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The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at
CERN. The experiment is designed for precision measurements of CP violation and rare
decays of beauty and charm hadrons. In this paper the performance of the various LHCb
sub-detectors and the trigger system are described, using data taken from 2010 to 2012.
It is shown that the design criteria of the experiment have been met. The excellent
performance of the detector has allowed the LHCb collaboration to publish a wide range
of physics results, demonstrating LHCb’s unique role, both as a heavy flavour experiment
and as a general purpose detector in the forward region.
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1. Introduction

1.1. Physics goals of the LHCb experiment

LHCb is a dedicated heavy flavour physics experiment at the LHC. Its main goal

is to search for indirect evidence of new physics in CP violation and rare decays

of beauty and charm hadrons, by looking for the effects of new particles in pro-

cesses that are precisely predicted in the Standard Model (SM) and by utilising the

distinctive flavour structure of the SM with no tree-level flavour-changing neutral

currents. Quark mixing in the SM is described by the Cabibbo–Kobayashi–Maskawa

(CKM) matrix,1,2 which has a single source of CP violation. Since the level of CP

violation in weak interactions cannot explain the matter–antimatter asymmetry in
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the universe,3 new sources of CP violation beyond the SM are needed. The effect

of such new sources might be seen in heavy flavour physics, where many models

of new physics produce contributions that change the expectation values of the

CP violating phases or the branching fractions of rare decays. Some models even

predict decay modes that are forbidden in the SM. To examine such possibilities,

CP violation and rare decays of hadrons containing b and c quarks must be studied

with large data samples, using many different decay modes.

Thanks to the large beauty and charm production cross-section at the LHC,4,5

the LHCb experiment collected ∼ 1012 heavy flavour decays during 2011 and 2012.

Despite these large yields, at the LHC centre-of-mass energies of
√
s = 7–8 TeV

the charm and beauty cross-sections are approximately a factor 10 and 200 smaller

than the total cross-section, respectively. To separate the decays of interest from

the background, both displaced vertex and high transverse momentum signatures

are exploited. Excellent vertex resolution is required to measure impact param-

eters and to achieve a good decay time resolution, which is essential to resolve B0
s

flavour oscillations and to reject various sources of background. Good momentum

and invariant mass resolution are important to minimise combinatorial background

and resolve heavy-flavour decays with kinematically similar topologies. Charged

particle identification is essential in any flavour physics programme, for instance to

isolate suppressed decays and for b-quark flavour tagging. Detection of photons, in

addition to charged particles, allows the reconstruction of rare radiative decays and

more common decays with a π0 or an η meson in the final state. Finally, to benefit

from the high event rate at the LHC, a high-bandwidth data acquisition system

and a robust and selective trigger system are required.

LHCb has various advantages over the e+e− B factories, including a higher

cross-section, a larger boost and the fact that all species of b hadrons are produced.

Less attractive characteristics of the LHC environment are the generally increased

background levels encountered, inherent to hadronic collisions, which result in a

number of experimental compromises, such as reduced b flavour tagging efficiency

and the difficulty in reconstructing final states with missing or neutral particles.

Despite these challenges, the results6 obtained from data taken between 2010 and

2013 (LHC Run I) have clearly established LHCb as the next generation flavour

physics experiment. Thanks to efficient charged particle tracking and dedicated

triggers for lepton, hadron and photon signatures, LHCb has the world’s largest

sample of exclusively reconstructed charm and beauty decays. With these samples,

LHCb has already made many key results, such as the first evidence for the rare

decay B0
s → μ+μ− (Refs. 7 and 8) and measurements of angular distributions

in the B0 → K∗0μ+μ− decay,9,10 which are particularly sensitive to deviations from

the SM. Another example is the measurement of the CP violating phase (φs) in

the interference between mixing and decay of B0
s mesons, where the value predicted

within the SM is small, but much larger values are possible in new physics models.

LHCb has measured this phase with results that are at present consistent with the

SM within the uncertainties.11,12 The measurement of the angle γ of the Unitarity
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Triangle from B → DK decays is a crucial component in the determination of the

parameters of the CKM quark mixing matrix. The γ results from LHCb13,14 already

dominate the global averages. In the charm sector, one of the most interesting

observables (AΓ) is the difference in the inverse effective lifetimes between D0 and

D̄0 decays. The most precise measurement of AΓ to date has been presented by

LHCb.15 These are just some of the results from LHCb that have made a significant

impact on the flavour physics landscape.

The physics output of LHCb extends well beyond this core programme.

Examples of other topics include: measurements of the production of electroweak

gauge bosons in the forward kinematic region, uniquely covered by the LHCb accep-

tance;16,17 measurements of the properties of newly discovered exotic hadrons;18,19

searches for lepton number and lepton flavour violation,20,21 and measurements of

heavy quarkonia in proton–lead collisions.22,23 These illustrate the wide variety in

electroweak and QCD topics covered by the LHCb experiment and establish LHCb

as a general purpose detector in the forward region at a hadron collider.

In the remainder of this introduction an overview of the LHCb detector is

given, together with a summary of the data-taking periods and the operating condi-

tions. Thereafter, the paper discusses charged particle reconstruction, vertexing and

decay-time resolution in Sec. 2, neutral particle reconstruction in Sec. 3 and particle

identification in Sec. 4. The performance results shown are indicative, and depend

on the specific requirements set by a physics analysis, for example to achieve high

efficiency or high purity. Section 5 discusses the trigger and the paper concludes

with a short summary in Sec. 6.

1.2. Overview of the experimental setup

LHCb is a single-arm spectrometer with a forward angular coverage from approxi-

mately 15 mrad to 300 (250) mrad in the bending (non-bending) plane.25 The choice

of the detector geometry is driven by the fact that at high energies production of

the b- and b̄-hadrons is highly correlated, such that they are predominantly pro-

duced in the same forward or backward cone. The layout of the LHCb spectrometer

is shown in Fig. 1. Most detector subsystems are assembled in two halves, which

can be moved out horizontally for assembly and maintenance purposes, as well as

to provide access to the beam-pipe. They are referred to as the detector A- and

C-sides. A right-handed coordinate system is defined with z along the beam axis

into the detector, y vertical and x horizontal. Cylindrical polar coordinates (r, φ, z)

are also used, as appropriate.

The spectrometer magnet, required for the momentum measurement of charged

particles, is a warm dipole magnet providing an integrated field of about 4 Tm,

which deflects charged particles in the horizontal plane. The field of the spectro-

meter magnet also has an impact on the trajectory of the LHC beams. Three dipole

magnets are used to compensate for this effect and to ensure a closed orbit for the

beams.26
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Fig. 1. View of the LHCb detector.24

The tracking system consists of the VErtex LOcator (VELO), situated around

the interaction region inside a vacuum tank, and four planar tracking stations: the

Tracker Turicensis (TT) upstream of the dipole magnet, and tracking stations T1–

T3 downstream of the magnet. Silicon microstrips are used in TT and the region

close to the beam-pipe (Inner Tracker, IT) of stations T1–T3, whereas straw tubes

are employed for the outer parts (Outer Tracker, OT). Charged particles require a

minimum momentum of 1.5 GeV/c to reach the tracking stations, T1–T3.

The VELO contains 42 silicon modules arranged along the beam, each providing

a measurement of the r (R sensors) and φ (Φ sensors) coordinates. The pitch within

a module varies from 38μm at the inner radius of 8.2 mm, increasing linearly to

102μm at the outer radius of 42 mm. For detector safety, the VELO modules are

retracted by 29 mm in the horizontal direction during injection of the LHC beams

and are subsequently moved back, using a fully automated procedure once stable

conditions have been declared. From the declaration of stable beams the VELO

takes, on average, 210 seconds to close. During LHC Run I approximately 750

closing procedures were performed.

The TT and IT detectors use silicon microstrip sensors with a strip pitch of

183μm and 198μm, respectively. The TT is about 150 cm wide and 130 cm high,

with a total active area of around 8 m2. The IT covers a 120 cm wide and 40 cm

high cross-shaped region in the centre of the three tracking stations T1–T3. The

total active area of the IT is approximately 4 m2. Each of the tracking stations has

four detection layers in an x–u–v–x arrangement with vertical strips in each of the

1530022-5
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two x layers, and strips rotated by a stereo angle of −5◦ and +5◦ in the u and v

layers, respectively.

The Outer Tracker is a drift-tube gas detector consisting of approximately 200

gas-tight straw-tube modules with drift-time read-out. Each module contains two

staggered layers of drift-tubes with an inner diameter of 4.9 mm. As a counting

gas, a mixture of Argon (70%), CO2 (28.5%) and O2 (1.5%) is chosen to guarantee

a drift time below 50 ns and a spatial resolution of 200μm. As for the IT part of

T1–T3, the OT has four layers arranged in an x–u–v–x geometry. The total active

area of a station is 597 cm × 485 cm.

Charged hadron identification in the momentum range from 2 to 100 GeV/c is

achieved by two Ring Imaging Cherenkov detectors (RICH1 and RICH2) read out

by Hybrid Photon Detectors (HPDs). The upstream detector, RICH1, covers the

low momentum charged particle range from about 2 to 60 GeV/c and uses Aero-

gel and C4F10 as radiators, while the downstream detector, RICH2, covers the high

momentum range from about 15 GeV/c to 100 GeV/c, using a CF4 radiator. RICH1

has a wide acceptance, covering the LHCb acceptance from ± 25 mrad to ± 300 mrad

(horizontal) and ± 250 mrad (vertical), while RICH2 has a limited angular accep-

tance of ± 15 mrad to ± 120 mrad (horizontal) and ± 100 mrad (vertical).

The calorimeter system is composed of a Scintillating Pad Detector (SPD),

a Preshower (PS), a shashlik type electromagnetic calorimeter (ECAL) and a

hadronic calorimeter (HCAL). It provides the identification of electrons, photons

and hadrons as well as the measurement of their energies and positions, and selects

candidates with high transverse energy for the first trigger level (L0). The SPD

improves the separation of electrons and photons. A 15 mm lead converter with a

thickness of 2.5 radiation lengths (X0) is placed between the planes of rectangular

scintillating pads of the SPD and the PS. The background from charged pions is

reduced by a measurement of the longitudinal partitioning of the electromagnetic

shower in the PS detector and the main section of ECAL. The ECAL is made of a

sampling scintillator/lead structure with a total thickness of 25 X0. The calorimeter

system has a variable lateral segmentation which takes into account the variation

in hit density of two orders of magnitude over the calorimeter surface. A segmen-

tation into three different sections has been chosen for the ECAL with a corre-

sponding projective geometry for the SPD and PS detectors, meaning that all of

their transverse dimensions scale with the distance from the interaction point. The

outer dimensions match projectively those of the tracking system, while the square

hole around the beam-pipe approximately limits the inner acceptance to projective

polar angles θx,y > 25 mrad. The hadron calorimeter (HCAL) is a sampling device

made from iron and scintillating tiles, as absorber and active material, respectively.

The special feature of this sampling structure is the orientation of the scintillating

tiles which run parallel to the beam-axis. Given the dimensions of the hadronic

showers, the HCAL is segmented into two zones with different lateral dimensions.

The thickness of the HCAL is limited to 5.6 nuclear interaction lengths (λi) due to

space constraints.
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The muon detection system provides muon identification and contributes to the

L0 trigger of the experiment. It is composed of five stations (M1–M5) of rectangular

shape equipped predominantly with Multi Wire Proportional Chambers (MWPC),

except in the highest rate region of M1, where triple Gas Electron Multiplier (GEM)

detectors are used. The full system comprises 1380 chambers and covers a total

area of 435 m2. Stations M2 to M5 are placed downstream of the calorimeters

and are interleaved with 80 cm thick iron absorbers to select penetrating muons.

The minimum momentum that a muon must have to traverse the five stations

is approximately 6 GeV/c. The total absorber thickness, including the calorime-

ters, is approximately 20λi. Station M1 is placed in front of the calorimeters and

is used to improve the pT measurement in the trigger. The geometry of the five

stations is projective, with each station divided into four regions, R1 to R4, with

increasing distance from the beam axis. The linear dimensions of the regions R1,

R2, R3, R4, and their segmentation scale in the ratio 1:2:4:8. With this geometry,

the channel occupancies are comparable in each of the four regions of a given

station.

The LHCb trigger system consists of two levels. The first level is implemented

in hardware and is designed to reduce the event rate from the nominal LHC bunch

crossing rate of 40 MHz to a maximum of 1.1 MHz. The complete detector is then

read out and the data is sent to the High Level Trigger (HLT) implemented on

the Event Filter Farm (EFF), which had about 30,000 processing cores in 2012.

The HLT is a software trigger, running a simplified version of the offline event

reconstruction to accommodate the more stringent CPU time requirements.

1.3. Data taking periods and operating conditions

At the end of 2009, LHCb recorded its first pp collisions at the injection energy of

the LHC,
√
s = 0.9 TeV. These data have been used to finalise the commissioning

of the sub-detector systems and the reconstruction software, and to perform a first

alignment and calibration of the tracking, calorimeter and particle identification

(PID) systems. In this period, the VELO was left in the open position, due to the

larger aperture required at lower beam energies.

During 2010 the operating conditions changed rapidly due to the ramp-up of

the LHC luminosity. A critical parameter for LHCb performance is the pile-up μvis,

defined as the average number of visible interactions per beam–beam crossing.27

The evolution of the LHCb operating conditions during LHC Run I is shown in

Fig. 2. Starting with luminosities ∼ 1028 cm−2s−1 and almost no pile-up, the lumi-

nosity reached 1032 cm−2s−1 with μvis ≈ 2.5.

While the highest luminosity in 2010 was already 75% of the LHCb design

luminosity, the pile-up was much larger than the design value due to the low number

of bunches in the machine. It was demonstrated that the trigger and reconstruction

work efficiently under such harsh conditions with increased detector occupancy due

to pile-up, and that the physics output was not compromised.
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Fig. 2. Average number of visible interactions per bunch crossing (‘pile-up’, top) and instanta-
neous luminosity (bottom) at the LHCb interaction point in the period 2010-2012. The dotted
lines show the design values.

The LHC beam energy was 3.5 TeV during 2010 and 2011. In the first part of

the 2011 data taking the number of bunches in the machine increased in several

steps to about 1300, the maximum possible with 50 ns bunch spacing. Due to the

larger number of bunches the pile-up over the year could be reduced, while LHCb

took the majority of the data at a luminosity of 3.5× 1032 cm−2s−1. This was 1.75

times more than the design luminosity of 2 × 1032 cm−2s−1, as shown in Fig. 2.

In 2011 a luminosity levelling procedure was introduced at the LHCb interaction

point. By adjusting the transverse overlap of the beams at LHCb, the instantaneous

luminosity could be kept stable to within about 5% during a fill, as illustrated in

Fig. 3. For this particularly long fill, a maximum overlap with head-on beams was

reached only after 15 hours. The luminosity levelling procedure minimises the effects

of luminosity decay, allowing to maintain the same trigger configuration during a fill

and to reduce systematic uncertainties due to changes in the detector occupancy.

In 2012 the LHC beam energy was increased to 4 TeV. LHCb took data at

a luminosity of 4 × 1032 cm−2s−1, twice the LHCb design luminosity. The LHC

delivered stable beams for about 30% of the operational year. An effort was made

in 2012 to use more efficiently the processing power available in the Event-Filter-

Farm (EFF), which otherwise would have been idle during 70% of the time. The

mechanism put in operation defers a fraction of the HLT processing to the inter-fill

time, typically several hours, between the LHC collision periods. In this approach

about 20% of the L0 accepted events during data-taking are temporarily saved on

the local disks of the EFF nodes and are processed only after the end of stable
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Fig. 3. Development of the instantaneous luminosity for ATLAS, CMS and LHCb during LHC
fill 2651. After ramping to the desired value of 4× 1032cm−2s−1 for LHCb, the luminosity is kept

stable in a range of 5% for about 15 hours by adjusting the transversal beam overlap. The difference
in luminosity towards the end of the fill between ATLAS, CMS and LHCb is due to the difference
in the final focusing at the collision points, commonly referred to as the beta function, β∗.

beams. This deferred triggering method allowed LHCb to increase the data sample

available for physics analysis.

The integrated luminosity recorded by LHCb was 38 pb−1 in 2010, 1.11 fb−1 in

2011 and 2.08 fb−1 in 2012. The evolution of the integrated luminosity for the years

2010 to 2012 is shown in Fig. 4.

Luminosity calibrations were carried out with the LHCb detector for the various

centre-of-mass energy
√
s at which data has been taken. Both the “van der Meer

scan” and “beam-gas imaging” luminosity calibration methods were employed.28

Fig. 4. Integrated luminosity in LHCb during the three years of LHC Run I. The figure shows
the curves for the delivered (dark coloured lines) and recorded (light coloured lines) integrated
luminosities.
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For proton–proton interactions at
√
s = 8 TeV a relative precision of the luminosity

calibration of 1.47% was obtained using van der Meer scans and 1.43% using beam-

gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to

the full data set determines the luminosity with a precision of 1.16%. This represents

the most precise luminosity measurement achieved so far at a bunched-beam hadron

collider.

The average operational efficiency, defined as the ratio of recorded over delivered

luminosity, was 93% during LHC Run I, reaching 95% on average in 2012. The ineffi-

ciency contains two irreducible sources. The first one is the detector-safety proce-

dure for the VELO closing, amounting to 0.9%, which is in line with expectations.

The second originates from non-conformities in the implementation of the read-out

protocol of some sub-detector front-end systems and introduces 2.4% of dead-time

at 1 MHz read-out frequency. The remaining 3.6% is related to short technical prob-

lems with the sub-detector electronics or the central read-out system. About 99%

of the recorded data is used for physics analyses.

After a short pilot run in 2012, the LHC delivered for the first time proton–lead

collisions in January and February 2013. The beam energy of the proton beam was

4 TeV, while the corresponding nucleon energy of the lead beam was 1.58 TeV,

corresponding to a centre-of-mass energy of 5 TeV. The LHC delivered collisions

with both protons and lead nuclei as the clockwise, and anti-clockwise beams, which

made it possible for LHCb to collect data in the forward and backward direction of

proton–lead collisions. The integrated recorded luminosity during the proton–lead

run was 1.6 nb−1.

Since the LHCb magnet deflects positive and negative particles in opposite

directions in the x–z plane, a difference in performance of the left and right sides of

the detector leads to charge detection asymmetries. To reach its design sensitivity

in CP violation measurements, LHCb aims to control such detection asymmetries

to a precision of 10−3 or better. This is achieved by changing the direction of the

magnetic field regularly and then combining data sets with different polarity to

cancel left–right asymmetries. In Run I the polarity of the magnet was inverted

about two times per month, such that smoothly varying changes in data-taking

conditions or detector performance would not jeopardise the cancellation.

The LHCb operation with both field polarities leads to different effective crossing

angles between the two beams, in particular when the beam crossing is performed

in the horizontal plane, as it was the case in 2010 and 2011. The effective total

crossing angles varied between about 40μrad and 1040μrad for the two spectro-

meter polarities. During 2012 the beam crossing was performed in the vertical plane.

Together with the deflection caused by the LHCb spectrometer magnet this led to

more similar total effective crossing angles of about ±470μrad in the horizontal

plane for the two spectrometer polarities, respectively, and of ±200μrad in the

vertical plane. However, the physics performance of the experiment has not been

affected by the various beam crossing scenarios mentioned here.
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2. Charged Particle Reconstruction

The trajectories of charged particles inside the LHCb detector are reconstructed

using dedicated tracking detectors. The VELO detector encompassing the inter-

action region, the TT stations before the spectrometer magnet and the T1–T3

stations further downstream. By determining the deflection of the charged particles

after traversing the magnetic field, their momentum can be determined. The high

spatial resolution of the VELO enables a precise determination of the particle’s

flight direction close to the primary interaction point, resulting in a good vertex

resolution.

2.1. Hit efficiencies and hit resolutions of the tracking detectors

The hit efficiencies and hit resolutions of the different tracking detectors are dis-

cussed in the following sections. Hit efficiencies in general exceeding 99% were

achieved, more than sufficient for an efficient track reconstruction. The hit resolu-

tions of all tracking detectors are as expected from test-beam measurements. Hit

occupancies for the 2011 data taking conditions, although running at much higher

luminosity and pile-up than originally planned, are well within acceptable levels,

only mildly affecting the track finding efficiency and rate of wrongly reconstructed

trajectories.

2.1.1. Vertex Locator

The overall performance of the VELO is described in detail in Ref. 29. A summary

of the hit efficiency, hit resolution, occupancy and radiation damage given below.

The VELO hit efficiency is evaluated by two methods. The cluster finding effi-

ciency30 is determined by removing each sensor in turn from the track reconstruc-

tion, extrapolating the tracks to this sensor and searching for a hit around the

intercept point. Alternatively, the channel occupancy spectra is analysed to iden-

tify strips with a substantially lower or higher number of hits than the average. The

two methods are in agreement. At the end of LHC Run I, the occupancy method

identified 0.6% inefficient strips and 0.02% noisy strips in the detector, these num-

bers are effectively identical to those at the start of operations in 2010.

The hit resolution in silicon devices depends on the inter-strip read-out pitch

and the charge sharing between strips. The charge sharing varies with the opera-

tional bias voltage and the projected angle of the track. The bias voltage was 150 V

throughout the physics data taking in 2010 to 2013. The projected angle30 provides

information on the number of strips that the particle crosses while it traverses the

thickness of the silicon sensor. Initially the resolution improves with increasing angle

due to the charge sharing between strips, allowing more accurate interpolation of

the hit position. The optimal resolution is obtained when the tracks cross the width

of one strip when traversing the 300μm thickness of the sensor. For the VELO the

optimal projected angle varies between about 7◦ at the lowest inter-strip pitch of

40μm to about 18◦ for the largest 100μm pitch strips, as shown in Fig. 5 (right).
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Fig. 5. The VELO hit resolution as a function of the inter-strip pitch (left) evaluated with 2010
data for the R sensors. Results29 are shown for two projected angle ranges and the expected
resolution of a single-hit binary system is indicated for comparison. Resolution divided by pitch
as a function of the track projected angle for four different strip pitches (right).

Above the optimal angle the resolution begins to deteriorate due to the fluctuations

in the charge on the strips and because the signal to noise ratio on individual strips

may drop below the clustering threshold.

The VELO reads out analogue pulse-height information from the strips, and

this information is used offline to calculate the cluster position30 using the weighted

average of the strip ADC values. The resolution of the sensors is determined from

the residual between the extrapolated position of the fitted track and the measured

cluster position. The use of the evaluated cluster position in the track fit gives rise

to a bias in the residual, for which a correction is applied.

The resolution is determined as a function of the strip pitch and of the projected

angle. For each bin, the resolution is determined from the width of the fit of a

Gaussian function to the distribution of the corrected residuals. The resolution is

evaluated using tracks that have hits in the tracking stations behind the magnet and

hence for which the momentum measurement is available. The tracks are required

to have a momentum greater than 10 GeV/c to reduce the dependence of the

estimation on the multiple scattering effect, and a number of other track quality

criteria are applied to reject fake tracks. The results are presented here for the R

sensor. The Φ sensor results are compatible with those of the R sensor but the

almost radial geometry of the Φ sensor strips means that tracks primarily have

small projected angles.

The measured hit resolution has a linear dependence on the strip pitch in pro-

jected angle bins, as shown in Fig. 5 (left). The best hit precision measured is around

4μm for an optimal projected angle of 8◦ and the minimum pitch of approximately

40μm.

The detector occupancy is a key parameter in the performance of the pattern

recognition and tracking algorithms. The cluster occupancy was measured to be
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Fig. 6. The effective depletion voltage versus fluence for all VELO sensors up to the end of LHC
Run 1 at 3.4 fb−1 delivered integrated luminosity.29

around 0.5% in randomly triggered events and 1% in events passing the high level

trigger, for data with a μvis = 1.7. The pitch of the strips on the sensors increases

with radius, keeping the local occupancy values to within 25% of these typical

values. The occupancy from noise is negligible compared with that from particles;

in the absence of circulating beams the occupancy is below 0.01%.

The proximity of the VELO sensors to the LHC pp collisions results in the

sensors receiving a significant radiation dose. A study of the observed effects is

available in Ref. 31. During LHC Run I the sensors have been exposed to a range

of fluences up to a maximum value of 1.8 × 1014 1 MeV neutron equivalents/cm2

( neq) at the radius of the inner strip of 8.2 mm.

The current drawn from a silicon sensor increases linearly with fluence. The

sensor current is composed of two dominant sources, referred to as bulk and sur-

face currents. Studying the current as a function of the temperature allows the two

sources to be separated, and dedicated data is taken to allow this study to be per-

formed. At the operational sensor temperature of approximately −7◦C, the average

rate of sensor current increase is 18μA per fb−1, in agreement with predictions.31

Dedicated data are taken around three times a year to study the charge collec-

tion of the VELO as a function of the bias voltage of the sensors. The bias voltage

required to extract a fixed fraction of the maximum charge can then be determined.

From this measurement the ‘effective depletion voltage’ can be determined,31 and

this is shown as a function of fluence in Fig. 6. Each sensor contributes multiple

points to this plot in each data sample as the sensors are divided in the analysis

into radial regions that have received similar fluences, as denoted by the different

colours in the figure. The n-bulk sensors undergo space-charge sign inversion under

irradiation, and hence their depletion voltage initially reduces with irradiation. This

continues until type inversion occurs, after which it increases with further irradia-

tion. The first observation of n+-on-n sensor space-charge-sign-inversion at the LHC

was made during 2011,31 occurring at a fluence of a round 15 × 1012 1 MeV neq.

The effective depletion voltage at the maximal fluence at the end of LHC Run I
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was approximately 100 V, and followed the expectation. The current detector is

predicted to deliver an acceptable physics performance until the end of LHC Run II

with an operating voltage below 500 V.

2.1.2. Silicon Tracker

The Tracker Turicensis (TT) and the Inner Tracker (IT) are constructed from

p+-on-n silicon microstrip detectors. The TT sensors are 9.64 cm wide, 9.44 cm

long and 500μm thick. The TT modules have read-out sectors with one, two, three

or four sensors bonded together, and are arranged such that the single-sensor sectors

are closest to the beam-pipe in the region with the highest flux of particles. The

sensors in the IT are 7.6 cm wide, 11 cm long and are either 320μm or 410μm thick.

Two 410μm thick sensors are bonded together for the IT modules on either side of

the beam-pipe while the modules above and below the beam-pipe use one 320μm

sensor. In total, there are 280 (336) read-out sectors with 512 (384) strips in the

TT (IT).

The cluster finding efficiency of the detectors depends on the fraction of working

channels and the intrinsic hit efficiency of the silicon sensor. The number of working

channels is affected by problems with the read-out, and the masking of dead or

noisy strips found during the calibration of the detector. The fraction of working

channels varied during data taking. The luminosity-weighted average of the fraction

of working channels during Run I is calculated to be 99.7% and 98.6% for the TT

and IT, respectively. Repairs can be made to the TT read-out during short technical

stops whereas problems with the IT read-out can only be fixed during the LHC

shutdowns at the end of each year. Two read-out sectors were disabled in the IT as

they could not be properly configured.

The intrinsic hit efficiency of the silicon sensors can be measured using recon-

structed tracks to probe whether or not the expected hits on a track are found. The

efficiency is defined as the ratio between the number of hits found and the number of

hits expected for a given sector. The measurement uses daughter tracks from clean

samples of J/ψ→ μ+μ− decays. The method looks for hits in a window around the

intersection point between a track and each sensor on the track where a hit is ex-

pected. The tracks are required to have momentum greater than 10 GeV/c to reduce

the effect of multiple scattering. Additional cuts are placed on the track quality to

minimise the effect of fake tracks on the efficiency measurement. The efficiency is

calculated relative to the number of working channels, i.e. hits are not expected to

be found when a channel or group of channels is disabled. The overall hit efficiency

is determined to be greater than 99.7% and 99.8% for TT and IT, respectively.

The hit resolution is determined from the residuals between the measured hit

position and the extrapolated track position. The unbiased residual is calculated

by removing the hit from the track fit and calculating the distance between the

hit and the extrapolated track position. The resolution is given by the spread of

the unbiased residual distribution after correcting for the uncertainty in the track
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Fig. 7. Hit resolution measured for all modules in the TT. The sector number corresponds ap-
proximately to the x-direction. The resolution improves in the outer regions of the “A-side” and
“C-side” regions where there is more charge sharing due to the larger track angle. It is almost
constant in the sectors in the “Central” region where the occupancy is highest. The labels X1, U ,
V and X2 correspond to the four detection layers arranged with an (x− u− v − x) geometry in
the TT box.
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Fig. 8. Hit resolution measured for modules in IT1 (bottom), IT2 (middle) and IT3 (top). The
sector number corresponds approximately to the x-direction. The resolution in the 1-sensor sectors
in the boxes above (Top) and below (Bottom) the beam-pipe are constant. The resolution improves
for the 2-sensor sectors in the A- and C-side boxes with increasing distance from beam-pipe where
the track angle is typically larger. The labels X1, U , V and X2 correspond to the four detection
layers arranged with an (x− u− v − x) geometry in each box.

parameters. The hit resolution measured using the 2011 data is 52.6μm for the TT

and 50.3μm for the IT. The resolution measured using the 2012 data is shown as a

function of the sector number in Fig. 7 for the four TT layers and in Fig. 8 for the

IT. The resolution is worse in the central regions closest to the beam-pipe where

1530022-15

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
5.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

IR
M

IN
G

H
A

M
 o

n 
01

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 5, 2015 12:10 IJMPA S0217751X15300227 page 16

The LHCb Collaboration

Table 1. Summary of the hit efficiency and resolution measurements made using 2011
and 2012 data. Results are also shown for simulated events.

Detector Measurement 2011 Data 2012 Data 2011 MC 2012 MC

TT
Hit efficiency 99.7% 99.8% 99.9% 99.9%

Hit resolution 52.6μm 53.4μm 47.8μm 48.0μm

IT
Hit efficiency 99.8% 99.9% 99.9% 99.9%

Hit resolution 50.3μm 54.9μm 53.8μm 53.9μm

the track angles are smallest and, consequently, where there is the least amount of

charge sharing between strips.

The measurements of the hit efficiency and the resolution are summarised in

Table 1 for the 2011 and 2012 data taking periods. The results are compared with

the expectation from simulations for 2011 and 2012 data taking conditions, respec-

tively. The measured hit resolutions are in agreement with those expected from

simulation. The small differences observed can be partially explained by the remain-

ing misalignment of the modules. The measured hit efficiency is well above 99% in

all cases.

The particle density falls significantly as the distance from the beam-pipe is

increased. The occupancy in each of the read-out sectors was estimated using a data

sample containing events randomly selected after the Level-0 trigger with μ = 1.7.

The average occupancy in the TT varies between 1.9% for the sectors closest to

be beam-pipe compared to 0.2% for the outermost modules. Similarly, the average

occupancy was found to vary between 1.9% and 0.2% for the IT sectors.

2.1.3. Outer Tracker

The outer parts of the tracking stations T1–T3 are equipped with a straw-tube

detector (OT).32 Charged particles traversing the straw-tubes will ionise the gas

along their trajectory. The drift-times of the ionisation electrons to the wire located

at the centre of the straw are measured with respect to the beam crossing signal.

The distribution of the recorded drift-time, which is proportional to the distance

of the particle trajectory to the wire, is shown in Fig. 9 (right). The calibration of

the drift-time to distance relation32 has been done on data.

The maximum drift time in the straw tubes is about 35 ns, but to account

for variations in the time-of-flight of the particles, the signal propagation time

through the wire, and variations in time offset constants in the electronics, three

bunch crossings are read out upon a positive L0 trigger on the first bunch crossing,

corresponding to a time window of 75 ns.

During Run I, the LHC was operating predominantly in either 75 ns or 50 ns

bunch spacing schemes. A short running period in 2012 with 25 ns bunch spacing

was also performed, allowing a study of the detector performance under these con-

ditions to be undertaken. The contribution from earlier and later bunch crossings
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Fig. 9. Drift time distribution (left) for the modules located closest to the beam (“M8”). Drift
time versus distance relation (right) where the red-dotted lines indicate the centre and the edge
of the straw, corresponding to drift times of 0 and 36 ns, respectively.32

is visible in the drift time spectrum, see Fig. 9. These additional hits from different

bunch crossings increase the occupancy as shown in Fig. 10. The occupancy for

the most central modules is reduced with respect to the neighbouring modules,

as these modules are located further away from the beam, in the vertical direc-

tion. The straws with highest average occupancy for typical running conditions in

2011 (i.e. 50 ns bunch spacing conditions and about 1.4 visible overlapping events)

amounts to about 17%. This increases to about 25% for 25 ns bunch spacing con-

ditions with on average 1.2 overlapping events. The average pile-up conditions in

2012 were slightly different, corresponding to about 1.8 visible overlapping events,

resulting in a higher multiplicity compared to 2011.

A scan of the hit efficiency as a function of the predicted distance between the

expected hit and the centre of the considered straw is performed on 2011 and 2012
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Fig. 10. Straw occupancy for (red) 75 ns, (black) 50 ns and (blue) 25 ns bunch-crossing spacing,
for comparable pile-up conditions.32 The modules are indicated by ‘M’, and contain 256 straws
each. The width of the module is 340mm.
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Fig. 11. Example of the OT efficiency profile as a function of the distance between the extrapo-
lated track position and the centre of the straw for hits in the detector modules on either side of
the beam-pipe (type M7).32 The vertical bars represent the edges of the straw cell.

data. An efficiency profile of the detector single cell is thus obtained, an example

of which is shown in Fig. 11. The efficiency drops close to the cell edges due to

two effects. First, the probability for ionisation to occur decreases for shorter path

lengths inside the straw. Secondly, a fraction of the hits are positioned outside the

straw volume due to the uncertainty on the track extrapolation. The average single

cell efficiency for tracks in the central half of the straw, closer than 1.25 mm to the

wire, amounts to 99.2%. Radiation damage could in principle lead to a decrease in

signal amplitude. This was monitored during the 2011 and 2012 running periods

and no degradation is observed.33

The single hit resolution is determined by comparing the predicted hit position

from the track with the hit position obtained from the drift-time. The hit under

study is not used in the reconstruction of the extrapolated track, in order not to bias

the resolution determination. The resulting single hit resolution is 205μm, close to

the design value of 200μm. Only tracks with a momentum larger than 10 GeV/c

are used, and the residual is corrected for the uncertainty in the track parameters,

caused by effects such as multiple scattering.

2.1.4. Muon system

To discriminate muons against the abundant hadronic background, muon candi-

dates are formed from aligned hits in each of the five stations. Since LHCb aims at

a trigger efficiency for muons larger than 95%, the average efficiency of each muon

station must exceed 99%. To meet this stringent requirement, a redundant design

was chosen for the muon chambers, consisting of four active layers per chamber for

the M2–M5 stations, and two for the M1 station.25 Chambers are operated with a

gas gain providing a signal detection efficiency, for the logical OR of the different

layers, well above the required 99%. A conflicting demand, also dictated by the L0
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Fig. 12. Average cluster size in each detector region for data and simulation.35 The labels refer
to the stations (M1 to M5) and to the four regions with different granularity used in each station
(from the innermost R1 to the outermost R4). Only isolated muon tracks are used, and angular
effects are corrected for.

trigger algorithm, is to minimise cross-talk between channels. The cluster size of

muon track hits, defined as the average number of adjacent pads fired by an isolated

muon track, is measured using 2010 data. The result depends on the station (M1 to

M5) and region (from the innermost R1 to the outermost R4), since twenty cham-

ber types of different size and granularity are used. As shown in Fig. 12, the cluster

size values observed in the data are in reasonable agreement with the simulation

and are sufficient to meet the L0 trigger requirements.34

Due to the redundant design, all of the 1380 muon chambers were continuously

operating during the whole data taking. The few cases of a broken MWPC or

GEM detector layer only caused a locally limited reduction of efficiency. Dead

detector channels were only due to faulty components in the read-out chain, and

never affected more than 0.2% of the total detector surface. Their effect on the

muon trigger efficiency is estimated to be less than 1%. The other main sources

of inefficiencies are incorrect time reconstruction and dead-time of the read-out

electronics.

Since the signals must be detected within the 25 ns LHC time gate around a

bunch crossing, the detector time resolution is required to be smaller than 4.5 ns.

The 122,112 physical channels were aligned in time with an accuracy of 1 ns using

samples of cosmic rays36 and tracks from the first pp collisions in the detector.35 The

timing performance is measured from special calibration runs where events triggered

by the calorimeters were acquired in a 125 ns wide gate around the triggered colli-

sion. A high-purity sample of muon candidates is obtained by reconstructing track

segments from aligned muon detector hits in all of the five stations, and match-

ing such segments with high-quality tracks reconstructed by the tracking detectors.

The time resolution of muon detector hits associated to these tracks is measured

to be between 2.5 and 4 ns, depending on the detector region.35 The inefficiency
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Fig. 13. Average measured hit efficiency, in percent, for the different regions of the muon detector.
Statistic and systematic uncertainties are added in quadrature. The effect of the few known dead
channels is not included. Measurement in the 2010 and 2011/2012 data taking periods are shown
separately due to different pile-up conditions.

due to tails in the time measurement is estimated by counting the fraction of muon

tracks having one or more hits outside the 25 ns time gate. In each of the time

alignment runs acquired during the data taking, such inefficiency is found to never

exceed 1.2%.

The total hit efficiency of the muon chambers is measured using muon candidates

in events triggered independently of the muon detector during the normal data

taking. The efficiency for each station is estimated by searching hits around the

position predicted by the segment reconstructed using only the other four stations,

which must have a good matching with a high-quality track. For station M1, which

is located upstream of the calorimeter system, candidate muons are also required to

originate from a J/ψ decay. Tracks close to the known dead channels are removed

from the sample. The contribution of background hits accidentally matching the

candidate track is subtracted using a statistical model.

The resulting efficiencies, measured separately for the twenty chamber types,

and for the 2010 and 2011–2012 data taking conditions, are shown in Fig. 13. The

2010 values are compatible with the inefficiencies due to incorrect time reconstruc-

tion.35 The larger inefficiency observed in 2011 and 2012 is due to the different beam

conditions, with 50 ns bunch spacing and higher luminosity, causing a non-negligible

dead-time of the read-out chain.

The dead-time of the front-end read-out chips varies from 50 to 100 ns, depend-

ing on the region and on the signal amplitude. This affects in particular the inner

regions having the highest channel occupancy, reaching average values of 2.5% in

M1R1 and 0.6% in M2R1 for the 2012 data taking. A second source of dead time is
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the finite length of the digital output signals, 18 to 25 ns, depending on the region

and the data taking period. In order to reduce the number of off-detector read-

out channels, these signals are formed from the logical OR of several contiguous

physical channels. The occupancy of these logical channels is thus larger than the

occupancy of physical channels, and can lead to measurable dead-time effects, even

in the outer detector regions. This happens in particular for station M5, which

is affected by spurious hits due to back-scattering from the beam-line elements

located behind the detector. Since the detector was operated at twice the nomi-

nal luminosity of 2 × 1032 cm−2s−1, the dead-time effect is larger than originally

expected. Nonetheless, most regions meet the 99% efficiency requirement. Taking

into account the combined response of the five stations, the detector is found to

provide muon identification for trigger and offline reconstruction with an efficiency

larger than 95%.

2.2. Track reconstruction

The trajectories of the charged particles traversing the tracking system are recon-

structed from hits in the VELO, TT, IT and OT detectors. Depending on their

paths through the spectrometer, the following track types are defined, as illustrated

in Fig. 14:

• Long tracks traverse the full tracking system. They have hits in both the VELO

and the T stations, and optionally in TT. As they traverse the full magnetic

field they have the most precise momentum estimate and therefore are the most

important set of tracks for physics analyses.

• Upstream tracks pass only through the VELO and TT stations. In general

their momentum is too low to traverse the magnet and reach the T stations.

However, they pass through the RICH1 detector and may generate Cherenkov

photons if they have p > 1 GeV/c. They are therefore also used to understand

backgrounds in the particle identification algorithm of the RICH.

• Downstream tracks pass only through the TT and T stations. They are im-

portant for the reconstruction of long lived particles, such as K0
S and Λ, that

decay outside the VELO acceptance.

• VELO tracks pass only through the VELO and are typically large-angle or

backward tracks, which are useful for the primary vertex reconstruction.

• T tracks pass only through the T stations. They are typically produced in

secondary interactions, but are still useful during the treatment of RICH2 data

for particle identification.

The long track reconstruction starts with a search in the VELO for straight line

trajectories.37,38 To be reconstructed as VELO tracks, traversing particles must pro-

vide at least three hits in the R sensors and three hits in the Φ sensors. Then, there

are two complementary algorithms to add information from the downstream track-

ing stations to these VELO tracks. In the first algorithm, the forward tracking,39
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Fig. 14. A schematic illustration of the various track types:25 long, upstream, downstream, VELO
and T tracks. For reference the main B-field component (By) is plotted above as a function of the
z coordinate.

the VELO tracks are combined with information from the T stations. The momen-

tum of a particle and its trajectory through the detector are fully determined from

the information provided by the VELO and a single T station hit. Further hits

in the T stations are then searched along this trajectory to find the best possible

combination of hits defining the long track. In the second algorithm, called track

matching,40,41 the VELO tracks are combined with track segments found after the

magnet in the T stations, using a standalone track finding algorithm.42 In order to

form such a track segment, particles traversing the T stations need to provide at

least one hit in the x layers and one in the stereo layers in each of the three stations.

The candidate tracks found by each algorithm are then combined, removing dupli-

cates, to form the final set of long tracks used for analysis. Finally, hits in the TT

consistent with the extrapolated trajectories of each track are added to improve

their momentum determination.

Downstream tracks are found starting with T tracks, extrapolating them

through the magnetic field and searching for corresponding hits in the TT.43,44 Up-

stream tracks are found by extrapolating VELO tracks to the TT where matching

hits are then added in a procedure similar to that used by the downstream tracking.

At least three TT hits are required to be present by these algorithms.45
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Fig. 15. Display of the reconstructed tracks and assigned hits in an event in the x–z plane.25

The insert shows a zoom into the VELO region in the x–y plane.

In a final step, the tracks are fitted using a Kalman filter.46,47 The fit takes into

account multiple scattering and corrects for energy loss due to ionisation. The χ2

per degree of freedom of the fit is used to determined the quality of the reconstructed

track. After the fit, the reconstructed track is represented by state vectors (x, y,

dx/dz, dy/dz, q/p) which are specified at given z-positions in the experiment. If

two or more tracks have many hits in common, only the one with most hits is kept.

Figure 15 shows the tracks reconstructed in a typical event.

Mis-reconstructed (fake) tracks are those that do not correspond to the trajec-

tory of a real charged particle. Due to the large extrapolation distance in traversing

the magnet, most of these fake tracks originate from wrong associations between

VELO tracks and tracks in the T stations. The fraction of fake tracks in minimum

bias events is typically around 6.5%, increasing to about 20% for large multiplicity

events.48 This fake rate is significantly reduced, at the cost of a small drop in effi-

ciency, with a neural network classifier which uses as input the result of the track

fit, the track kinematics and the number of measured hits in the tracking stations

versus the number of expected hits.

2.2.1. Track finding efficiency

The tracking efficiency is defined here as the probability that the trajectory of a

charged particle that has passed through the full tracking system is reconstructed.

In particular it does not account for interactions with the material, decays in flight

and particles that fly outside of the detector acceptance.
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Fig. 16. Tracking efficiency as function of the momentum, p, the pseudorapidity, η, the total
number of tracks in the event, Ntrack, and the number of reconstructed primary vertices, NPV.50

The error bars indicate the statistical uncertainty.

The efficiency is measured using a tag-and-probe technique with J/ψ → μ+μ−

decays. In this method one of the daughter particles, the “tag” leg, is fully recon-

structed, while the other particle, the “probe” leg, is only partially reconstructed.

The probe leg should carry enough momentum information such that the J/ψ in-

variant mass can be reconstructed with a sufficiently high resolution. The tracking

efficiency is then obtained by matching the partially reconstructed probe leg to a

fully reconstructed long track. If a match is found the probe leg is defined as effi-

cient. In the trigger and offline selection of the J/ψ candidates, no requirements are

set on the particle used for the probe leg to avoid biases on the measured efficiency.

Two different tag-and-probe methods49,50 are used to measure the efficiency

for long tracks. The overall efficiency depends on the momentum spectrum of the

tracks and the track multiplicity of the event. The tracking efficiency is shown in

Fig. 16 as a function of the absolute momentum, p, of the pseudorapidity, η, of

the total number of tracks in the event, Ntrack, and of the number of reconstructed

primary vertices, NPV. The performance in the 2012 data is slightly worse, which is

partially due to the higher hit multiplicity at the higher centre-of-mass energy. As

can be seen, the average efficiency is above 96% in the momentum range 5 GeV/c <

p < 200 GeV/c and in the pseudorapidity range 2 < η < 5, which covers the phase

space of LHCb. Only in high multiplicity events (Ntrack > 200) it is slightly less

than 96%. The track reconstruction efficiency has been shown to be well reproduced

in simulated events.50
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Fig. 17. Relative momentum resolution versus momentum for long tracks in data obtained using
J/ψ decays.

2.2.2. Mass and momentum resolution

The momentum resolution for long tracks in data is extracted using J/ψ → μ+μ−

decays. The mass resolution of the J/ψ is primarily defined by the momentum

resolution of the two muons. Neglecting the muon masses and considering decays

where the two muons have a similar momentum, the momentum resolution, δp, can

be approximated as:

(
δp

p

)2

= 2

(
σm
m

)2

− 2

(
pσθ
mcθ

)2

, (1)

where m is the invariant mass of the J/ψ candidate and σm is the Gaussian width

obtained from a fit to the mass distribution. The second term is a correction for

the opening angle, θ, between the two muons, where σθ is the per-event error on θ

which is obtained from the track fits of the two muons. Figure 17 shows the relative

momentum resolution, δp/p, as a function of the momentum, p. The momentum

resolution is about 5 per mille for particles below 20 GeV/c, rising to about 8 per

mille for particles around 100 GeV/c.

The mass resolution is compared for six different dimuon resonances: the J/ψ ,

ψ(2S), Υ (1S), Υ (2S) and Υ (3S) mesons, and the Z0 boson. These resonances are

chosen as they share the same topology and exhibit a clean mass peak. A loose

selection is applied to obtain the invariant mass distributions, as shown in Fig. 18.

The momentum scale is calibrated using large samples of J/ψ → μ+μ− and

B+ → J/ψK+ decays, as is done for the precision measurements of b-hadron and

D meson masses.51–54 By comparing the measured masses of known resonances

with the world average values,55 a systematic uncertainty of 0.03% on the momen-

tum scale is obtained. As shown in Fig. 17 the momentum resolution depends on

the momentum of the final-state particles, and therefore the mass resolution is not

expected to behave as a pure single Gaussian. Nevertheless, a double Gaussian func-

tion is sufficient to describe the observed mass distributions. Final-state radiation

creates a low-mass-tail to the left side of the mass distribution, which is modelled

by an additional power-law tail. To describe the Z0 mass distribution, a single
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Fig. 18. Mass distributions for (top left) J/ψ , (top right) ψ(2S), (bottom left) Υ (1S), Υ (2S)
and Υ (3S), and (bottom right) Z0 candidates. The shapes from the mass fits are superimposed,
indicating the signal component (dotted line), the background component (dashed line) and the
total yield (solid line).

Table 2. Mass resolution for the six dif-
ferent dimuon resonances.

Resonance Mass resolution (MeV/c2)

J/ψ 14.3± 0.1

ψ(2S) 16.5± 0.4

Υ (1S) 42.8± 0.1

Υ (2S) 44.8± 0.1

Υ (3S) 48.8± 0.2

Z0 1727 ± 64

Gaussian function with power-law tail is convolved with a Breit–Wigner function,

where the natural width is fixed to 2495.2 MeV/c2.55 In all cases, an exponential

shape models the background. The results from the fits are overlaid in Fig. 18. The

overall mass resolution is calculated as the root mean square of the double Gaus-

sian function. The mass resolution obtained from the fits are shown in Table 2. The

uncertainties are statistical only. Figure 19 shows the mass resolution and relative

mass resolution versus the mass of the resonance. It can be seen that the relative

mass resolution, σm/m, is about 5 per mille up to the Υ masses.
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Fig. 19. Mass resolution (σm) (left) and relative mass resolution (right) as a function of the
mass (m) of the dimuon resonance. The mass of the muons can be neglected in the invariant
mass calculation of these resonances. The mass resolution is obtained from a fit to the mass
distributions. The superimposed curve is obtained from an empirical power-law fit through the
data points.

2.3. Spatial alignment of the tracking detectors

The alignment of the LHCb tracking detector uses information from optical and

mechanical surveys and from reconstructed charged particle trajectories. To ensure

adequate tracking performance, the position and orientation of detector elements in

the global reference frame must be known with an accuracy significantly better than

the single hit resolution. Since LHCb is a forward spectrometer, the requirements

in terms of absolute units of distance are different for the different coordinate axes:

tracks are less sensitive to displacements of elements in the z direction compared

to equally sized displacements in x and y. Similarly, rotations around the z axis are

more important than those around the x and y axis.

Although the final alignment precision is obtained with reconstructed tracks, a

precise survey is indispensable both as a starting point for the track-based alignment

and to constrain degrees of freedom to which fitted track trajectories are insensitive.

For example, the knowledge of the z scale of the vertex detector originates solely

from the pre-installation survey. Ultimately this is what limits, for example, certain

measurements such as the B0
s oscillation frequency.

Several methods have been deployed for track-based alignment in LHCb. One

technique used for the VELO divides the alignment in three stages, corresponding

to different detector granularity.56,57 The relative alignment of each Φ sensor with

respect to the R sensor in the same module is performed by fitting an analytical

form to the residuals as a function of φ. The relative alignment of the modules within

each VELO half are obtained with a χ2 minimisation based on an implementation

of Millepede method.58 The relative alignment of one VELO half with respect

to the other half is also based on the Millepede method. It is performed using a

track sample crossing the overlap region between the two halves and with a χ2

minimisation that exploits the difference in the position between primary vertices

reconstructed in both halves. Similar approaches based on Millepede have been

considered for the OT59 and IT.
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The implementations of the Millepede algorithm in LHCb use a simplified model

of the track, ignoring the effects of the magnetic field, multiple scattering and energy

loss. These effects are accounted for in the default LHCb track fit, which is based

on a Kalman filter. Therefore, another global χ2 minimisation that uses the default

track fit has been implemented.60,61 The algorithm can align all tracking detectors

simultaneously. The correct treatment of magnetic field and material effects facili-

tates the use of relatively low-momentum tracks in the alignment, which helps to

constrain the z scale of the spectrometer. Another novel aspect is that tracks can be

combined in vertices, allowing for the use of primary vertex and mass constraints.62

All methods were used during the commissioning of the detectors and in the

initial pp collisions and found to be in good agreement.63 The method using the

Kalman track fit is used routinely for the tracking alignment updates.

2.3.1. Vertex locator alignment

The most stringent alignment requirements apply to the vertex detector. In order

not to degrade impact parameter or decay time resolutions, the VELO sensors

need to be aligned with a precision of a few microns in x and y and a few tens of

microns in z. Components of the detector have been surveyed at various stages of

the assembly at ambient temperature. The relative position of the Φ sensor with

respect to the R sensor in each module has been measured with an accuracy of

about 3μm for the x and y translation and with an accuracy of about 20μrad for

rotations around the x and y axis. The relative module position within each half of

the detector has been measured with a precision of about 10μm for the translations

along x, y and z. The position of the two VELO halves has been determined with

an accuracy of 100μm for the translations and 100μrad for the rotations.

The main degrees of freedom in the track alignment of the VELO sensors and

modules are the x and y translation and the rotation around the z axis. The align-

ment for the x and y translation can be evaluated at the sensor level, while the one

for the rotation around the z axis can be determined only at the module level, as

only the Φ sensors are sensitive to this degree of freedom. The misalignment due to

the other three degrees of freedom (the z translation and the rotations around the

x and y axis) causes a second-order effect. To obtain the desired sensitivity, a track

sample with a wide distribution of the angle between the track and the strips in the

sensor plane is required. Consequently, the alignment for these degrees of freedom

can be evaluated only for the R sensors.

The track-based alignment is insensitive to the overall z scale, xz and yz shearing

and to the global position and orientation of the VELO.56 To constrain these degrees

of freedom the position of two modules in each half are fixed to their nominal survey

position in the VELO half frame. The average position and rotation of the two

halves is also fixed. After correcting for differences in temperature, the position of

the modules and sensors evaluated by the alignment with tracks is found to be in

good agreement with the metrology.
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Fig. 20. Run dependence of the relative misalignment of the two VELO halves along the x axis
evaluated with primary vertices.29

The alignment of the two VELO halves relies on two constraints. The first one

is determined by tracks that cross both halves of the detector, in particular those

that traverse the region where the sensors in the two halves overlap. This gives

sensitivity to misalignment due to x and y translations and to rotation around the

z axis. In addition, reconstructed primary vertices are used which adds sensitivity

to relative x, y and z translations and to rotations around the x and y axis.

The operating temperature was found to have an effect on the alignment and

hence is kept sufficiently stable such that variations can be ignored. A more im-

portant issue is the fact that the VELO halves are moved every fill in order to

put them at a safe distance from the beam during LHC injection. This movement

corresponds to about 29 mm in x. The VELO is closed only once stable beam con-

ditions are declared. The position of the VELO stepper motors is measured using

resolvers mounted on the motor axes and is reproducible with a precision better

than 10μm. This measurement is then used as an alignment correction. Figure 20

shows the distribution of the difference between the x position of primary vertices

that are separately reconstructed in the left and right detector halves as a function

of time. The variation illustrates that the resolver position measurement is accurate

to about 5μm.

The uncertainty in the z scale of the VELO is important for precision measure-

ments of b-hadron lifetimes and B0
(s) mixing frequencies. At the time of assembly

the length of the VELO base plate was measured with an accuracy of approxi-

mately 100μm over the full length of the VELO.29 This translates into a length

scale uncertainty of about 0.01%. To verify the understanding of the survey, the

measurements are compared to the track-based alignment. In the latter, the length

scale is fixed by constraining two modules in each half to their nominal position.

The RMS of the differences in the z positions of unconstrained modules is 20μm, in

agreement with the estimated survey uncertainty. To interpret this as a length scale,
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Fig. 21. IPx resolution as a function of 1/pT, comparing different qualities of alignment, measured
on 2010 data.

the RMS of the distribution of the z positions of the first hits on typical VELO

track segments is conservatively used. In combination with the number above this

leads to a total systematic uncertainty on the length scale of 0.022%.

To illustrate the effects of misalignment on the VELO performance, the impact

parameter (IP) resolution is examined (see Subsec. 2.4.2). Figure 21 shows the IPx

resolution versus 1/pT obtained at different stages of the alignment, namely by using

the alignment from the commissioning phase, after a track-based alignment that

only corrects for the relative alignment of the two halves, and after the full alignment

of the sensors. The refinement of the alignment improves the IP resolution by about

25% at high transverse momentum. As the remaining alignment uncertainties are

smaller than the corrections obtained in the last stage, the residual misalignment

has no significant effect on the IP resolution.

2.3.2. Alignment of the silicon tracker and outer tracker

The rest of the spectrometer is aligned relative to the VELO using long tracks. The

alignment is performed at different levels of granularity, exploiting differences in the

precision of survey between ‘small’ and ‘large’ structures. Typical alignment degrees

of freedom are displacements in x and rotations around the z axis for the smallest

structures (modules in the OT and ladders in IT and ST) and displacements in z

for the layers.

Global deformations are a concern in a forward spectrometer with parallel detec-

tor planes, in particular x scaling, z scaling, xz shearing and curvature (q/p) bias.

An x scaling corresponds to a displacement along x of detector modules assembled

in a single layer proportional to the x coordinate. In the TT and IT detectors such

a scaling is constrained by tracks that traverse neighbouring ladders in the same

layer. To profit from this constraint the sample of tracks is enriched by preferentially

selecting such ‘overlap’ tracks.
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In principle, the z scaling of the spectrometer is fixed by the z scale of the

vertex detector, which comes from a survey. In practice, this leads to a relatively

poor constraint on the tracking layers downstream of the magnet. It has been

verified that the last OT detector plane downstream of the magnet can be fixed to

its survey position without introducing a momentum bias.

A global xz shearing can also be fixed using information from the VELO survey.

Whilst this leads to a relatively weak constraint on the tracking layers downstream

of the magnet, any remaining shearing between the VELO and the rest of the

tracking system is absorbed in the curvature bias, which is a global deformation

that is typical for alignment with tracks in a non-zero field.62,64 The curvature bias

is constrained by including mass constraints from cleanly selected D0 → K−π+ or

J/ψ → μ+μ− candidates.62

Another concern are observed displacements in the z coordinate, in particular

in TT and IT1, the detectors closest to the magnet. In the presence of a magnetic

field, tracks are sensitive to the position of the tracking detectors relative to the

dipole field. An alignment performed with early 2010 data indicated a displacement

of approximately 1 cm of the entire spectrometer along the z axis. In winter 2011 an

in-situ measurement of the magnetic field map on a finite number of points along

the x, y and z axes in the centre of the magnet confirmed this displacement.

The survey of the tracking detectors was performed with the dipole magnet

switched off. After anomalously large differences between survey data and track-

based alignment were observed in IT1, the position of all IT boxes was monitored

before and after ramping the field, revealing movements of up to 5 mm. This illus-

trates that data collected in the absence of magnetic field are only of limited value

in the alignment.

As for the VELO a crucial aspect of the alignment is stability over time. Detec-

tors may be moved, for example, for maintenance during accelerator technical stops.

These occurred at least once every two months in the first years of LHC running.

The dipole field is reversed about twice per month, which also affects alignment.

Consequently, the detector is realigned after every technical stop and every magnetic

field reversal. Remaining misalignments in the relative position of neighbouring

detector modules are estimated from hit residual distributions to be approximately

10μm in IT and 30μm in TT.

Figure 22 shows the position of the peak of the J/ψ → μ+μ− invariant mass

distribution as a function of time in a period in which the operating temperature

of the TT modules was varied by 15◦C in order to study detector performance.

The temperature change causes the support structure on which the modules are

mounted to contract by an amount that is large enough to affect the curvature

measurement, as shown by the bias in the J/ψ mass. After a separate track-based

alignment is performed for each period with constant temperature, the bias in the

mass disappears.65 This illustrates the importance of operating the detector under

stable conditions.
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Fig. 22. Fitted position of the peak of the J/ψ → μ+μ− invariant mass distribution as a function
of run number in a two-week period in which the operating temperature of TT modules was varied.
The mass is evaluated using the same alignment for the full period on the top and using a dedicated
track alignment for each period with constant temperature on the bottom.

Although the average curvature bias is constrained with D0 → K−π+

decays, other misalignment effects, uncertainties in modelling of the magnetic field

(evaluated to be about 0.1%) and detector material still affect the reconstructed

invariant mass. In particular, small variations in the invariant mass as function of

particle momentum are observed. To obtain precise mass measurements corrections

on the momentum scale are tabulated and calibrated using samples of J/ψ → μ+μ−

and B+ → J/ψK+ decays (see Subsec. 2.2.2).

2.3.3. Muon system alignment

The read-out pads of the muon detector are less fine-grained than the read-out

channels of the other tracking systems, leading to a coarser spatial resolution. Con-

sequently the alignment of the muon chambers is in general less critical. However,

misalignments larger than a few mm in the first two muon stations can affect the

efficiency of the L0 muon trigger and introduce a charge asymmetry. In the L0

trigger the muon momentum is estimated by the x coordinate of hits in stations

M1 and M2. Studies on simulated events have shown that an alignment precision

of 1 mm is enough to guarantee charge symmetry of the trigger efficiency and mo-

mentum measurement to the 0.1% level. The alignment is even less critical for the

other stations, which are not used for momentum estimate and have lower spatial

resolution.

The muon chambers are mounted in support structures called ‘half stations’.

The alignment accuracy of the chambers within a half station is about 1 mm in the

x and y direction. Each half station can be independently moved on rails in the
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Fig. 23. Alignment of the ten muon half stations for the 2012 run.35 The values of the inner
edge in the x position (left) and of the median y position are shown as a function of the station
position along z. The empty and full dots represent the results from the survey measurements and
the software alignment respectively. The error bars, when visible, show the sum in quadrature of
statistic and systematic uncertainties. The dashed lines represent the ideal projective alignment
of the detector in the closed position.

x direction. Due to mechanical limitations observed during installation, the half

stations could not be put exactly in their nominal position. Moreover, in order to

keep a safe distance from the beam-pipe, a small separation between the two sides

was maintained, preserving as much as possible the symmetry and projectivity

with respect to the interaction point. The position of the closed half stations was

surveyed using four reference points on each half station. The result of the survey

is shown in Fig. 23. Displacements with respect to the ideal projective position are

found to be within 2 mm.

The alignment obtained from the survey is refined offline using reconstructed

tracks after the alignment of the tracking system. Muon hits are attached to recon-

structed tracks matching standalone muon segments with a good χ2. The global χ2

of an ensemble of tracks is minimised using the same method as used for the rest

of the tracking system. As shown in Fig. 23 for 2012 data, small, but significant,

differences are found for the translational degrees of freedom, while no significant

rotations are found. The result of this procedure is confirmed, independently of the

alignment of the other tracking detectors, using standalone muon segment recon-

struction from events selected without the muon trigger. The resulting differences

with respect to the survey positions are within 1.5 mm in x and y. The accuracy

of the alignment based on tracks is 1 mm or less, sufficient to avoid any detector

efficiency effects that could introduce charge asymmetries in the L0 trigger. The

alignment results are thus used by the L0 muon trigger for the computation of

transverse momenta and are accounted for in the subsequent offline reconstruction

of muons.
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Fig. 24. Decay time distribution for B0
s → D−

s π
+ candidates tagged as mixed (different flavour

at decay and production; red, continuous line) or unmixed (same flavour at decay and production;
blue, dotted line).66

2.4. Vertexing and decay time resolution

The study of CP violation and rare decays in the heavy flavour sector requires the

accurate measurement of production and decay vertices and track impact param-

eters, both for flavour tagging and for background rejection. The most stringent

demands on the vertex reconstruction arise from the decay time resolution require-

ments to resolve the fast flavour oscillations induced by B0
s–B̄0

s mixing. LHCb

has made the world’s most precise measurement of the B0
s oscillation frequency

using the decay B0
s → D−

s π
+.66 The decay time resolution in LHCb is sufficient to

observe the oscillations in the flavour tagged decay time distribution, as illustrated

in Fig. 24.

2.4.1. Primary vertex reconstruction

The primary vertex (PV) resolution is measured by comparing two independent

measurements of the vertex position in the same event. This is achieved by randomly

splitting the set of tracks in an event into two and reconstructing the PVs in

both sets. The width of the distribution of the difference of the vertex positions

is corrected for a factor
√

2 to extract the vertex resolution. The number of tracks

making a vertex ranges from 5 (the minimum required by the PV reconstruction)

to around 150, and this technique allows the resolution to be measured using up

to around 65 tracks. The PV resolution is strongly correlated to the number of

tracks in the vertex (the track multiplicity). To determine the vertex resolution as

a function of the track multiplicity, only vertex pairs with exactly the same number

of tracks are compared. The result for the resolution in the x and y direction is

shown in Fig. 25. A PV with 25 tracks has a resolution of 13μm in the x and y

coordinates and 71μm in z.
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Fig. 25. The primary vertex resolution (left), for events with one reconstructed primary vertex,
as a function of track multiplicity. The x (red) and y (blue) resolutions are separately shown and
the superimposed histogram shows the distribution of number of tracks per reconstructed primary
vertex for all events that pass the high level trigger. The impact parameter in x resolution as a
function of 1/pT (right). Both plots are made using data collected in 2012.29

2.4.2. Impact parameter resolution

The impact parameter (IP) of a track is defined as its distance from the primary

vertex at its point of closest approach to the primary vertex. Particles resulting

from the decay of long lived B or D mesons tend to have larger IP than those of

particles produced at the primary vertex. Selections on IP and IP χ2 are extensively

used in LHCb analyses to reduce the contamination from prompt backgrounds.

Consequently, an optimal IP resolution and a good understanding of the effects

contributing to the IP resolution are of prime importance to LHCb performance.

The IP resolution is governed by three main factors: multiple scattering of par-

ticles by the detector material; the resolution on the position of hits in the detector

from which tracks are reconstructed; and the distance of extrapolation of a track

between its first hit in the detector and the interaction point. The minimisation of

these factors is achieved in the design of the VELO. The sensors are positioned close

to the beams, separated from them by only a thin aluminium foil. The first active

strips are only 8 mm away from the beams during physics collisions. The detector

provides high-precision hit position measurements as shown in Subsec. 2.1.1.

As the IP is defined as the distance between a point and a line, it is not a

Gaussian distributed quantity. It is therefore customary to divide the IP in two

quantities that follow a normal distribution by projecting out two independent

components. In LHCb these are the components of the IP vector in the transverse

plane,

IPx = x− xPV − (z − zPV)tx (2)

and similarly for y, where (x, y, z)PV is the position of the primary vertex, (x, y, z)

is the point on the track of closest approach to the primary vertex and (tx, ty, 1) is

the direction vector of the track. Figure 25 shows the IPx resolution as a function

1pT. The IPy resolution is similar. The linear dependence on 1/pT is a consequence
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of multiple scattering and the geometry of the vertex detector. At asymptotically

high pT the IPx resolution is about 13μm.29

2.4.3. Decay time resolution

The distance between the production and secondary decay vertices of long lived

mesons is used to reconstruct the particle’s decay time. This is required for lifetime

measurements and for resolving flavour oscillations in time-dependent CP violation

measurements. Consequently, the performance of the VELO is illustrated here with

an analysis of the decay time resolution of B0
s → J/ψφ decays.67

Time dependent CP violation effects are measured as the amplitude of an oscil-

lation in the B decay time distribution. The size of the observed amplitude is

damped by a dilution factor from the finite decay time resolution.68 Hence, achiev-

ing optimal decay time resolution is important and any bias in the estimated decay

time resolution leads to a bias in the measurement of the CP violating effect.

The reconstructed decay time in the rest frame of the decaying particle can be

expressed in terms of the reconstructed decay length l, momentum p and mass m

of the particle in the LHCb frame as t = ml/p. The decay time is computed with a

vertex fit that constrains the decaying particle to originate from the primary vertex.

The uncertainty on the decay length l and on the momentum p are essentially

uncorrelated in LHCb. Consequently, the decay time uncertainty can be expressed

in terms of the decay length uncertainty σl and the momentum uncertainty σp as

σ2
t =

(
m

p

)2

σ2
l +

(
t

p

)2

σ2
p . (3)

This expression shows an explicit dependence on the decay time. However, for

decay times up to a few times the B meson lifetime, the uncertainty is dominated by

the σl term, motivating the use of a ‘prompt’ control channel to calibrate the decay

time uncertainty. The decay time resolution depends on the topology of the decay

and is calibrated for each final state on data. For B0
s → J/ψφ decays, the calibration

method uses prompt combinations that fake signal candidates. Subtracting the

small contribution from signal candidates and long-lived background using the sPlot

technique,69 the shape of the decay time distribution is determined only by the

resolution function.

Figure 26 shows the resolution as a function of the (fake) B candidate momen-

tum. It should be noted that the decay time resolution is essentially independent

of the B momentum, illustrating that σl ∝ p. This is a consequence of the fact that

the larger the momentum is, the smaller the opening angle, and hence the larger

the uncertainty on the position of the vertex in the direction of the boost. The

resolution is also shown as a function of the per-event estimated uncertainty in the

decay time, which is obtained from the vertex fit. As expected, the resolution is a

linear function of the estimated uncertainty. A decay time resolution of ∼ 50 fs is

obtained in LHCb. For a mixing frequency of 17.7 ps−1, such as for B0
s oscillations,

this decay time resolution leads to a dilution of the CP asymmetry by a factor ∼ 0.7.
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Fig. 26. Decay time resolution as a function of momentum (left) and as a function of the esti-
mated decay time uncertainty (right) of fake, prompt B0

s → J/ψφ → μ+μ−K+K− candidates
in 2011 and 2012 data.29 Only events with a single reconstructed primary vertex are used. The
superimposed histogram shows the distribution of momentum (left) and estimated decay time
uncertainty (right) on an arbitrary scale.
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Fig. 27. Distribution of the invariant mass of K0
S → π+π− candidates with a decay vertex at a

significant distance to the PV, for long tracks (left) and downstream tracks (right). A mass reso-
lution of 3.5 MeV/c2 is achieved for the candidates reconstructed from long tracks and 7 MeV/c2

for those using downstream tracks.

2.4.4. V 0 reconstruction

Reconstructed V 0 decays (K0
S → π+π− and Λ→ pπ−) are an essential ingredient of

many LHCb analyses. If the decay time is sufficiently small, the daughter particles

are reconstructed as long tracks, and for these decays the invariant mass resolution

is as good as for short-lived resonances (see Subsec. 2.2.2 and Fig. 27). For V 0’s that

decay outside the VELO acceptance, but before the magnet, the daughter particles

are reconstructed as downstream tracks from hits in the TT and T stations. As

the resolution on the track direction reconstructed in the layers of the TT is not as

good as in the VELO, the invariant mass resolution for the downstream category is

worse than for the short-lived category, as shown in Fig. 27. For K0
S momenta typical
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of B decay products, about two thirds of the reconstructed K0
S decays are found

using downstream tracks, illustrating the importance of the downstream tracking

for physics performance.

3. Neutral Particle Reconstruction

Neutral particle reconstruction is based on information provided by the four sys-

tems (SPD, PS, ECAL and HCAL), which together form the calorimeter. The SPD

and the PS both consist of a plane of scintillator tiles, separated from each other by

a thin lead layer, while the ECAL and HCAL have shashlik and sampling construc-

tions, respectively. In all four cases, the light produced in the organic scintillators

is transmitted to photomultiplier tubes (PMT) by optical fibres.25,70 In general,

the detected signal pulses are longer than the nominal read-out window of 25 ns,

and this must be taken into account to minimise spill-over effects. In the ECAL

and HCAL detectors, this is performed by first clipping the signal to fit within the

read-out window. In the PS and SPD detectors, the effects of spill-over are removed

by subtracting a fraction of the signal integrated in the previous clock cycle.

The SPD uses a single bit for each cell to indicate whether or not it was traversed

by a charged particle, with a discriminator comparing the energy deposited in the

given cell to half of that expected from a minimum ionising particle (MIP). The

signal from the PS detector is digitised using a 10-bit ADC with a dynamic range

of 0.1–100 times the corresponding MIP energy deposit. The ECAL and the HCAL

have the same read-out electronics, which digitises signals with a 12-bit precision

and a dynamic range that results in a maximum detectable transverse energy of

10 GeV, optimised for the typical energy deposits that occur in LHCb events. The

operational status and stability of the ECAL and the HCAL detectors are examined

using dedicated systems based on light emitting diodes (LEDs). The average PMT

responses when illuminated by pulses of known intensities are used to monitor the

behaviour of the corresponding read-out channels.

Reliable neutral particle reconstruction requires calibration71,72 of the calorime-

ter system, which is therefore outlined briefly before describing the methods used

to reconstruct neutral particles

3.1. Calibration of the calorimeter system

The SPD calibration is performed by adjusting the discriminator threshold for each

channel to half of the expected MIP energy deposit. These values are established

at the beginning of each data taking period, and the fraction of tracks pointing to

SPD cells that have an associated SPD hit is used to monitor performance during

data-taking.73 Thresholds are adjusted to ensure high and uniform efficiency.

The PS calibration consists of equalising the ADC response of all channels, based

on the most probable values of MIP energy deposits. The MIP sample is composed of

reconstructed tracks of particles with momentum greater than 2 GeV/c to ensure

that they reach the PS.74 As for the SPD, the calibration is established at the
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Fig. 28. Invariant mass distribution for π0 → γγ candidates upon which the fine calibration
algorithm is applied. The red curve corresponds to the distribution before applying the method,
while the blue curve is the final one. Values in the red (blue) box are the mean and sigma of the
signal peak distribution in MeV/c2 before (after) applying the fine calibration method.

beginning of each data-taking period, checked regularly and corrected as necessary

during the run.

The calibration of the ECAL requires two main steps: the first to set an initial

calibration, and the second to refine the values through an iterative procedure. The

first step was performed at the beginning of LHCb commissioning by using test-

beam measurements to reproduce the design energy range. With these settings, a

π0 → γγ mass resolution at the level of 10% was achieved for the first collisions

in 2009. In subsequent years, initial settings were obtained using the LED system,

achieving a similar accuracy of 8–10%. In the second step, initial calibration param-

eters are refined by studying the energy deposited over many events and requiring

continuity across cell boundaries.75 The calibration constants are improved by per-

forming fits to the invariant mass distribution of π0 → γγ decays,76 combining a

photon hitting the cell to be calibrated with another reconstructed photon. The

procedure is repeated until all coefficients are stable. Figure 28 shows the change in

the fitted π0 invariant mass distribution, before and after the calibration procedure.

By applying the method to a sample of miscalibrated simulated events, the final

precision of the cell-to-cell intercalibration is estimated to be approximately 2%. In

order to apply the π0 mass fit to every cell in the ECAL, several hundred thousand

events are required.

The calibration of the HCAL uses two 137Cs sources of ∼ 10 mCi, one per

detector side. This procedure takes about an hour during which they are transported

through all of the scintillator cells by a hydraulic system. The response of the PMTs

is measured by a dedicated system of current integrators. The relationship between

the integrated anode current and the particle energy was measured in test-beam
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Fig. 29. Ratio between the rate of events triggered by the L0-hadron trigger, based on the HCAL,
and Muon-based triggers. Distinct increases in rate, e.g. as at a recorded luminosity of around
50 pb−1, correspond to the application of a new set of PMT gains.

and is used to set the values for the HCAL parameters, obtaining a cell-to-cell

intercalibration at the level of 5%. The use of the in-situ source limits the calibration

procedure of the HCAL to technical stops, which occur bi-monthly.

The performance of the ECAL and the HCAL is monitored during the data-

taking periods using the built-in LED system: the response to the LED flashes is

found to agree well with the response to actual particles. In addition, the distribu-

tion of E/pc, for electrons in the case of the ECAL and hadrons in the case of the

HCAL, can be compared to simulations and is used for monitoring purposes.

While no significant degradation of the SPD and the PS performance has been

seen, ageing has been observed in both the ECAL and the HCAL. The main cause

of this is a decrease of the PMT gains due to the degradation of the dynode system

at high integrated anode current. The gain losses are compensated by increasing

the voltage between the PMT dynodes. The time period over which the gradual

gain reduction takes place is shorter than the interval between which absolute cal-

ibrations can be performed for the ECAL (using π0 mass reconstruction) and the

HCAL (using the 137Cs sources). Therefore, the relative corrections required to

maintain performance are estimated using dedicated procedures. For the ECAL,

the E/pc ratio is used whilst the HCAL is monitored using the LED pulse system.

The change in performance with time is illustrated in Fig. 29, which shows the ratio

between the L0-hadron trigger rate, based on the HCAL hardware, and a combi-

nation of muon-based triggers. As a result of the ageing, a gradual reduction of the

rate is observed, with intermittent increases, corresponding to the application of a

new set of PMT gains.

3.2. Selection of neutral energy deposits in ECAL

ECAL cells with energy deposits are grouped together to form clusters by applying

a 3 × 3 cell pattern around local energy deposition maxima. Consequently, the

centres of the reconstructed clusters are always separated by at least one cell. If a
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given cell is present in more than one cluster, its energy is redistributed between

the clusters under consideration according to the total energies of the clusters.

Although this process is iterative, it converges rapidly because the effective Molière

radius (3.5 cm) of the ECAL is smaller than the size of the cells, which have lengths

of side of 4.04 cm, 6.06 cm and 12.12 cm for the inner, middle and outer regions,

respectively. Each cluster is characterised by its energy-weighted moments up to

second order, namely the total energy, the energy-weighted position and the two-

dimensional energy spread matrix.

Clusters corresponding to energy deposits of neutral particles are identified

as those without an associated charged track. This is done using the procedure

summarised below. First, all reconstructed tracks in the event are extrapolated to

the calorimeter. Next, all pairwise combinations of extrapolated tracks and recon-

structed clusters are formed. The matching between tracks and clusters is evaluated

using the χ2
2D metric,

χ2
2D =

(
�rtr − �rcl

)T (Ctr + Scl

)−1(
�rtr − �rcl

)
, (4)

where �rtr and �rcl represent the local coordinates of tracks and clusters, respectively,

at the z barycentres of clusters, Ctr is the covariance matrix of the �rtr, and Scl is

the cluster energy spread matrix. The z barycentre of a cluster is the average

energy-weighted position of clusters in z, corrected assuming logarithmic energy

dependence. A cluster generated by a neutral particle is considered to be isolated,

and hence a photon candidate, if it has a minimum value of χ2
2D with respect to

any extrapolated track of at least 4. This cut significantly suppresses the clusters

due to other charged particles while keeping high efficiency for photons.77

3.3. Photon reconstruction

The photon energy is determined from the total cluster energy in the ECAL and

the reconstructed energy deposit in the PS.77 The photon direction is derived from

an assumed origin for the photon and the energy-weighted position of the photon

candidate: the transverse profile is corrected for the spread of the cluster, and the

z barycentre calculated as for the χ2
2D matching.

The performance of high-energy photon reconstruction is illustrated by the

reconstructed B0 → K∗0γ mass distribution shown in Fig. 30. The mass resolution

obtained for this radiative decay is dominated by the ECAL energy resolution and is

found to be 93 MeV/c2.78 A comparison of the data with simulated samples shows

that this corresponds to an accuracy of the cell-to-cell intercalibration of around

2%.

3.4. Neutral pion reconstruction

Neutral pions with low transverse momenta are mostly reconstructed as pairs of

well-separated photons (resolved π0 candidates). A mass resolution of 8 MeV/c2
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Fig. 30. Mass distribution of reconstructed B0 → K∗0(K+π−)γ candidates obtained in the 2011
data sample. The blue curve corresponds to the mass shape fit. The K∗0γ signal (green dotted
line) and the various background contaminations are shown.78

is obtained for such neutral pions. However, due to the finite ECAL granularity,

photon pairs from the decay of sufficiently high momentum π0 cannot be resolved

as individual clusters. This essentially holds for all π0 meson decays with transverse

momentum above 2 GeV/c. To reconstruct such ‘merged’ π0 candidates, a proce-

dure has been designed to identify overlapping clusters. The algorithm consists of

splitting each single ECAL cluster into two 3 × 3 subclusters built around the two

highest energy deposits of the original cluster. The energy of the common cells is

then distributed between the two assumed subclusters by fitting the energy dis-

tribution with that of two photons, using the expected transverse profile obtained

from simulations. Since the position of the two subcluster barycentres is a function

of the energy distribution, this procedure requires an iterative process.

The performance of neutral pion reconstruction is illustrated in Fig. 31, which

shows the invariant mass distribution for D0 → K−π+π0 candidates for resolved
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Fig. 31. Mass distributions of reconstructed D0 → K−π+π0 candidates with resolved π0 (left)
and merged π0 (right). Both are obtained from the 2011 data sample. The overall mass fit79 is
represented by the blue curve, with the signal (red dashed line) and background (green dash-dotted
line and purple dotted lines) contributions also shown.
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and merged π0 candidates.79 In this example, the estimated invariant mass reso-

lution is 30 MeV/c for the merged π0 candidates and 20 MeV/c for the resolved

ones.

4. Particle Identification

Particle identification in LHCb is provided by four different detectors: the calori-

meter system, the two RICH detectors and the muon stations. In the following

sections the performance of the individual sub-systems is presented first, followed by

a description of the methods used to combine the information for charged particles

in a single set of variables that provide optimal particle identification performance.

4.1. Calorimeter system based particle identification

The main role of the calorimeters in terms of particle identification is to provide

for the recognition of photons, electrons and π0 candidates. Distinguishing charged

from neutral particles is performed by studying the presence or absence of tracks in

front of the energy deposits using the techniques described in Subsec. 3.2. For energy

deposits related to neutral particles, the shape of the cluster is used to distinguish

between photons and π0 candidates. The photon hypothesis is established by taking

into account the possibility that photons convert when interacting with the detector

material upstream of the calorimeter. When an energy deposit corresponds to a

charged particle, the electron hypothesis is constructed to distinguish electrons

from hadrons. Outline descriptions of how the photon and electron hypotheses are

built are given below.

4.1.1. Photon and merged π0 identification

Two independent estimators are built to establish the photon hypothesis, one each

for the converted and non-converted candidates. Non-converted photons are identi-

fied by computing a photon hypothesis likelihood from the signal and background

probability density functions of several variables, namely the PS energy deposited

in front of the ECAL cluster cells, the matching estimator χ2
2D between the cluster

and any track defined for a charged particle, and the ratio between the energy of

the central cell of the ECAL cluster and the total ECAL energy. Because the non-

converted photon estimator depends on the energy and the calorimeter zone, several

probability density functions are constructed from simulations, for both signal and

background, corresponding to each of the zones. The difference in log-likelihood be-

tween the photon and the background hypotheses (Δ logL) is calculated and used

to identify photons. Figure 32 shows the performance of the photon identification

in terms of the efficiency and purity obtained for candidates with pT > 200 MeV/c.

To avoid the misidentification of photons with high-ET merged π0 candidates,

the difference between the distribution of the expected energy deposit of a photon

with respect to that of a π0 is used. This difference is evaluated by a neural network

1530022-43

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
5.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

IR
M

IN
G

H
A

M
 o

n 
01

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 5, 2015 12:10 IJMPA S0217751X15300227 page 44

The LHCb Collaboration

LHCbP
u
ri
ty

Efficiency  rejection (%)0π
0 50 100

 e
ff

ic
ie

nc
y 

(%
)

γ

0

20

40

60

80

100

LHCb
Simulation
Signal Data

Fig. 32. Performance of the photon identification. Purity as a function of efficiency for (green) the
full photon candidate sample, (blue) converted candidates according to the SPD information and
(red) non-converted candidates (left). Photon identification efficiency as a function of π0 rejection
efficiency for the γ − π0 separation tool for simulation, the red curve, and data, the blue curve
(right).

classifier (specifically, a multi-layer perceptron) trained with photons from a simu-

lated B0 → K∗0γ sample as signal and π0 mesons from a mixture of B decays as

background. These π0 mesons are reconstructed and selected as photons using the

same B0 → K∗0γ preselection used for the signal sample. A photon identification

efficiency of 95% can be obtained while rejecting 45% of the merged π0 meson back-

ground that are reconstructed as photons. Figure 32 shows the photon identification

efficiency with respect to the π0 rejection efficiency for simulation and data.

Photons converted before the magnet are reconstructed from electron–positron

tracks. The electron (positron) is selected on the basis of its electron PID variables

and electron confidence level, requiring a minimum pT value and an E/pc value

within a selected range. The algorithm only combines electron–positron pairs for

which the associated clusters have energy-weighted positions that are closer than

3σ of cluster extent (and 200 mm) in the vertical plane, at the average z barycentre

of clusters. Pairs are selected on the basis of their transverse momenta, their di-

electron masses and their reconstructed vertex positions. The electron energy is

corrected by including any bremsstrahlung photons measured by the calorimeters

that are compatible with the electron–positron pair.

Figure 33 shows the ratio of photon detection efficiencies between converted and

non-converted photons coming from the decay of π0 mesons for both simulation

and data. The simulation provides a good description of the photon reconstruc-

tion efficiency implying that the detector material where the conversions occur is

modelled well, and that the reconstruction algorithms work equally well in data and

simulation. The level of performance is illustrated by analyses that benefit from the

good resolution obtained using converted photons, such as χc → J/ψγ (Ref. 80) or

χb → Υγ (Ref. 81). In the case of the χc, for instance, the resolution on the mass

difference ΔM = M(μ+μ−γ)−M(μ+μ−) is about 5 MeV/c2. With this resolution,

the χc0, χc1 and χc2 states can be disentangled from one another.80

1530022-44

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
5.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

IR
M

IN
G

H
A

M
 o

n 
01

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 5, 2015 12:10 IJMPA S0217751X15300227 page 45

LHCb detector performance

Fig. 33. Ratio of photon detection efficiencies ε(γ → e+e−)/ε(γCALO) from the decay of π0

mesons in data (red) and simulations (blue).

4.1.2. Electron identification

The identification of electrons in the calorimeter system uses information derived

from the ECAL, the PS and the HCAL. The procedure to combine these different

sources of information is based on signal and background likelihood distributions

constructed for each sub-detector. In each case, reference histograms correlating

the energy measurement with the particle momentum are produced. For example,

Fig. 34 shows the E/pc distribution in the ECAL for electrons and hadrons, pro-

duced using the first 340 pb−1 recorded in 2011. The electron distribution has been

produced using reconstructed electrons from photon conversions and the hadron

distribution using pions and kaons from D0 meson decays. From these distribu-

tions, the log-likelihood difference between electrons and hadrons is derived.
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Fig. 34. Distribution for the ECAL of E/pc for electrons (red) and hadrons (blue), as obtained
from the first 340 pb−1 recorded in 2011.
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Fig. 35. Electron identification efficiency versus misidentification rate.

For the ECAL, the log-likelihood difference for electron and hadron hypotheses

Δ logLECAL(e−h) is computed based on both E/pc and the χ2
2D estimator defined

in Subsec. 3.2. The electron hypothesis likelihoods for the PS, Δ logLPS(e − h)

and the HCAL Δ logLHCAL(e− h) are built using the energy deposits in each sub-

detector. A combined estimator is then formed for the calorimeter system by taking

the sum of the individual estimators from the PS, the ECAL and the HCAL,

Δ logLCALO(e − h) = Δ logLECAL(e− h) + Δ logLHCAL(e− h)

+ Δ logLPS(e − h) . (5)

Figure 35 shows the combined electron identification efficiency defined above

versus the misidentification rate obtained by varying the selection criteria applied

to the likelihood difference.

The electron identification performance is evaluated using the data recorded in

2011, which are sufficient for it to be measured using a tag-and-probe method. This

is applied to B± → J/ψK± candidates with J/ψ → e+e−, where one of the elec-

trons is required to be identified by its electron ID (etag) while the second electron

is selected without using any information from the calorimeter system (eprobe). This

second electron is then used to estimate the efficiency of the electron ID.

The efficiency and the misidentification rate as a function of the eprobe momen-

tum are presented in Fig. 36 for several cuts on Δ logLCALO(e − h). The electron

identification efficiency is observed to be lower for p < 10 GeV/c. As expected,

the higher momenta particles have higher misidentification rates as illustrated in

Fig. 36. To quantify the typical identification performance of the entire calorime-

ter system, the average identification efficiency of electrons from the J/ψ → e+e−

decay in B± → J/ψK± events is (91.9 ± 1.3)% for a misidentification rate of

(4.54 ± 0.02)% after requiring Δ logLCALO(e− h) > 2.
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Fig. 36. Electron identification performances for various Δ logLCALO(e − h) cuts: electron effi-
ciency (left) and misidentification rate (right) as functions of the track momentum.
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Fig. 37. ΔθC distributions for the RICH1 gas (top left), RICH2 gas (top right) and Aerogel
(bottom).82

4.2. RICH system based particle identification

The primary role of the RICH system is the identification of charged hadrons (π,

K, p). The information provided is used both at the final analysis level, and as part

of the software trigger (see Sec. 5). In addition, the RICH system can contribute

to the identification of charged leptons (e, μ), complementing information from the

calorimeter and muon systems, respectively.
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4.2.1. Cherenkov angle resolution

One of the primary measures of the RICH performance is σ(θC), the resolution of

the Cherenkov angle with which the photons, radiated from the particles as they

traverse the various radiator volumes, can be reconstructed. The distributions for

ΔθC , the difference between the reconstructed and expected photon Cherenkov

angles, are shown in Fig. 37 for 2011 data, after all detector alignment and calibra-

tion procedures have been performed.82 The expected Cherenkov angles for each

track are calculated using reconstructed momenta and radiator refractive index in-

formation. Only high-momentum tracks are selected, to ensure that the Cherenkov

angle is close to saturation.

The values of σ(θC), extracted from a simple fit to the ΔθC distributions, are

determined to be 1.618 ± 0.002 mrad for RICH1 gas (C4F10) and 0.68 ± 0.02 mrad

for RICH2 (CF4), comparable with the expectations from simulation of 1.52 ±
0.02 mrad and 0.68 ± 0.01 mrad respectively. The disagreement seen between data

and simulation for C4F10 are largely attributed to imperfect corrections for distor-

tions in the RICH photon detector images caused by the residual magnetic field

in the vicinity of the RICH1 detector. Enhancements to the procedures used to

compute these corrections are foreseen for Run II, thus improving the resolutions

achieved in data.

For the RICH1 aerogel radiator, where the distribution is not symmetric, the

standard deviation is estimated to be 5.6 mrad. This value is about a factor of 1.8

larger than the expectation from simulation. This discrepancy is, at least partially,

explained by the unmodelled absorption of C4F10 gas by the very porous aerogel

radiator, with which it is in contact.

Due to the high average track multiplicity in LHCb events, a reconstructed

Cherenkov ring will generally overlap with several neighbouring rings. Solitary rings

from isolated tracks, where no overlap is found, provide a useful test of the RICH

performance, since isolated rings can be cleanly and unambiguously associated with

a single track. Figure 38 shows the Cherenkov angle as a function of particle momen-
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Fig. 38. Reconstructed Cherenkov angle for isolated tracks, as a function of track momentum in
the C4F10 radiator.82 The Cherenkov bands for muons, pions, kaons and protons are clearly visible.
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Table 3. Comparison of photoelectron yields (Npe) determined from
D∗+ → D0π+ decays in simulation and data, and p p → p p μ+μ− events in
data.

Npe from data
Radiator Npe from simulation

D0 → K−π+ p p→ p pμ+μ− D0 → K−π+

Aerogel 5.0± 3.0 4.3± 0.9 8.0± 0.6

C4F10 20.4 ± 0.1 24.5 ± 0.3 28.3± 0.6

CF4 15.8 ± 0.1 17.6 ± 0.2 22.7± 0.6

tum using information from the C4F10 radiator for isolated tracks selected in data

(∼ 2% of all tracks). As expected, the events populate distinct bands according to

their mass.

4.2.2. Photoelectron yield

The average number of detected photons for each track traversing the Cherenkov

radiator media, called the photoelectron yield (Npe), is another important measure

of the performance of a RICH detector. The yields for the three radiators used

in LHCb are measured in data using two different samples of events.82 The first

sample is representative of normal LHCb data taking conditions, and consists of

the kaons and pions originating from the decay D0 → K−π+, where the D0 is

selected from D∗+ → D0π+ decays. The second sample consists of low detector

occupancy p p → p p μ+μ− events, which provide a clean track sample with very

low background levels. In both samples, only high-momentum tracks are selected,

to ensure that the Cherenkov angle is close to saturation.

Table 3 shows the results of the photoelectron yield extraction, performed on

both real and simulated data. In data, the D∗+ → D0π+ events have values of Npe

that are less than those for p p→ p p μ+μ− events. This is mainly due to the higher

charged track multiplicities of the D∗+ → D0π+ events, reducing the effective

Npe, and the track geometry cut that is applied to the p p → p p μ+μ− events

increasing their Npe yield. The aerogel Npe data values have a large uncertainty

due to the significant background levels in the ΔθC distributions and the additional

uncertainty in the shape of the signal peak.82

The photoelectron yields for data are lower than those predicted by the simula-

tion. One reason for this is a small detector read-out inefficiency, which was iden-

tified during high trigger rate data taking in Run I. The results presented include

a retuning of the read-out settings, applied during data taking to minimise the im-

pact of the inefficiency. A further optimisation will be performed for LHC Run II to

reduce the effect to the negligible level, and is expected to improve the yields further

by a few percent. The remaining discrepancy is accounted for by an over-estimate of

the yield in the simulation, which will be addressed by improved simulation tunings.

It must be stressed however, that the smaller yield measured in data does not have
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a significant impact on the final particle identification performance, as described in

Subsec. 4.2.3.

4.2.3. Particle identification performance

To determine the RICH particle identification performance on data, large samples of

genuine π, K and p tracks are required. Such control samples must be selected inde-

pendent of RICH information which would otherwise bias the results. The strategy

employed is to reconstruct exclusive decays purely from kinematic selections. Only

decay modes with large branching fractions, for which large samples can be easily

collected, are used to allow for precise calibration over a range of track kinematics.

The following decays, and their charge conjugates, are identified: K0
S → π+π−,

Λ → pπ− and D∗+ → D0(K−π+)π+. This ensemble of final states provides a

complete set of charged particle types needed to assess comprehensively the hadron

PID performance. Utilising the track samples obtained from these exclusive control

decay modes, Fig. 39 demonstrates the kaon efficiency (kaons identified as kaons)

and pion misidentification (pions misidentified as kaons) fraction achieved in LHCb

data, as a function of momentum. For illustration the data is shown with two

different PID requirements, one optimising the efficiency, the other minimising the

misidentification rate.

For each track the likelihood that it is an electron, muon, pion, kaon or proton

is computed. In the first approach it is required that, for each track, the likeli-

hood for the kaon mass hypothesis is larger than that for the pion hypothesis, i.e.

Δ logL(K − π) > 0. When averaging over the momentum range 2–100 GeV/c one

finds the kaon efficiency to be ∼ 95% with a pion misidentification rate of ∼ 10%.

A stricter PID requirement, Δ logL(K − π) > 5, reduces the pion misidentification

rate to ∼ 3% at a modest loss in kaon efficiency of ∼ 10% on average. Figure 39

also shows the performance in simulation, for the same exclusive control channels

and PID requirements as above for data. Good agreement with data is observed for

both sets of PID requirements.

The Run I conditions, with multiple interactions per bunch crossing and the

resulting high particle multiplicities, provide an insight into the RICH performance

at possible future higher luminosity running. Figure 40 shows the pion misiden-

tification fraction versus the kaon identification efficiency as a function of track

multiplicity and the number of reconstructed primary vertices, as the requirement

on the likelihood difference Δ logL(K−π) is varied. The results demonstrate some

degradation in PID performance with increased interaction multiplicity. However,

the performance is still excellent and gives confidence that the RICH system will

continue to perform well during LHC Run II.

4.3. Muon system based particle identification

The identification of a track reconstructed in the tracking system as a muon is based

on the association of hits around its extrapolated trajectory in the muon system.83
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Fig. 39. Kaon identification efficiency and pion misidentification rate as measured using data
(left) and from simulation (right) as a function of track momentum.82 Two different Δ logL(K−π)
requirements have been imposed on the samples, resulting in the open and filled marker distribu-
tions, respectively.
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Fig. 40. Pion misidentification fraction versus kaon identification efficiency as measured in 7TeV
LHCb collisions: (left) as a function of track multiplicity, and (right) as a function of the number
of reconstructed primary vertices.82 The efficiencies are averaged over all particle momenta.

A search is performed for hits within rectangular windows around the extrapolation

points where the x and y dimensions of the windows are parameterised as a function

of momentum at each station and separately for each muon system region. The

parameters are optimised to maximise the efficiency and at the same time provide

low misidentification probabilities of pions as muons. The same criterion is used to

define the number of stations required to have hits within a window as a function of

momentum. A minimum momentum of 3 GeV/c is necessary for a muon to traverse

the calorimeters and reach the M2 and M3 stations, while above 6 GeV/c they

traverse all five of the stations. For each muon candidate, likelihoods for the muon

and non-muon hypotheses are computed, based on the average squared distance of

the hits that are closest to the extrapolation points.

The performance of the muon identification is obtained from data using muons

from J/ψ → μ+μ− decays, protons from Λ → pπ− decays and kaons and pions

from D0 → K−π+, where the D0 is selected from D∗+ → D0π+ decays. These
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Fig. 41. Top left: efficiency of the muon candidate selection based on the matching of hits in the
muon system to track extrapolation, as a function of momentum for different pT ranges. Other
panels: misidentification probability of protons (top right), pions (bottom left), and kaons (bottom
right) as muon candidates as a function of momentum, for different pT ranges.

samples can be selected without using PID information and are characterised by

relatively high statistics and low background. The latter is subtracted by fitting

the appropriate invariant mass distribution. Figure 41 shows, as a function of the

track momentum and for different ranges of transverse momentum, the efficiency

of the muon candidate selection, and the probabilities of incorrect identification of

protons, pions and kaons as muons.

The incorrect assignment of the muon identity to a proton occurs either due to

a combination of spurious hits in the different muon stations that are aligned with

the proton direction, or due to the existence of a true muon in the event that points

in the same direction as the proton in the muon system. This muon can be pro-

duced close to the interaction point or in the calorimeter shower. Since the window

dimension decreases with momentum and an increasing number of hits is required

for tracks above 10 GeV/c, a strong reduction of the proton misidentification rate is

seen in the interval 3–30 GeV/c and for pT < 1.7 GeV/c. For higher pT values, the

protons have a high polar angle and therefore fall outside of the high-occupancy

part of the detector. Decays in flight are the main cause of misidentification of
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pions and kaons as muons. To a good approximation, the misidentification rate is

the sum of the contribution of decays in flight and the proton misidentification

probability.

The background rejection power can be improved by the computation of a like-

lihood for the muon and non-muon hypotheses, based on the pattern of hits around

the extrapolation to the different muon stations of the charged particles trajec-

tories reconstructed with high precision in the tracking system. The logarithm of

the ratio between the muon and non-muon hypotheses, Δ logL(μ), is used as a

discriminating variable. The likelihood for the non-muon hypothesis is calibrated

using proton data, since the other charged hadrons (pions or kaons) selected as

muons will have a component identical to the protons and a component very simi-

lar to the true muons, due to decays in flight before the calorimeter. The muon

likelihood has been calibrated with muons from J/ψ → μ+μ− decays selected from

data, while the non-muon likelihood has been calibrated with a simulated sample

of Λ → pπ− decays.

4.4. Combined particle identification performance

The PID information obtained separately from the muon, RICH, and calorimeter

systems is combined to provide a single set of more powerful variables. Two dif-

ferent approaches are used. In the first method the likelihood information produced

by each sub-system is simply added linearly, to form a set of combined likelihoods,

Δ logLcomb(X − π), where X represents either the electron, muon, kaon or proton

mass hypothesis. These variables give a measure of how likely the mass hypo-

thesis under consideration is, for any given track, relative to the pion hypothesis. A

second approach has been subsequently developed to improve upon the simple log

likelihood variables both by taking into account correlations between the detector

systems and also by including additional information. This is carried out using

multivariate techniques,84 combining PID information from each sub-system into a

single probability value for each particle hypothesis.

To illustrate the improvement made by combining information from different

sub-detectors, the performance of the variable Δ logLcomb(e−π) is first considered,

using a similar tag and probe technique to that of Subsec. 4.1.2 in which the

calorimeter-only performance is presented. Figure 42 shows the pion misidentifica-

tion versus electron identification probability, for various cuts on Δ logLcomb(e−π).

Compared to Fig. 35 the improvement in the misidentification rate can clearly be

seen, e.g. at ∼ 90% electron efficiency the pion misidentification rate drops from

∼ 6% to ∼ 0.6%.

An improvement in performance can also be seen for the muon identification,

as illustrated by one of the most prominent LHCb results, the measurement of

the B0
s → μ+μ− branching fraction and the search for B0 → μ+μ− decays.8 The

B0
(s) → h+h− decay modes, where h = (K,π), can fake a signal if both hadrons

are misidentified as muons. Therefore the minimisation of these backgrounds is of
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Fig. 42. Electron identification performance using the Δ logLcomb(e−π) variable, as measured in
8TeV collision data, using a tag and probe technique with electrons from the decay B± → (J/ψ →
e+e−)K±. Left, pion misidentification rate versus electron identification probability when the cut
value is varied. Right, electron identification efficiency and pion misidentification rate as a function
of track momentum, for two different cuts on Δ logLcomb(e− π).
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Fig. 43. Background misidentification rates versus muon (left) and proton (right) identification
efficiency, as measured in the Σ+ → pμ+μ− decay study. The variables Δ logL(X − π) (black) and
ProbNN (red), the probability value for each particle hypothesis, are compared for 5–10 GeV/c
muons and 5–50 GeV/c protons, using data sidebands for backgrounds and Monte Carlo simulation
for the signal.

paramount importance for this analysis. This double misidentification probability

has been evaluated by folding the K → μ and π → μ fake rates extracted from

a D0 → Kπ sample from D∗+ → D0π+ decays, in bins of p and pT, into the

spectrum for selected simulated B0
(s) → h+h− events. If the tracks identified as

muons are also required to satisfy a selection using the combined PID informa-

tion (Δ logLcomb(K − π) < 10 and Δ logLcomb(μ − π) > −5), the B0
(s) → h+h−

misidentification probability is reduced by a factor of ∼ 6, whilst only ∼ 3% of the

Bs → μ+μ− signal is lost.

The possible improvement of the multivariate approach with respect to the

simple log likelihood may also be illustrated by the ongoing search for the flavour-

changing neutral current decay Σ+ → pμ+μ−. In Fig. 43 the misidentification rates

versus efficiency curves for the Δ logL(X − π) and the probability value for each
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particle hypothesis variables are shown. The improvement is clearly visible for both

muons and protons. These multivariate variables will be further developed and

utilised more extensively during Run II.

5. Trigger

The LHCb trigger consists of two levels; Level-0 (L0) and the High Level Trigger

(HLT). In Run I the trigger reduced the rate of events to be saved for physics

analysis to 2–5 kHz.

The L0 trigger is implemented in hardware and makes decisions based on infor-

mation from the calorimeter and muon systems in order to reduce the event rate

to below 1 MHz, at which point the whole detector can be read out. The HLT is

a software application running on the event filter farm (EFF). A fraction of L0

accepted events are deferred to disk for processing by the HLT during the inter-fill

time, optimising the use of available EFF resources.

After the HLT, events are stored and later processed with a more accurate

alignment and calibration of the sub-detectors, and with the reconstruction software

described in Subsec. 2.2. This part of the reconstruction and subsequent selection

of interesting events is referred to as the offline reconstruction and selection for the

remainder of this discussion.

Subsection 5.1 describes a data-driven method to determine the efficiency and

purity of the signals that are selected by the LHCb trigger. The implementation of

the L0 trigger25 is briefly summarised in Subsec. 5.2 and the performance of the

HLT85 is discussed in Subsec. 5.3. The selection criteria used in the two trigger

levels during 2011 and 2012 are described in detail in Ref. 86. The deferral system

is discussed in Subsec. 5.4 and a short summary of the LHCb trigger is provided in

Subsec. 5.5.

The results presented here are based on the configuration and performance of

the LHCb trigger during 2012 when the deferral system was first used and the

majority of the Run I dataset was collected.

5.1. Data driven trigger performance determination

The trigger efficiencies are evaluated using events reconstructed with the full offline

software, and are calculated with respect to candidates selected by the full offline

analysis of the respective channel, excluding the trigger. They therefore quantify

the inefficiencies due to the simplified reconstruction, possible misalignments and

reduced resolution, as compared to the offline reconstruction. They also account

for any tighter selection requirements that are needed to satisfy the rate and pro-

cessing time limitations. The following decay channels are chosen to highlight the

performance of the trigger:a

aHere, and in the following, charge conjugated decays are implicitly included.
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• B+→ J/ψK+ decays, with J/ψ → μ+μ−. This decay evaluates the muon trigger

efficiency and serves as a proxy for several key physics decay channels like B0
s →

J/ψφ, B0→ K∗0μ+μ− or B0
s → μ+μ−.

• B0→ K+π− as a typical two-body hadronic beauty decay.

• B0→ D+π− with D+ → K−π+π+, as a typical four-body beauty decay.

• D0 → K−π+ as a two-body charm decay.

• D+ → K−π+π+ represents a three-body charm decay.

• D∗+ → D0π+, followed by the four-body charm decay D0 → K−π+π−π+.

These decay channels and their selections are representative of the trigger needs

of the core physics analyses of the LHCb experiment. The selected charm modes

cover the topologies that are most sensitive to CP violating effects. All samples

used in this study carry a large signal to background ratio. Nevertheless, the yields

are determined by fitting the signal peaks in the invariant mass distributions in

order to subtract the residual background.

In the following, the term ‘signal’ refers to a combination of tracks forming

the offline reconstructed and selected b- or c-hadron candidates. To determine the

trigger efficiency, trigger objects are associated with signal tracks. The criteria

used to associate a trigger object with a signal track are as follows. An event

is classified as Trigger on Signal (TOS) if the trigger objects that are associated

with the signal candidate are sufficient to trigger the event. An event is classified

as Trigger Independent of Signal (TIS) if it has been triggered by trigger objects

that are not associated with the signal. Some events can be classified as TIS and

TOS simultaneously (TIS & TOS), which allows the determination of the trigger

efficiency relative to the offline reconstructed events from data alone. The efficiency

to trigger an event independently of the signal, εTIS, is given by

εTIS = NTIS & TOS/NTOS ,

where NTOS is the number of events classified as TOS. The efficiency to trigger an

event on the signal alone, εTOS, is given by

εTOS = NTIS & TOS/NTIS ,

where NTIS is the number of events classified as TIS. This method of measuring

trigger efficiencies is discussed in detail in Ref. 87.

5.2. Level-0 hardware trigger

The L0 trigger is divided into three independent units; the L0-Calorimeter trigger,

the L0-Muon trigger and the L0-PileUp trigger, the latter being used only for

the determination of the luminosity.27 The L0 trigger system is fully synchronous

with the 40 MHz bunch crossing rate of the LHC. The latencies are fixed and are

independent of the occupancy or the bunch crossing history.

The L0-Calorimeter system uses information from the SPD, PS, ECAL and

HCAL detectors, as described in Sec. 3. It computes the transverse energy, ET,
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Table 4. Typical L0 thresholds used in Run I.86

pT or ET
SPD

2011 2012 2011 and 2012

Single muon 1.48 GeV/c 1.76 GeV/c 600
Dimuon pT1 × pT2 (1.30 GeV/c)2 (1.60 GeV/c)2 900
Hadron 3.50 GeV 3.70 GeV 600
Electron 2.50 GeV 3.00 GeV 600
Photon 2.50 GeV 3.00 GeV 600

deposited by incident particles in clusters of 2 × 2 cells. From these clusters, the

following three types of candidates are built. L0Hadron is the highest ET HCAL

cluster, which also contains the energy of the matching ECAL cluster. L0Photon is

the highest ET ECAL cluster with 1 or 2 PS hits in front of the ECAL cluster and

no hit in the SPD cells corresponding to the PS cells. L0Electron has the same

requirements as L0Photon, with the additional condition of at least one SPD cell hit

in front of the PS cells. The ET of each candidate is compared to a fixed threshold

and events containing at least one candidate above threshold fire the L0 trigger.

The total number of hits in the SPD is also determined, and is used to veto events

that would take a disproportionately large fraction of the available processing time

in the HLT. The SPD hit multiplicity requirements are listed in Table 4.

The L0 muon processors look for the two highest pT muon tracks in each quad-

rant. The position of a track in the first two stations allows the determination of its

pT with a measured momentum resolution of roughly 25%. The trigger considers

the eight candidates and sets a single threshold on either the largest transverse

momentum, pT
largest, or on the product, pT

largest × pT
2nd largest. These thresholds

are listed in Table 4. The tightening of L0 thresholds in the 2012 configuration is a

consequence of the increased luminosity and beam energy.

The trigger efficiencies are measured on offline selected events, using the tech-

niques described in Subsec. 5.1. The efficiencies of the L0 muon triggers evaluated

on B+→ J/ψK+ events are shown in Fig. 44. The majority of events are accepted

by the single muon trigger. The largest inefficiency originates from the tight muon

identification requirements inside the L0 reconstruction algorithm. The L0 dimuon

trigger selects a small fraction of additional candidates at lower transverse momenta.

The combined efficiency for both L0 muon triggers is evaluated to be 89 ± 0.5%.87

The L0 hadron efficiency is shown in Fig. 44 for the two- and three-prong beauty

decays B0 → K+π− and B0 → D+π− and the two-, three- and four-prong charm

decays D0 → K−π+, D+ → K−π+π+ and D∗+ → D0π+, as a function of the B

or D meson pT. The two-prong beauty decay is triggered with highest efficiency

by the L0 hadron ET criterion (εTOS = 40%) while the four-prong charm decay

D∗+ → D0π+ is selected with the lowest efficiency (εTOS = 22%). The other modes

lie in between, as shown in Fig. 44. With the inclusion of TIS triggers, the total

efficiencies increase significantly, e.g. from 40% to 53% for B0→ K+π−.
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Fig. 44. (left) L0 muon trigger performance: TOS trigger efficiency for selected B+ → J/ψK+

candidates. (right) L0 hadron trigger performance: TOS trigger efficiency for different beauty and
charm decay modes.

The total output rate of the L0 trigger is limited to 1 MHz, which is the maxi-

mum rate at which the LHCb detector can be read out. This output rate consists

of approximately 400 kHz of muon triggers, 500 kHz of hadron triggers and 150 kHz

of electron and photon triggers, where the individual triggers have an overlap of

about 10%.

5.3. High level trigger

Events accepted by L0 are transported by the data acquisition network to one of

the processors of the EFF. The HLT is a software application, of which 29,500

instances run on the EFF, and each instance consists of independently operating

trigger “lines,” each of which consists of selection parameters for a specific class of

events.

The HLT is based on the same software framework used throughout LHCb.

Given the available resources in the EFF, the time per event is around fifty times

smaller than in the offline processing. The HLT is divided in two levels. In the

first level (HLT1), a partial event reconstruction is performed. In the second level

(HLT2), the complete event is reconstructed. Where time allows, the HLT uses the

same reconstruction algorithms as employed offline, with some simplifications that

are needed to satisfy the time constraints.

5.3.1. First level

The offline VELO reconstruction algorithm which performs a full 3D pattern recog-

nition is sufficiently fast to be run on all events entering the HLT. However, the

offline algorithm makes a second pass on unused hits to enhance the efficiency for

tracks pointing far away from the beam-line, while in the HLT this second pass

is not used due to CPU constraints. Vertices are reconstructed from a minimum

of five intersecting VELO tracks. Vertices within a radius of 300μm of the mean

position of the pp-interaction envelope are considered to be primary vertices.
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Fig. 45. HLT1 inclusive track trigger performance: TOS efficiency for various channels as a
function of B or D pT (left). HLT1 muon trigger performance: TOS efficiency for B+→ J/ψK+

candidates as function of B+ pT (right).

HLT1 limits the number of VELO tracks that are passed through the forward

tracking algorithm that searches for matching hits in the tracking stations. VELO

tracks must have a significant IP with respect to all PVs, or be matched to muon

chamber hits by a fast muon identification algorithm. This algorithm is only run in

events that were triggered by a muon line in the hardware step. To further limit the

processing time, the forward track search has a minimum momentum requirement

that varied between 3 and 6 GeV/c during Run I. VELO tracks without matching

muon hits are also subject to a minimum pT threshold that varied between 0.5

and 1.25 GeV/c. The reconstructed forward tracks are fitted using a Kalman filter

with a simplified detector geometry description and fewer iterations than in the

offline configuration. The invariant mass resolution of J/ψ → μ+μ− candidates

reconstructed with this procedure is found to be 3% worse than the 15.1 MeV/c2

obtained offline. For tracks identified as muon candidates, the basic offline muon

identification algorithm83 is applied to increase the purity of the muon sample.

The inclusive beauty and charm trigger is based on the properties of one good

quality track candidate. The selection is based on track pT (typical value pT >

1.6–1.7 GeV/c) and displacement from the primary vertex (typical value IP >

0.1 mm). This trigger line produces around 58 kHz of output, which is the largest

contribution to the allocated HLT1 bandwidth. It is the most efficient line for

physics channels that do not contain leptons in the final state. The performance

of HLT1 for hadronic signatures is shown in Fig. 45 as a function of the pT of the

resonance considered. The inclusive one-track based trigger also exists in a version

for electrons or photons identified by L0, with reduced thresholds relative to the

inclusive version. The output rate of these lines is around 7 kHz.

A similar line exists for tracks that are matched to hits in the muon cham-

bers.88 This single muon trigger line selects good quality muon candidates that are

displaced from the primary vertex and satisfy pT > 1 GeV/c. Single muon candi-

dates that satisfy pT > 4.8 GeV/c are selected by a special trigger line without any

vertex separation requirements.
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Dimuon candidates are either selected based on their mass (mμμ > 2.5 GeV/c2)

without any displacement requirement, or based on their displacement without the

mass restriction. The dominant inefficiency for these lines originates from the online

muon identification algorithms. The performance of HLT1 on muonic signatures as

a function of pT of the B+ parent is shown in Fig. 45. The single muon line has

an efficiency of around 90% to select B+→ J/ψK+ decays, while the dimuon lines

have an efficiency of around 70%. The combination of muon trigger lines produces

an output rate of around 14 kHz.

In addition to the trigger lines discussed above, several dedicated lines are imple-

mented to enhance the trigger performance for events containing candidates for high

pT electrons, di-protons, displaced vertices or high ET jets. A set of technical lines

including selections for luminosity and beam-gas measurements completes the list

of HLT1 triggers.

5.3.2. Second level

HLT1 reduces the event rate to about 80 kHz, which is sufficiently low to allow the

forward tracking of all VELO tracks in HLT2. As described in Subsec. 2.2, the off-

line reconstruction uses two complementary tracking algorithms. Due to the CPU

constraints, HLT2 only searches for long tracks based on VELO seeds. This simpli-

fication leads to a lower tracking efficiency compared to the offline reconstruction

of 1–2% per track.

The processing time is further reduced by restricting the search to tracks with

p > 3 GeV/c and pT > 0.3 GeV/c. Muon identification in HLT2 is performed

using the offline muon identification algorithm. Tracks are also associated to ECAL

clusters to identify electrons. Photons and neutral pions are built starting from the

energy clusters reconstructed by the L0-Calorimeter system.

Generic beauty trigger

A significant portion of the output rate of HLT2 is selected by the ‘topological’

lines, which are designed to trigger on partially reconstructed b-hadron decays.

These topological lines cover all b-hadron decays with at least two charged particles

in the final state and a displaced decay vertex. The inclusive nature of these lines

makes them less susceptible to the 1–2% loss in efficiency per reconstructed track in

HLT2. Tracks are selected based on their track fit χ2/ndf, IP and muon or electron

identification. Two-, three- or four-body vertices are constructed from the selected

tracks with a requirement on their distance of closest approach (DOCA).

Candidate n-body combinations are selected based on the following variables:∑ |pT|, pmin
T , n-body invariant mass (m), DOCA, IPχ2 and flight distance (FD) χ2.

In addition, the corrected mass is defined as mcorr =
√
m2 + |p′Tmiss|2 + |p′Tmiss|,

where p′Tmiss is the missing momentum transverse to the line of flight between the

n-body vertex and the PV to which it has the smallest IP.89 Figure 46 shows the
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Fig. 46. Simulated B0→ K∗0μ+μ− events. The reconstructed 2-body mass is shown in red and
the corrected mass (mcorr, see text for definition) is shown in black.
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Fig. 47. HLT2 inclusive beauty trigger performance as a function of B pT. The efficiency for the
exclusive B0→ K+π− trigger line is also given.

reconstructed 2-body and corrected mass distributions for B0→ K∗0μ+μ− events.

These variables are combined using a boosted decision tree trained on simulated

signal events and data taken in 2010.90 An explicit veto on prompt charm is also

applied to reduce its output rate.

Figure 47 shows the efficiency for the topological trigger lines for B0→ K+π−

and B0→ D+π− events as well as the additional efficiency that can be gained by

an exclusive selection for B0→ K+π− in the low pT regime. The output rate of the

topological trigger is 2 kHz, in which it efficiently selects beauty decays to charged

tracks. For example, the efficiencies for B0 → K+π− and B0 → D+π− decays are

approximately 78% and 76%, respectively.

If one of the tracks forming the generic beauty trigger decision is identified

as a muon, the selection on the boosted decision tree classifier is loosened which

enhances the efficiency for muonic beauty decays like B0→ K∗0μ+μ−.
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Fig. 48. HLT2 muon trigger performance for the J/ψ trigger lines (left). The trig-
gers Hlt2DiMuonJPsi and Hlt2DiMuonJPsiHighPT are the two prompt J/ψ triggers and
Hlt2DiMuonDetachedJPsi is the trigger that selects J/ψ candidates that are inconsistent with
coming from the primary vertex. HLT2 charm trigger performance for inclusive and exclusive

selections (right). The decay D∗+ → D0π+ is followed by D0 → K−π+π+π−.

Muon triggers

Several trigger lines select events that contain one or two muons. The muon iden-

tification procedure in HLT2 is identical to that which is used offline.83 Single

muon candidate events are selected if the muon passes a tight pT requirement

(pT > 10 GeV/c) or if candidates are inconsistent with originating from the PV

and they satisfy moderate pT (pT > 1.3 GeV/c) and tight track quality require-

ments. Candidates selected with the latter criteria are prescaled by factor of two.

Dimuon candidate events are selected without a mass requirement if the dimuon

vertex is separated from the primary vertex. If the mass of the muon pair is within

±100 MeV/c2 (∼ 8σ) of the J/ψ mass, three trigger selections are considered.

Decay-time unbiased J/ψ → μ+μ− candidates are extensively used for calibration

of the LHCb decay time acceptance. Therefore, all muon pairs with pT > 2 GeV/c

are considered, as well as a fraction of those without any pT requirement. These two

prompt selections are complemented by an additional detached J/ψ trigger. The

separation requirement of this trigger is looser than that of the generic detached

dimuon trigger described above.

This set of lines is optimised to fully exploit the large physics potential of both

prompt J/ψ and B → J/ψX decays. Relative to the offline selection, the trigger

efficiencies are typically above 90%. Figure 48 shows the performance of the J/ψ

triggers, where the effective prescale of about a factor of two on the prompt J/ψ

line is visible, as well as the pT acceptance of the high pT line. The total output

rate of all single and dimuon trigger lines is around 1 kHz.

Charm triggers

In the 2012 running conditions, roughly 600 kHz of cc̄-events are produced within

the acceptance of LHCb. This large rate of charm production means that tight
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exclusive selections are required in the trigger. The exception is the decay chain

D∗+ → D0π+, which can be selected inclusively, i.e. only reconstructing two

charged tracks from the D0 decay matched to a slow pion from the D∗+ decay.

The mass difference between the D∗+ and D0 candidates remains a good discrim-

inating variable, enabling the rate to be sufficiently reduced. The D0 is partially

reconstructed in all combinations containing π±, K±, p, μ±, K0
S or Λ0 enabling

both rare decay and CP violation measurements.

The dominant exclusive selections for prompt charm are the hadronic two body

and three body lines. The efficiency of these triggers is summarised in Fig. 48.

Additional selections for hadronic, leptonic and semi-leptonic D and Λ+
c decays

are implemented. The total output rate of all charm selections is ∼ 2 kHz, but the

trigger efficiencies strongly depend on the offline selection: using a pure sample of

D0 → K−π+ events from D∗+ decays, the HLT2 efficiency is 90%, while the trigger

efficiency for the multibody decay D∗+ → D0π+ is 26%.

Exclusive and technical lines

The HLT incorporates a large number of exclusive and technical trigger lines to

complement the signal selection by the inclusive lines discussed above. For exam-

ple, 100 Hz of random events are recorded throughout the full data taking period.

These events can be used to understand the trigger system, for fast monitoring of

the data and for luminosity determinations. A number of trigger lines also exist

that maximise the performance for decays with electrons or photons in the final

state.91 A single muon line with hard pT requirements is designed to select heavy

particles decaying promptly to one or more muons, like W± or Z0 for electroweak

measurements.

The remaining lines are required for luminosity measurements, prescaled physics

lines with looser cuts, lines which trigger on low multiplicity events and lines which

look for large transverse momentum jets. The trigger also contain lines that pass

events for monitoring to allow fast feedback on the quality of the data.

5.4. Deferred trigger

The LHC delivers stable beams ∼ 30% of the available time, and thus unless other-

wise occupied the EFF would be idle the remaining ∼ 70% of the time. Therefore

to maximise the use of available resources, LHCb developed a deferred trigger-

ing system for data taking in 2012.92,93 Around 20% of the L0 accepted events

are temporarily saved on the EFF node local disks and these events are subse-

quently processed by the HLT during the inter-fill periods. The effective increase in

CPU resources this provides was used to reduce the pT requirement in the forward

tracking algorithm and to include additional tracking algorithms that allow the

reconstruction of tracks from particles that decay beyond the VELO acceptance.

These modifications significantly enhance the efficiency for charm decays.
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Table 5. Efficiencies of selected channels for the whole trigger chain using the
2012 trigger configuration. The efficiencies are normalised to the number of events
that are offline selected.

Channel L0 HLT1 HLT2

B+→ J/ψK+, J/ψ → μ+μ− 89% 92% 87%

B0→ K+π− 53% 97% 80%

B0→ D+π−, D+ → K−π+π+ 59% 98% 77%

D+ → K−π+π+ 44% 89% 91%

D∗+ → D0π+, D0 → K−π+π−π+ 49% 93% 30%

An additional benefit of this system is that it provides redundancy against

problems downstream in the dataflow. Prior to the adoption of this scheme, such

problems would quickly lead to back-pressure all the way up into the farm and

lead to dead-time. In the deferred trigger scheme, although the fraction of deferred

events would increase, no dead-time would be incurred. The deferred trigger requires

a substantial amount of local disk space, which was added to the farm before the

2012 run. The requirements on the performance of the disks are modest,b such that

inexpensive desktop hard drives could be used.

5.5. Trigger performance summary

The LHCb trigger system has delivered a range of physics modes with high efficiency

in the first running phase of the LHC. It is primarily designed to select charm and

beauty hadrons over a large range of momentum and decay time, and its efficiency

can be determined directly from the data.

The flexible design of the HLT, which is fully deployed in software, allows for the

rapid adaptation to changes in running conditions and physics goals. Several inno-

vative concepts have been developed that enable inclusive selections to be utilised

in the full trigger chain and thus provide an efficient trigger for nearly any beauty

decay to charged particles. The deferred triggering permits optimisation of com-

puting resources for mean instead of peak usage, leading to an effective increase in

farm size in 2012 of 20–30%. Multivariate selections allow the inclusive triggering

of beauty decays to charged tracks with high efficiency.

Typical trigger efficiencies for selected signals are summarised in Table 5. The

trigger efficiency is high for muonic b-decays. For hadronic b-decays, the hardware

trigger stage causes a significant loss of efficiency, but the software component

remains efficient. The trigger efficiency for multibody charm decays is lower than

for b-hadron decays, due to the softer momentum spectra of the final state particles.

The LHCb trigger system also efficiently covers physics beyond the core beauty

and charm programme. This includes W± or Z0 production, inclusive particle

bThe input data rate per farm-server is about 60 MB/s, which is significantly lower than the
typical disk performance of about 120 MB/s.
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production, and exotic phenomena, for instance displaced vertices from heavy long-

lived particles.

6. Conclusion and Outlook

During the first running period of the LHC between 2009 and 2013, the LHCb

experiment recorded a total of about 3.2 fb−1 of integrated luminosity with pp

collisions at centre-of-mass energies of 0.9, 7 and 8 TeV, and 1.6 nb−1 of integrated

luminosity with proton–lead collisions. The majority of the data were recorded

under conditions corresponding to a luminosity of 4×1032 cm−2s−1, a bunch spacing

of 50 ns and a pile-up of 1.8. Despite the fact that these are significantly more

challenging than the conditions originally foreseen for the experiment, it has been

demonstrated that the performance of each sub-system and the global performance

of the detector are in good agreement with the original expectations presented in

the LHCb detector paper.25 For some physics analyses the original expectations are

even exceeded, thanks to new ideas and well understood backgrounds.

During Run II of the LHC, the LHCb experiment expects to collect an additional

5 fb−1 of data, which improves the prospects for observing physics beyond the Stan-

dard Model using heavy quark flavours as a tool. However, the read-out and trigger

scheme of the current LHCb detector limit the luminosity that can be recorded. To

overcome these limitations, the LHCb experiment will be upgraded94–99 to allow

the detector to be read out at the maximum LHC bunch crossing rate of 40 MHz

with a flexible software-based trigger. This will not only allow the data rate to

be increased substantially, but will also increase the trigger efficiency, especially

for channels currently triggered at the hardware level by energy deposits in the

calorimeters. In addition to the significant increase in sensitivity for flavour physics,

the experiment will continue to explore other interesting signatures and thus act as

a general purpose detector in the forward region.
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P. Gandini,59 Y. Gao,3 J. Garćıa Pardiñas,37 J. Garofoli,59 J. Garra Tico,47

1530022-69

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
5.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

IR
M

IN
G

H
A

M
 o

n 
01

/1
1/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 5, 2015 12:10 IJMPA S0217751X15300227 page 70

The LHCb Collaboration

L. Garrido,36 D. Gascon,36 C. Gaspar,38 R. Gauld,55 L. Gavardi,9 A. Geraci,21,v

E. Gersabeck,11 M. Gersabeck,54 T. Gershon,48 Ph. Ghez,4 A. Gianelle,22 S. Giaǹı,39
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Paris, France

9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
22Sezione INFN di Padova, Padova, Italy
23Sezione INFN di Pisa, Pisa, Italy
24Sezione INFN di Roma Tor Vergata, Roma, Italy
25Sezione INFN di Roma La Sapienza, Roma, Italy
26Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences,

Kraków, Poland
27AGH – University of Science and Technology, Faculty of Physics and

Applied Computer Science, Kraków, Poland
28National Center for Nuclear Research (NCBJ), Warsaw, Poland
29Horia Hulubei National Institute of Physics and Nuclear Engineering,

Bucharest-Magurele, Romania
30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN),

Moscow, Russia
34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University,

Novosibirsk, Russia
35Institute for High Energy Physics (IHEP), Protvino, Russia
36Universitat de Barcelona, Barcelona, Spain
37Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38European Organization for Nuclear Research (CERN), Geneva, Switzerland
39Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40Physik-Institut, Universität Zürich, Zürich, Switzerland
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eUniversità di Cagliari, Cagliari, Italy
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