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 Microbubble dynamics subject to ultrasound are associated with important applications 

in biomedical ultrasonics, sonochemistry and cavitation cleaning. The viscous effects in this 

phenomenon is essential since the Reynolds number Re associated is about O(10). The flow 

field is characterized as being an irrotational flow in the bulk volume but with a thin vorticity 

layer at the bubble surface. This paper investigates the phenomenon using the boundary 

integral method based on the viscous potential flow theory. The viscous effects are 

incorporated into the model through including the normal viscous stress of the irrotational 

flow in the dynamic boundary condition at the bubble surface. The viscous correction 

pressure of Joseph & Wang (J. Fluid Mech., 505, 365-377, 2004) is implemented to resolve 

the discrepancy between the non-zero shear stress of the irrotational flow at a free surface and 

the physical boundary condition of zero shear stress. The model agrees well with the 

Rayleigh–Plesset equation for a spherical bubble oscillating in a viscous liquid for several 

cycles of oscillation for Re = 10. It correlates pretty closely with both the experimental data 

and the axisymmetric simulation based on the Navier-Stokes equation for transient bubble 

dynamics near a rigid boundary. We further analyze microbubble dynamics near a rigid 

boundary subject to ultrasound travelling perpendicular and parallel to the boundary, 

respectively, in parameter regions of clinical relevance. The viscous effects to acoustic 

microbubble dynamics are analyzed in terms of the jet velocity, bubble volume, centroid 

movement, Kelvin impulse and bubble energy. 

Key words: Microbubble dynamics; Ultrasound; Bubble jetting; Viscous potential flow 

theory; Viscous pressure correction; Boundary integral method. 
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1. Introduction 

 Microbubble dynamics subject to ultrasound are associated with important applications. 

The medical applications include extracorporeal shock wave lithotripsy [2-8], tissue ablating 

(histotripsy) [7-11], and oncology and cardiology [12]. In those applications, cavitation 

microbubbles absorb and concentrate significant amounts of energy from ultrasound, leading 

to violent collapsing, shock waves and bubble jetting [13]. These mechanisms are also 

associated with sonochemistry [14-16] and ultrasound cavitation cleaning - one of the most 

effective cleaning processes for electrical and medical micro-devices [17-18]. 

 The boundary integral method (BIM) is grid free in the flow domain and widely used in 

simulating bubble dynamics [19-21]. In the BIM the dimension of the problem reduces by 

one and it thus costs less CPU time as compared to the domain approaches. Acoustic bubble 

dynamics were simulated using an axisymmetric BIM model for a bubble in an infinite liquid 

[22-24] and near a boundary subject to ultrasound propagating in the direction perpendicular 

to the boundary [11, 25-28]. Wang & Manmi [13] studied three dimensional (3D) bubble 

dynamics near a wall subject to ultrasound propagating parallel to the wall. The above works 

were based on the inviscid potential flow theory, but the viscous effects may not be negligible 

for micron size bubbles [29-31]. 

 Transient bubble dynamics including viscous effects were simulated based on the 

Navier-Stokes equations using the finite volume method (FVM) or finite element method 

(FEM) [30, 32-36] for axisymmetric cases. It is a multi-scaled problem with the thickness of 

the viscous boundary layer at the bubble surface is small compared with the bubble radius, 

and both of them change order of magnitude with time. Simulations of bubble dynamics 

using FEM or FVM are computationally demanding. As such, simulations based on the 

domain approaches are usually carried out for only axisymmetric configurations and/or for 

one cycle of oscillation  

 Viscous fluid dynamics can be described approximately by potential flows when the 

vorticity is small or is confined to a narrow layer near the boundary [1, 37]. It is particularly 

useful for a gas–liquid two-phase flow with an interface. A key issue in the theory is that the 

shear stress should approximately vanish at a gas-liquid interface, but it does not in the 

irrotational approximation. An auxiliary function, the viscous pressure correction to the 
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potential pressure, has been introduced to address this discrepancy by Joseph et al. [1, 37]. 

They argued that the power done by the shear stress due to the irrotational flow should be 

equal to the power done by the viscous correction pressure to conserve the energy of the 

system. Accurate physical descriptions of the viscous flows were provided by the viscous 

potential theory with the viscous pressure correction, including the motion of bubbles and 

drops [1, 37], capillary instability of a liquid cylinder [38, 39], the decay of free surface 

waves [37, 39], and the Kelvin-Hemholtz instability [40]. 

 This theory was applied for transient bubble dynamics based on the BIM by Lind & 

Phillips [30, 41, 42] for transient bubbles near a boundary in an axisymmetric configuration, 

and by Klaseboer et al. [43] and Zhang & Ni [44] for a bubble rising and deforming in a 

viscous liquid.  

 We will model 3D microbubble dynamics in a viscous liquid subject to ultrasound 

using the viscous potential theory of Joseph et al. [1, 37] based on the following 

considerations. Firstly, the Reynolds number Re for the liquid flow associate with acoustic 

microbubble dynamics appears large. Re can be estimated as µωρ= /2

0 MRRe , where R0 is the 

equilibrium radius of a bubble, ρ and µ are the density and viscosity of the liquid and ωM is 

the larger of the natural frequency of the bubble and the ultrasound frequency. The natural 

frequency of a bubble is ,
431

0

0

0 R

p

R
b

ρ

γ
+

ρ
=ω  where p0 is the ambient pressure and γ is 

surface tension. It can be estimated that Re ≥ 42 as R0 ≥ 2 µm, using the following parameters 

for water: p0 = 100 kPa, ρ = 1000 kg m
-3

, µ = 10
-3

 Pa s and γ = 0.07 N m
-1

. Nonspherical 

microbubble dynamics are thus usually associated with an irrotational flow in the bulk 

volume but a thin vorticity layer at the bubble surface [45]. Secondly, a microbubble is 

approximately spherical during most of lifetime due to surface tension [15]. In the case of 

spherical bubbles, viscosity only enters the analysis through the normal stress on the surface 

of the bubble but plays no role in the fluid body, apart from viscous dissipation. Physically 

this is realized in the extra work required to expand the bubble against the additional normal 

viscous force at the bubble surface [46, 47]. Thirdly, a bubble subject to ultrasound may 

become nonspherical during a very short period at the end of collapse [13, 23, 24], when the 



  

4 

 

inertial effects are dominant and the viscous effects are not significant.  

 The remainder of the paper is organized as follows. The physical and mathematical 

model is described in section 2 based on the BIM and the viscous potential flow theory. In 

section 3, our numerical model is validated by comparing with the Rayleigh–Plesset equation 

for spherical bubble oscillating in a unbounded viscous fluid, the experiment [48] and the 

VOF [49] for the dynamics of a transient bubble near a rigid boundary. In sections 4 and 5, 

we analyze bubble dynamics near a rigid boundary subject to ultrasound travelling 

perpendicular and parallel to the boundary, respectively.  

  

2. Physical and mathematical model 

 Consider the dynamics of a microbubble near an infinite rigid plane wall subject to 

ultrasound, as shown in figure 1. A Cartesian coordinate system o-xyz is set with the origin at 

the centre of the initial spherical bubble, the z-axis perpendicular to the wall (see figure 1a). 

The acoustic pressure p∞ parallel to the wall is given as, 

  ,)ωsin(),( 0 tkxpptxp a −+=∞               (1a) 

where p0 is the hydrostatic pressure, x is the coordinate along the propagation direction of the 

wave, t is time, and pa, k and ω are the pressure amplitude, wavenumber and angular 

frequency of the acoustic wave, respectively.  

 When the wave propagates perpendicular to a rigid boundary, a standing wave is 

generated if all of the acoustic energy is reflected from the boundary, as assumed here for 

convenience. A standing wave oriented perpendicular to the boundary (along the z-axis) can 

be described as,  

( )( )( , ) 1 cos sin(ω ),
a

p z t p k z s t∞ = − +                             (1b) 

where s is the distance from the bubble centre at inception to the wall (see figure 1b) . 

 We assume the system undergoes an adiabatic process, the internal bubble pressure pB 

thus can be expressed as: 

0
0B v g

V
p p p

V

λ
 

= +  
 

 ,                                                      (2) 

where pg0 is the initial gas pressure of the bubble, pv vapour pressure, V0 the initial bubble 

volume and λ the ratio of specific heats of the gas. 
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Figure 1. The configuration and coordinate system for a microbubble near a rigid wall subject 

to ultrasound propagating (a) parallel to the wall or (b) perpendicular on the wall.  

 

 We assume that the fluid surrounding the bubble is incompressible and the flow is 

irrotational. The fluid velocity v thus has a potential ϕ, v = ∇φ, which satisfies Laplace’s 

equation, ∇
2
φ = 0. Using Green’s second identity the potential φ may be represented as a 

surface integral over the bubble surface S as follows: 

( ) ( ) ( ) ( ) ( ) ( )
,)(

,
,∫ 









∂

∂
ϕ−

∂

ϕ∂
=ϕ

S

dS
n

G
G

n
c q

qr
qqr

q
rr                              (3) 

where r is the field point, q the source point, c(r) the solid angle and n the unit outward 

normal at the bubble surface S directed from liquid to gas. To satisfy the impermeable 

boundary condition on the wall, the Green function is given as follows,  

qrqr
qr

′−
+

−
=

11
),(G ,                                                     (4)                       

where q' is the image of q reflected to the wall.   

 In the viscous potential flow theory (VPF), the normal stress balance at the bubble 

surface, considering the surface tension and normal viscous stress τn, is given as follows: 

,2,2
2

2

n
pp nBnL

∂

ϕ∂
µ=τ=τ−γκ+

                                           

(5)                       
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where µ is viscosity of the liquid, pL the liquid pressure at the bubble surface, γ surface 

tension and κ the local mean curvature of the bubble surface.  

 The tangential stress at the bubble surface should be zero as a result of the relatively 

low viscosity of the gas inside the bubble. However, the shear stress due to the irrotational 

flow is non-zero. Joseph & Wang [1, 34] introduced a viscous pressure correction pvc to 

resolve the above discrepancy. To satisfy energy conservation for the liquid flow, the viscous 

pressure correction is set to perform the equal power as the shear stress at the free surface, 

which leads to the following relation at the bubble surface, 

dSdSpu
S

s

S

n ∫∫ ⋅=− τ τu)( vc ,                                                             (6)  

where ττττs is the shear stress at the bubble surface. 

 This model is called the viscous correction of VPF (VCVPF) [1].The computation 

results in this paper are based on VCVPF unless stated otherwise. With the pressure 

correction pvc introduced, the normal stress balance at the bubble surface becomes,  

BL p
n

pp =
∂

ϕ∂
µ−γκ++

2

2

vc 22 .                                                       (7)     

 We assume that the viscous correction pressure pvc is proportional to the normal stress 

τn induced by the irrotational velocity
nCp τ−=vc
, where the constant C to be determined by 

(6). Substituting this into (7) yields 

( )
2

2
2 2 1

L B
p C p

n

φ
γκ µ

∂
+ − + =

∂
.
                                                       

(8) 

As shown in (8), the hypothesis
nCp τ−=vc
 is equivalent to the assumption that the normal 

strain rate at the interface is changed by a factor of 1+C due to the weak viscous effects. The 

hypothesis
nCp τ−=vc
 with C determined by (6) satisfies energy conservation for the liquid 

flow globally. 

 A rational model for the viscous correction is unavailable at the moment. Joseph & 

Wang [1] assumed that the viscous pressure correction can be expressed by the spherical or 

ellipsoidal harmonic series, etc. It can be verified that both approaches provide exactly the 

same results for all the cases discussed in [1], including a rising spherical gas bubble, a 

spherical liquid drop moving in another liquid and the decay of free surface waves with 

surface tension, etc.  

 Our computational results in section 3 based on the viscous pressure correction 

provided by (8) show good agreement with the experiments and the computations using the 

Navier-Stokes equation. 
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 ∂2φ/∂n
2 needed in (8) can be calculated as follows:  

2

2

yx z
n x y zn n n

n n n n n

ϕϕ ϕ ϕ
ϕ ϕ

∂∂ ∂ ∂ ∂
= ⋅ ∇ = ⋅ ∇ = + +

∂ ∂ ∂ ∂ ∂
n n ,    (9)    

where n = (nx, ny, nz). φx, φy, and φz satisfy Laplace’s equation since φ satisfies Laplace’s 

equation. They thus satisfy the boundary integration equation (3). As a result, we can replace 

φ in (3) by φx, φy, and φz to formulate the boundary integral equations to find the terms 

∂φx/∂n, ∂φy/∂n and ∂φz/∂n respectively. Subsequently, ∂
2
φ/∂n

2
 is calculated from (9). 

 It is inconvenient to calculate τs directly to obtain pvc or C using (6) or (8). This is 

achieved indirectly by introducing the rate of energy dissipation D [44]. 

dSdSτudsD
S

s

S

nn

S

∫∫∫ ⋅+=⋅⋅= τ τnσ uu ,                                                   (10)    

where σσσσ is stress tensor. Substituting (6) and 
vc np C τ= −  in (10) yields 

dS
nn

CdSτuCD
SS

nn ∫∫ ∂

ϕ∂

∂

ϕ∂
+µ=+=

2

2

)1(2)1( .                     (11)    

 On the other hand, the dissipation rate D can be written in the surface integral on the 

boundary for the irrotational flow [50], 

dS
nnn

D
S

z
z

y

y
x

x∫ 








∂

ϕ∂
ϕ+

∂

ϕ∂
ϕ+

∂

ϕ∂
ϕµ= 2 .                                          (12)    

Using (11) and (12) yields 

1

2

2
−

∂

ϕ∂

∂

ϕ∂

∂

ϕ∂∇
⋅ϕ∇

=

∫

∫

dS
nn

dS
n

C

S

S .

                                                                 

(13)    

The surface integrals in (13) are calculated by using the linear interpolation of φx, φy, φz, 

∂φx/∂n, ∂φy/∂n, ∂φz/∂n and ∂
2
φ/∂n

2
 on each triangular element at the bubble surface S.  

 We choose the reference length R0 (initial radius of the bubble) and the reference 

pressure ∆p=p0-pv. The dimensionless kinematic and dynamic boundary conditions at the 

bubble surface are as follows: 

*
*

*

D

Dt
ϕ= ∇

r
,                                                                                                                  (14a)    

2
2 0

2

2 111 2 sin
2 e Re

* * *
* a* * * * *

* *

D V ( C )
p ( k x t ),

Dt V W n

λ

ϕ κ ϕ
ϕ ε ω

  + ∂
= + ∇ − + − + − 

∂ 
             (14b)    

where the dimensionless variables are denoted with the subscript ‘*’, ε = pg0/∆p is the 

dimensionless initial pressure of the bubble gas, and the Reynolds number Re and weber 
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number We are defined as 0Re R p /∆ ρ µ= , 0We p R /∆ γ= , where ρ is density of the 

liquid.  

 Following the convention the standoff distance is nondimensionalized with respect to 

the maximum equivalent bubble radius Rmax, 

maxR

s
h = .                                                                (15)    

 The numerical model is based on the BIM. At each time step, we have a known bubble 

surface and potential distribution φ at the bubble surface. With this information we can 

calculate the tangential velocity at the bubble surface. The normal velocity at the bubble 

surface is obtained after solving the boundary integral equation (3), C and ∂
2
φ/∂n

2
 are 

calculated from (9) and (13).  The bubble shape and the potential distribution on it can be 

further updated by performing the Lagrangian time integration to (14a, b), respectively, using 

the fourth-order Runge-Kutta scheme (RK4). The details on the numerical model using the 

BIM for the problem can be found in [13, 51, 52]. 

 The bubble surface and potential distribution were interpolated using a polynomial 

scheme coupled with the moving least square method for calculating the surface curvature 

and tangential velocity on the surface [53-55].  

A local Cartesian coordinate system for the node say xi, O-XYZ, is introduced, with its origin 

O at the point xi, and its Z-axis along the normal direction ni. A second order polynomial is 

implemented for the bubble surface as follows, 

( ) 2

6

2

54321 YaXaXYaYaXaaY,XFZ +++++== ,                                     (16) 

The coefficients of the quadratic function are determined by implementing the least-squares 

fitting with the nearest neighbouring nodes from the node xi. The local mean curvature κ at 

the node xi will be calculated from (16) as follows: 

( )
232

3

2

2

432

2

35

2

2665

1 /i
)aa(

aaaaaaaaa

++

−+++
−=κ x .                                                  (17) 

 By the same scheme the potential distribution is interpolated as follows:  

( ) 2

6

2

54321 YbXbXYbYbXbbY,X +++++=ϕ .                                         (18) 

The tangential velocity vτ at node xi is obtained as  

( ) ( )z,y,xYbz,y,xXb ∇+∇=τ 32v .                                                      (19) 

 A high quality surface mesh of the bubble surface is maintained by implementing a 

hybrid of the Lagrangian method and elastic mesh technique [13]. When the free surface is 
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updated, instead of following the material velocity, the mesh nodes can be convected with the 

normal velocity plus an prescribed artificial tangential velocity, 
pre

τv , the sum of which is 

termed as the prescribed velocity, pre
v , 

prepre

τ+= vvv n .                                                                   (20)    

 A suitable artificial tangential velocity distribution improves the mesh quality. Eqs. 

(14a, b) are then integrated using the prescribed velocity as follows: 

,pre

t
v

r
=

δ

δ
                                                                                                (21a)    

 ( )pre pre D

t t Dt

δϕ ϕ ϕ
ϕ ϕ

δ

∂
= + ⋅∇ = − ⋅∇ +

∂
v v v .                                            (21b)    

 Wang C. et al.
 
[56, 57]

 
developed an elastic mesh technique (EMT) to determine the 

prescribed velocity for improving the mesh quality for the simulation of bubble dynamics. 

The optimum prescribed velocity emt

i

pre

i vv =  is obtained by minimizing the elastic energy 

Emesh in the EMT. In the EMT, the mesh sizes at the bubble surface tend to be uniform but a 

non-uniform mesh is more suitable for a bubble surface with varying curvature. We therefore 

implement a hybrid of the Lagrangian and EMT approaches as follows,  

( ) [ ], 1 ,0,1hybird ∈−+= WWW emt

iii vvv                                               (22) 

where W was chosen as 0.7 in this paper.  
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3. Validations of the numerical model  

3.1 Comparison with the Rayleigh–Plesset equation 

 We compare firstly with the Rayleigh–Plesset equation (RPE) for a spherical bubble 

oscillating freely in an infinite viscous fluid, in response to an initial over pressure. The 

dimensionless RPE is given as follows for the bubble radius R*(t*) [55-57]: 

3

2 0
0

3 2 4
1

2
*

* *
* * g *

* * *

R We R
R R R p

R R Re R

λ
 

+ = − − − 
 

�
�� � .                                                   (3.1) 

The parameters for the case are chosen as R0 = 4.5 µm, ε = 100, p0 = 101.3 kPa, ρ = 999 kg m-

3
, λ = 1.67 and γ = 0.073 N m

-1
. A relatively small value of Re = 10 is chosen to see the 

viscous effects evidently in terms of radial oscillation. Figure 2 compares the time histories of 

the bubble radius as determined from the BIM and RPE. The BIM agrees excellently with the 

RPE for the first six cycles of oscillation. The amplitude and period of oscillation decrease 

obviously due to the viscous damping effects, where the maximum radius decreases with 

cycles yet the minimum radius increases with cycles. The accumulation viscous effects are 

significant for microbubbles in multiple cycles of oscillation. 

 

 

 

 

 

 

 

 

 

Figure 2. Comparison of the time histories of the radius of a bubble oscillating in an infinite 

viscous fluid as determined from the 3D BIM and Rayleigh–Plesset equation (RPE). The 

parameters used for the case are R0 = 4.5 µm, ε = 100, p0 = 101.3 kPa, ρ = 999 kg m
-3

, λ = 

1.67, γ = 0.073 N m
-1

 and Re = 10.  

 

3.2 Comparisons with experiments and VOF  

 Ohl et al. [48] carried out carefully controlled experiments for a laser-induced gas 

bubble in water near a rigid boundary for h = 1 and Rmax = 1 mm, capturing the detailed 

behaviour with a high-speed camera. Minsier et al. [33] simulated this case using the 

t* 

R* 

RPE
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9 μs 53 μs 

axisymmetric VOF model based on the Navier-Stokes equations, with the initial conditions of 

R0 = 0.2 mm and pg0 = 42 bar, Tamb = 300 K and Tc0 = 2298 K, where Tamb is the ambient 

temperature in the liquid and Tc0 is the temperature at the centre of the bubble. We will 

compare the BIM with the experiments and the VOF model. 

 In the BIM, the same initial pressure as Minsier et al. [33] is chosen however a slightly 

bigger initial radius R0 = 0.224 mm is used so that the maximum bubble radius reaches 1 mm. 

This difference is due to the fact that some thermodynamic energy is set in the VOF 

simulation by Minsier et al. [33]. The rest of parameters are λ = 1.4, p0 = 101.3 kpa, ρ = 998 

kg m
-1

 and µwater = 0.001 kgm
-1

s
-1

.  

 The bubble images were accurately reproduced by both the two numerical models at 

representative times during the expansion phase, collapse phase and jet formation as shown in 

figures 3a, 3b and 3c respectively. The oscillation periods of the two computational models 

are close to each other but are both slightly larger than the experimental data. As such, the 

corresponding bubble shapes are provided at slightly different times in the two computational 

models and the experiment. The rigid boundary for h = 1.0 is located at the lower border of 

each frame. The bubble first expands in a spherical shape except the lower part of the bubble 

surface is flattened by the boundary at the end of expansion (figure 3a). It then collapses, with 

the lower part kept attached to the boundary and the rest of the bubble surface collapses 

approximately spherically (figure 3b). Near the end of collapse, a liquid jet forms and 

develops rapidly at the top of the bubble surface pointing to the boundary (figure 3c).  

 

a. Expansion phase 

 

 

 

 

 

 

 

 

 

 

113 μs 
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169 μs 

b. Collapse phase 

 

 

 

 

                                                                        

 

 

 

 

 

c. Jet formation 

                                  

 

 

                                           

 

 

 

 

 

 

Figure 3. Comparison of the bubble shapes as obtained from the experiments (Ohl et al. [48], 

in the first row of each phase), VOF (Minsier et al. [33], in the second row) and 3D BIM (in 

the third-row). The bubble shapes are shown during (a) the expansion phase, (b) collapse 

phase and (c) jet formation. The rigid boundary is located at the lower borders of frames. The 

parameters in the 3D BIM are chosen as R0 = 0.224 mm, pg0 = 42 bar, h = 1.0, µwater = 0.001 

kg (m s)
-1

, p∞ = 101.3 Kpa, ρ = 998 kg m
-1

 and λ = 1.4. 

  

  

124 μs 213. μs 

230 μs 217 μs 
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tBIM=114 μs 

ϕ 
tNS=112 μs tNS=172 μs tBIM=172 μs tNS=219 μs tBIM=217 μs tNS=225.8 μs tBIM=233 μs 

 

 

tNS=112 μs tBIM=113 μs tNS=172 μs tBIM=170 μs 

 We next compare the 3D BIM and VOF [33] for a bubble collapsing in water with 

viscosity µwater = 0.001 kg (m s)-1 and in an oil with viscosity µoil = 0.05 kg (m s)-1, close to the 

rigid wall for h = 0.6. The corresponding Re numbers for the two cases are Re = 10000, 200 

respectively. Figures 4a and 4b show the bubble shapes in water and oil, respectively, at 

representative times at the maximum volume (frame 1 of each row), during the early stage of 

collapse (frame 2), at the starting of jetting (frame 3) and at the end of collapse (frame 4), 

respectively. The corresponding bubble shapes of the two models are provided at slightly 

different times due to the slight different oscillation periods associated. The two models are 

in very good agreement during the whole collapse phase for both liquids in terms of bubble 

shapes and jet shapes at corresponding times. The bubble keeps in contact with the boundary 

and a jet forms and develops quickly at the end of collapse. The jet will impact on the 

boundary once it penetrates through the bubble. The bubble shape at the end of collapse is 

smaller in oil and jet is sharper in water.  All the above features have been reproduced by the 

two models.  

 

(a) Numerical results in water 

 

 

 

 

 
(b) Numerical results in oil 

 

 

 

  

 
Figure 4. Comparison of the 3D BIM and VOF (Minsier et al. [33], dash line) for a bubble 

collapsing near a rigid boundary for h = 0.6 in (a) water with µwater = 0.001 kg (m s)
-1

 and (b) 

oil with µoil = 0.05 kg (m s)
-1

, respectively. The rigid boundary is located at the bottoms of the 

frames. Other parameters used for the calculation are the same as in figure 3. 

 

Figure 5 shows the comparison of the maximum jet velocities versus the dimensionless 

standoff distance γ for a bubble in oil near a rigid boundary for the case in figure 4b, obtained 

using the VOF [33] and 3D BIM . We have consider three BIM models based on the inviscid 

potential flow theory (IPF), the viscous potential flow theory (VPF), and the viscous 

tNS=229.9 μs tBIM=235 μs tBIM=222 μs tNS=221 μs 
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correction of VPF (VCVPF), respectively. The results of all the three BIM models agree with 

the VOF in magnitude and trend in general. The maximum jet velocity reduces due to the 

normal viscous stress and reduces further due to the viscous pressure correction. The results 

of VCVPF are closest to the results of the VOF among the three BIM models. 

 

 

  

 

 

 

 

Figure 5. Comparison of the maximum jet velocities Mvjet versus the dimensionless stand-off 

distance γ for a bubble in oil near a rigid boundary for the case in figure 4b, obtained using 

the VOF [33], 3D BIM models based on the inviscid potential flow theory (IPF), the viscous 

potential flow theory (VPF) and the viscous correction of VPF (VCVPF), respectively. 

 

4. Microbubble dynamics near a wall subject to ultrasound perpendicular to the wall 

 Consider a bubble with a radius R0 = 4.5 µm near a wall with the dimensionless 

standoff distance h = 1, 2, respectively, subject to ultrasound perpendicular to the wall with 

the amplitude pa* = 1.4 and frequency f = 300 kHz. Other parameters used are: λ = 1.4, γ = 

0.055 N m
-1

, ρ = 1000 kg m
-3

, p0 = 100 kPa, µ = 0.0035 kg (m s)
-1

 and c = 1500 m s
-1

. The 

parameters are chosen for blood relevant to biomedical applications. The corresponding 

Reynolds number is Re = 13. Two other values of Re = 50 and ∞ are examined, to investigate 

the influence of viscous effects.  

 Figure 6 shows bubble shapes just before jet impact on the opposite bubble surface for 

the cases. In both cases h = 1, 2 the jet is directed to the rigid boundary. The red dot in the 

figures represents centre of the initial bubble. Note that the centre of initial bubble surface is 

outside of the frames in figure 6b. At a lower Reynolds number Re the jet becomes sharper 

and the bubble migration to the wall is slowed down because of the viscous effects. The 

changes are obvious from as Re decreases from 50 to 13, but not significantly as Re decreases 

from ∞ to 50. The oscillation period of the bubble increases with Re and decreases with h.  
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a. h = 2.0 

 
 

 
 

 

 

 

 

 
 

b. h = 1.0 

 

 
 

 
 

 
 

 
 

 

Figure 6. Bubble shapes at jet impact for a bubble near a rigid boundary for the dimensionless 

standoff distances (a) h = 2 and (b) h = 1, subject to ultrasound perpendicular to the boundary 

for pa* = 1.4 and f = 300 kHz, and the Reynolds numbers Re = 13, 50 and ∞, respectively. The 

remaining parameters are R0 = 4.5 µm, λ = 1.4, γ = 0.055 N m
-1, ρ = 1000 kg m

-3, p0 = 100 kPa 

and c = 1500 m s
-1. The red dot in the figures represents centre of the initial bubble. 

 As shown in Table 1, the maximum equivalent bubble radius Rmax∗ and jet velocity Vjet* 

reduce about 6% and 17% respectively, as Re changes from ∞ to 13 for both h due to the 

viscous effects. The displacement of the bubble centroid Zc* decreases about 18% and 22% 

for h = 2 and 1 respectively. The magnitude of the Kelvin impulse and bubble energy at jet 

impact decrease significantly due to the viscous effects. The changes for all the quantities are 

relatively large as Re changes from 50 to 13, but much smaller as Re changes from ∞ to 50. 

This suggests that the viscous effects are small as Re is 50 or larger for the cases considered.  

 The jet velocity for Re = 13 is about 230 ms
-1

 and 330 m s
-1

 as h = 1, 2 respectively, 

increasing rapidly with h, whereas the radius of the middle cross-section of the jet are about 

16% R0 and 11% R0 (figure 6), decreasing with h. For h = 1, the jet tip is about 1.9 µm away 

from the boundary at jet impact on the opposite bubble surface. It will subsequently penetrate 

the liquid between the bubble and the boundary and impact on the boundary. This high speed 

liquid jet has clear potential to damage/penetrate the boundary. However, in the real situation, 

the jet speed will be attenuated or re-directed by the elastic deformation of the boundary [61, 

62]. 

Re=13, t*= 5.538 Re=50, t*= 5.601 Re= ∞, t*= 5.633 

Re=13, t*= 5.646 Re=50, t*= 5.708 Re=∞, t*= 5.715 
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Table 1. The maximum equivalent bubble radius Rmax∗, jet velocity Vjet*, bubble centroid 

displacement Zc* along the z-axis, magnitude of the Kelvin impulse Imaxk* and bubble energy 

Emax* at jet impact for the cases shown in figure 6. 

 Ultrasound has emerged as a promising means to affect controlled delivery of 

therapeutic agents through cell membranes [10, 62-64]. The bubble dynamics generates a 

rapid flow of liquid around the bubble in the local region at the scale of the bubble size, due 

to the rapid expansion, collapse, jetting and shock waves emitted at the end of collapse. These 

phenomena generate oscillating normal and shear stresses on membranes nearby, thus 

enhancing permeability of lipid bilayers. 

 

5. Microbubble dynamics near a wall subject to ultrasound parallel to the wall 

 We next consider the cases where ultrasound propagating parallel to the boundary, with 

the dimensionless standoff distance h = 12, 4 and 1, respectively, and the amplitude of 

ultrasound pa* = 1.6. The remaining parameters are the same as in figure 6. A high-speed 

liquid jet develops towards the end of collapse as shown in figure 7, in which the ultrasound 

propagates from left to right. The oscillation period reduces slightly with the viscous effects. 

 The acoustic radiation forces on gas bubbles are normally referred to as the Bjerknes 

forces [65]. The Bjerknes forces have two types: the Bjerknes force is experienced by a single 

bubble due to pressure gradients in the liquid and the secondary Bjerknes forces are 

responsible for the bubble-wall and bubble-bubble interactions [66]. The bubble is subject to 

the Bjerknes force due to the acoustic wave along the wave direction and the second Bjeknes 

force pointing to the boundary. The jet is along the wave direction for h = 12 (figure 7a), as 

the effect of the boundary is negligible in this case. The jet is along the bisector of the two 

Bjerknes forces for h = 4 (figure 7b) when the two forces are comparable, and is pointing to 

the boundary for h = 1 (figure 7c) as the second Bjerknes force is predominant in this case. 

More cases calculated but not presented here show that the jet is pointing to the boundary as 

h ≲ 1.5 and is along the acoustic wave direction as h ≳ 10. These trends are similar to the 

cases for Re = ∞ [13]. The radius of the middle cross-section of the jet for Re = 13 is 5%, 7% 

and 20% of the initial radius R0 for h = 12, 4 and 1, respectively. 

Re 
h = 2 h = 1 

Rmax* Vjet* Zc* Imaxk* Emax* Rmax* Vjet* Zc* Imaxk* Emax* 

13 2.07 32.5 -0.70 1.05 61 2.02 23.3 -1.85 2.72 57 

50 2.17 38.7 -0.83 1.83 82 2.11 27.6 -2.29 4.32 75 

∞ 2.20 39.2 -0.85 2.17 91 2.14 28.0 -2.37 4.92 85 
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Re=13, t*= 5.64 Re=∞, t*= 5.80 

 

a. h=12.0 

 

 

 

 

 

 

b. h=4.0 

 

 

 

 

 

 

c. h=1.0 

 

 

 

 

 

 

Figure 7. Bubble shapes at jet impact for a bubble near a wall for the dimensionless standoff 

distances (a) h = 12, (b) h = 4.0 and (c) h = 1.0, subject to ultrasound propagating parallel to 

the wall for pa* = 1.6 and f = 300 kHz, and the Reynolds numbers Re = 13, 50, and ∞, 

respectively. The remaining parameters are the same as in figure 6. The direction of 

ultrasound propagation is from left to right. 

 After the jet impacts on the opposite bubble surface, the bubble can continue to collapse 

in a toroidal form, when the liquid flow domain becomes doubly connected. Toroidal bubbles 

are outside the scope of the present paper. The doubly connected domain can be made singly 

connected by using a vortex sheet [67, 68] or a branch cut [69]. Wang et al. [70, 71] 

developed a vortex ring model for the topological transition of a singly connected bubble to a 

Re=50, t*= 5.72 

Re=13, t*= 5.84 Re=50, t*= 5.90 
Re=∞, t*= 5.93 

Re=13, t*= 5.64 Re=∞, t*= 5.77 Re=50, t*= 5.74 



  

18 

 

doubly connected toroidal bubble. Zhang et al. [54], Zhang & Liu [72] modelled 3D toroidal 

bubbles using the vortex ring model.  

 Figure 8 depicts the time histories of the some global quantities of the bubble for the 

cases for h = 4 shown in figure 8b. The maximum equivalent bubble radius decreases about 

6% as Re is decreased from ∞ to 13 (figure 8a). The maximum jet velocity decreases 

substantially from 1310 m/s to 930 m/s with the decrease in Re (figure 8b). The centroid 

movement, the energy and the Kelvin impulse of the bubble increase with Re (figures 8c-f). 

These trends are associated with the viscous damping effects for a lower Re number. 

 Similar trends have been observed for h = 12 and 1 as shown in table 2. The maximum 

equivalent bubble radius Rmax∗ reduces about 6% as Re changes from ∞ to 13 for both h due 

to the viscous effects. The movement of the centroids decreases due to the viscous effects. 

The maximum Kelvin impulse Ikmax* decreases about 26% and 33% for h = 12 and h = 1 

respectively with the change in Re, the maximum energy Emax* reduces about 10% and 6% 

respectively. The changes for all the quantities are relatively large as Re changes from 50 to 

13, but much smaller as Re changes from ∞ to 50.  

 The jet velocity for Re = 13 reaches 900 m s
-1

 as h = 4 or larger, deceases rapidly with 

the standoff distance to about 260 m s-1 for h = 1. At the same parameters for a standing wave 

in the direction perpendicular to the wall, the jet velocity is about 264 m s-1 for h =1 and pa* = 

1.6. So the jet velocity does not change significantly with the wave direction. 
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Figure 8. Time histories of (a) the equivalent radius Req*, (b) jet velocity vjet*, (c) x-

component xc* of the centroid, (d) z-component zc* of the centroid, (e) energy E∗, and (f) 

magnitude of the Kelvin impulse IK* of the bubble for the cases in figure 7b. 

 

 

 

 

 

 

 

Table 2. The maximum equivalent radius Rmax∗, jet velocit Vjet*, centroid displacements Xc*, 

Zc*, magnitude of the Kelvin impulse Ikmax*, and energy Emax* of the bubble at jet impact for 

the cases in figures 8a, 8c.  

Re 
h = 12 h = 1.0 

Rmax* Vjet* Xc* Zc* Ikmax* Emax* Rmax* Vjet* Xc* Zc* Ikmax* Emax* 

13 2.39 104 0.37 -0.036 0.71 102 2.25 26.3 0.07 -2.03 4.38 92 

50 2.50 138 0.40 -0.041 0.97 147 2.35 28.2 0.10 -2.20 6.51 115 

∞ 2.54 146 0.43 -0.067 1.09 163 2.38 28.3 0.10 -2.03 7.30 122 

(e) (f) 

(a) 

(d) 

(c) 

(b) 
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6. Summary and conclusions 

 Microbubble dynamics are usually associated with an irrotational flow in the bulk 

volume but a thin vorticity layer at the bubble surface. This phenomenon has thus been 

studied using the BIM based on the viscous potential flow theory. The viscous effects are 

incorporated into the model through including the normal viscous stress due to the 

irrotational flow and the viscous correction pressure in the dynamic boundary condition at the 

bubble surface.  

 The BIM model agrees well with the Rayleigh–Plesset equation for a spherical bubble 

oscillating in a viscous liquid for several cycles of oscillation at Re = 10. It correlates well to 

the experiments for transient bubble dynamics near a rigid boundary. We have compared the 

maximum velocity of the bubble jet at Re = 200 calculated using the axisymmetric VOF 

model [33] and the BIMs based on the inviscid potential flow theory (IPF), viscous potential 

flow theory (VPF) and the viscous correction of VPF (VCVPF), respectively. The results of 

all the three BIMs correlate with the VOF in general. The jet velocity obtained using the VPF 

is smaller than the IPF and the jet velocity obtained using the VCVPF is smallest and closest 

to the VOF. 

 We have analysed dynamics of a bubble for an equilibrium radius 4.5 µm near a rigid 

boundary subject to ultrasound for the amplitude 1.4-1.6 patm and frequency 300 KHz, which 

are in parameter regions of clinical relevance. The observed features observed may be 

summarized as follows.  

1. The bubble absorbs and concentrates energy from ultrasound, resulting violent 

collapsing and jetting with a velocity at O(102) ms-1. The jet velocity decreases but with a 

larger cross-section due to the presence of the rigid boundary.  

2. The jet is directed to the boundary when the ultrasound is perpendicular to the 

boundary. When the ultrasound is parallel to the boundary, the jet is directed towards the 

boundary as the dimensionless standoff distance h of the bubble from the boundary in terms 

of the maximum bubble radius is as h ≲ 1.5, along the acoustic wave direction as h ≳ 10 and 

along the bisector of the two directions around h ≈ 3.75. 

3. The jet direction does not change significantly due to the viscous effects. The 

oscillation amplitude and period of the bubble decrease with the viscous effects.  
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