Lines in dot plots 

represent median. N=10 (for IgG) and 11 (for the antibody). 



0

2

4

6

8

1 0

T
h

r
o

m
b

u
s

 l
e

n
g

t
h

, 
m

m

0

2 0

4 0

6 0

8 0

1 0 0

T
h

r
o

m
b

o
s

is
 p

r
e

v
a

le
n

c
e

(
%

 o
f
 m

ic
e

 w
it

h
 a

 t
h

r
o

m
b

u
s

)

C re -

C re +

p < 0.03 

Figure 1. CLEC-2 exacerbates DVT in mice

P<0.05B

0

5

1 0

1 5

2 0

T
h

r
o

m
b

u
s

 w
e

ig
h

t
, 

m
g

Clec1bfl/fl x

Rosa26+/

A

0

5

10

15

20

T
h

ro
m

b
u

s
 w

e
ig

h
t,

 m
g

0

20

40

60

100

80

T
h

ro
m

b
u

s
 l

e
n

g
th

, 
m

m

0

2

4

6

10

8

T
h

ro
m

b
o

s
is

 p
re

v
a

le
n

c
e

, 
%

0

20

40

60

100

80

T
h

ro
m

b
o

s
is

 p
re

v
a

le
n

c
e

, 
%

0

5

10

15

T
h

ro
m

b
u

s
 l

e
n

g
th

, 
m

m

T
h

ro
m

b
u

s
 w

e
ig

h
t,

 m
g

ERT2cre- - -

Clec1bfl/fl

Pf4-Cre 
+-

i ii iii

0

10

20

30

ERT2cre ERT2cre

+

WT plat -- +

+- +

-- +

P<0.04

+- +

-- +



p < 0.003 

Figure 2. Stenosis-induced platelet recruitment is reduced in the absence of CLEC-2 or after neutralization of 

podoplanin

0

2

4

6

8

1 0

%
 o

f 
a

r
e

a

+

A B

+Clec1bfl/fl x

Rosa26+/
ERT2cre ERT2cre

0

2

4

6

8

1 0

%
 o

f 
a

r
e

a

a-PDPNIgGa-PDPNIgG

C D p < 0.03 p < 0.03 

p < 0.003 



Figure 3. Podoplanin is expressed in the IVC vessel wall

B

C i

T

ivii

T

T

A i

L

ii

T

D



0

1 0

2 0

3 0

4 0

5 0

P
o

d
o

p
la

n
in

/t
u

b
u

li
n

Ctrl

T1 T2 T3 T4 T5 IVC

46 kDa

tubulin

A

B

St+T St N/T

p<0.07p<0.004

p=0.053

Figure 4. Expression of podoplanin in the IVC vessel wall increases with thrombosis

C

Stenosis
Thrombus

- + +
- + -

46 kDa



0

1 0

2 0

3 0

T
h

r
o

m
b

u
s

 w
e

ig
h

t,
 m

g

0

2

4

6

8

1 0

T
h

r
o

m
b

u
s

 l
e

n
g

th
, 

m
m

0

2 0

4 0

6 0

8 0

1 0 0

T
h

r
o

m
b

o
s

is
 p

r
e

v
a

le
n

c
e

, 
%

Figure 5. Anti-podoplanin antibody decreases size of thrombi in murine DVT.

IgG a-pdpn IgG a-pdpn IgG a-pdpn

NSp < 0.02 p < 0.02 

0

10

20

30

T
h

ro
m

b
u

s
 w

e
ig

h
t,

 m
g

T
h

ro
m

b
u

s
 l
e

n
g

th
, 
m

m
0

2

4

6

10

8

0

20

40

60

100

80

T
h

ro
m

b
o

s
is

 p
re

v
a

le
n

c
e

, 
%


