

University of Birmingham

An iterative pseudo-gap enumeration approach for
the Multidimensional Multiple-choice Knapsack
Problem
Gao, Chao; Lu, Guanzhou; Yao, Xin; Li, Jinlong

DOI:
10.1016/j.ejor.2016.11.042

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gao, C, Lu, G, Yao, X & Li, J 2016, 'An iterative pseudo-gap enumeration approach for the Multidimensional
Multiple-choice Knapsack Problem', European Journal of Operational Research.
https://doi.org/10.1016/j.ejor.2016.11.042

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. Apr. 2024

https://doi.org/10.1016/j.ejor.2016.11.042
https://doi.org/10.1016/j.ejor.2016.11.042
https://birmingham.elsevierpure.com/en/publications/8fe74e7c-2f3e-416f-b3fa-0fba7c186a05

Accepted Manuscript

An Iterative Pseudo-gap Enumeration Approach for the
Multidimensional Multiple-choice Knapsack Problem

Chao Gao, Guanzhou Lu, Xin Yao, Jinlong Li

PII: S0377-2217(16)30967-5
DOI: 10.1016/j.ejor.2016.11.042
Reference: EOR 14121

To appear in: European Journal of Operational Research

Received date: 24 May 2016
Revised date: 21 November 2016
Accepted date: 23 November 2016

Please cite this article as: Chao Gao, Guanzhou Lu, Xin Yao, Jinlong Li, An Iterative Pseudo-gap
Enumeration Approach for the Multidimensional Multiple-choice Knapsack Problem, European Journal
of Operational Research (2016), doi: 10.1016/j.ejor.2016.11.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ejor.2016.11.042
http://dx.doi.org/10.1016/j.ejor.2016.11.042

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A new method is proposed for the Multidimensional Multiple-choice

Knapsack Problem.

• Pseudo-cuts are derived by a hypothesized pseudo-gap.

• A way to enumerate the pseudo-gap is introduced.

• This new approach was evaluated on 37 classic benchmark instances.

• It discovered 10 new lower bounds, outperforming one state-of-the-art.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Iterative Pseudo-gap Enumeration Approach for the

Multidimensional Multiple-choice Knapsack Problem

Chao Gaoa,c, Guanzhou Lua, Xin Yaoa,b, Jinlong Lia,∗

aUSTC-Birmingham Joint Research Institution in Intelligent Computation and Its
Applications (UBRI), School of Computer Science and Technology, University of Science

and Technology of China, Hefei, 230026, China
bThe Centre of Excellence for Research in Computational Intelligence and Applications

(CERCIA), School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.

cDepartment of Computing Science, University of Alberta, Edmonton, Canada.

Abstract

The Multidimensional Multiple-choice Knapsack Problem (MMKP) is an

important NP-hard combinatorial optimization problem with many appli-

cations. We propose a new iterative pseudo-gap enumeration approach to

solving MMKPs. The core of our algorithm is a family of additional cuts de-

rived from the reduced costs constraint of the nonbasic variables by reference

to a pseudo-gap. We then introduce a strategy to enumerate the pseudo-gap

values. Joint with CPLEX, we evaluate our approach on two sets of bench-

mark instances and compare our results with the best solutions reported by

other heuristics in the literature. It discovers 10 new better lower bounds

on 37 well-known benchmark instances with a time limit of 1 hour for each

instance. We further give direct comparison between our algorithm and one

state-of-the-art “reduce and solve” approach on the same machine with the

same CPLEX, experimental results show that our algorithm is very compet-

itive, outperforming “reduce and solve” on 18 cases out of 37.

∗Corresponding author
Email addresses: cgao3@ualberta.ca (Chao Gao), lrlgz@ustc.edu.cn (Guanzhou

Lu), x.yao@cs.bham.ac.uk (Xin Yao), jlli@ustc.edu.cn (Jinlong Li)

Preprint submitted to European Journal of Operational Research November 29, 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: Integer programming; Heuristics; Multidimensional

Multiple-choice Knapsack; Reduced cost constraint

1. Introduction

The Multidimensional Multiple-Choice Knapsack Problem (MMKP) is

one of the hardest variants of the Knapsack Problem [1]. It has many

real-world applications, such as logistics [2], running time resource manage-

ment [3], global routing of wiring in circuits [4], web service composition [5]

and capital budgeting [6], the strike force asset allocation problem [7], etc.

Suppose there is a set of items N , which is divided into n disjoint subsets,

where each item has an m dimensional cost and a profit value, the MMKP

asks to select exactly one item from each subset such that the summed cost

on each dimension will not exceed the given bound, while maximizing the

summed profit. In the literature, the requirement of selecting exactly one

item from each subset is commonly named as the choice-constraint, the subset

of items is referred to as group.

More formally, let x be a zero-one vector where xj = 1 means item with

index j is selected, pj and vector vj = (v1
j , v

2
j , . . . , v

m
j) are respectively the

profit value and cost vector associated with j. The resource bound is given

by vector b = (b1, b2, .., bm), and Ni is the set of items in group i. We can

formulate the MMKP as a 0−1 Integer Linear Programming (ILP) problem:

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

max
∑

j∈N
pjxj (1)

subject to
∑

j∈N
vkj xj ≤ bk, k = 1, ...,m, (2)

∑

j∈Ni

xj = 1, i = 1, ..., n, ∪i=1..nNi = N, (3)

xj ∈ {0, 1}, j = 1, ..., |N |. (4)

In this paper, we propose a new approach, namely Iterative Pseudo-Gap

Enumeration, for solving MMKPs. Our algorithm starts by obtaining an

upper bound from solving the Linear Programming (LP) relaxation, and

then by reference to a pseudo-gap and a reduced cost constraint, we propose

to derive a new family of pseudo cuts that constrain variables from different

groups. Finally, we introduce a simple strategy to enumerate the pseudo-

gap iteratively. Joint with CPLEX to solve the strengthened problem at

each iteration, we test our approach on 37 instances from the literature. It

updates 10 new lower bounds, given a run-time of 1 hour for each instance,

outperforms the state-of-the-art approach in the literature when running on

the same machine.

The rest of our paper is organized as follows. In Section 2, we review

the related work. In Section 3, we explain our approach in detail. We then

present our experimental studies in Section 4. Section 5 concludes this paper.

2. Related work

A number of algorithms have been proposed for tackling MMKP. Exact

methods based on Branch and Bound [8, 9, 10] are able to guarantee the

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

obtained solution to be optimal after the algorithm terminates, however sys-

tematic search without heuristics usually requires intractable computation

time to obtain high quality solutions for large-scale instances.

It is believed that the first heuristic results were due to Moser et al. [11],

who proposed a heuristic algorithm based on Lagrangian Relaxation that

starts from building an infeasible solution, then repeatedly permutes to re-

duce the infeasibility. Their method was improved by Akbar et al. [12]. Khan

et al. [13] proposed a heuristic based on the aggressive resource usage, and

they claimed that their heuristic performs better than Moser’s. However, a

guided local search and a reactive local search heuristic both proposed by Hifi

et al. [1, 14] were able to outperform Khan and Moser’s heuristics. Then, a

column generation method proposed by Cherfi and Hifi [15] obtained better

results on the benchmark instances used by the previous heuristics. Cherfi

and Hifi in [16] later proposed a hybrid algorithm that combines local branch-

ing with column generation and a truncated branch-and-bound. Cherfi and

Hifi’s hybrid algorithm outperformed all previous approaches substantially.

In fact, due to the different real-world application requirements, the ap-

proaches for tackling MMKPs can be grouped into two categories. The first

ones are fast heuristics that focus on finding feasible solutions at a small com-

putation cost, particularly to meet the requirement of real-time applications.

The methods proposed by Ykman-Couvreur et al. [3], Htiouech et al. [17],

Parra-Hernandez et al. [18], Xia et al. [19], and Shojaei et al. [20] belong to

this route. The second ones pay more efforts on high quality solutions. The

iterative relaxation based heuristic introduced by Hanafi et al. [21], a family

of iterative semi-continuous relaxation heuristics named ILPH, IMIPH, IIRH

and ISCRH proposed by Crévits et al. [22], and another hybrid heuristic by

Mansi et al. [23] that consists of a family of cuts to define a reduced problem

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and a reformulation procedure are all of this sort.

The most recent approach “reduce and solve” [24] adopts both group

fixing and variable fixing to obtain reduced problems, and then solves the

reduced problems by the Integer Linear Programming (ILP) solver CPLEX.

Based on different enumerating methods, two variants namely PEGF and

PERC are actually defined. The “reduce and solve” approach found most of

the current best known results on the set of 27 standard benchmark instances

and 10 new irregular structure instances introduced by a fully parameter-

ized CPH heuristic based on pareto algebra [25]. The comparison between

the “reduce and solve” approaches and CPH [24] over these 37 instances

demonstrates that the two variants PEGF and PERC of “reduce and solve”

are overall better than CPH.

It is worth noting that recent high solution quality aimed approaches [21,

22, 23, 24] share the similar idea to reduce the problem by proposed pseudo

cuts, and then the reduced problem is solved by an ILP solver, namely

CPLEX. The key difference of these approaches is their proposed pseudo

cuts and how they iteratively adjust their pseudo cuts.

In this paper, we present a new Iterative Pseudo Gap Enumeration (IPGE)

approach for the MMKP. We introduce the concept of pseudo-gap which

serves as a hypothesized gap between the upper bound and lower bound of

the original problem. Based on the pseudo-gap, we show that a new family of

cuts could be derived by the reduced cost constraints [26, 27, 28]. After apply-

ing these cuts, the strengthened problem is solved by the ILP solver CPLEX.

We further introduce a strategy to enumerate the pseudo-gap, thereby real-

izing an iterative method that converges to an optimal solution after the

pseudo-gap becomes valid.

To evaluate the effectiveness of IPGE, we conduct experimental studies on

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the 37 benchmark instances [24], among which 27 are with regular structures

and 10 are with irregular structures, where regular or irregular structure in-

dicates whether all groups of an instance have exactly the same number of

items or not. The comparative experiments show that our algorithm com-

petes favorably with the state-of-the-art “reduce and solve” approach. In

particular, given a run time of 1 hour for each instance, IPGE is able to

report 6 new better lower bounds on the 27 regular structure instances, and

4 on the 10 irregular structure instances, even though the best lower bounds

from the literature have been regarded as very high.

3. An Iterative Pseudo Gap Enumeration Approach to the MMKP

IPGE is essentially a two-step iterative procedure. In the first step, a

family of pseudo cuts/constraints is derived from the reduced cost constraints

with regarding to a pseudo-gap. Then the original problem with these pseudo

cuts is solved by calling an ILP solver in the second step. In this section,

we first show how to generate the pseudo cuts given there is a pseudo-gap

at hand, after that we present how the pseudo-gap is initially defined and

adjusted iteratively, finally we give our complete algorithm.

3.1. Definitions

For the convenience of understanding, we introduce some definitions that

are consistently used in this paper.

• P is the given MMKP problem instance.

• x∗ denotes an optimal solution to P .

• LP (P) is the Linear Programming Relaxation of P .

• x̄ is the optimal solution to LP (P).

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• rj denotes the reduced cost corresponding to x̄j, i.e., variable with index

j.

• v(P) and v̄(P) are a lower bound and an upper bound for problem P ,

respectively.

• Strengthened problem (P |C) denotes the problem instance P after ap-

plying a set of constrains (cuts) in C.

With regard to x̄, we further define the following sets:

• J0(x̄) = {j|j ∈ N, x̄j is nonbasic and x̄j = 0} denotes the index set of

nonbasic variables with value 0.

• J1(x̄) = {j|j ∈ N, x̄j is nonbasic and x̄j = 1} denotes the index set of

nonbasic variables with value 1.

• J(x̄) = J0(x̄) ∪ J1(x̄) includes the indices of all nonbasic variables in

x̄.

3.2. The Reduced Cost Constraint

The reduced cost constraint is an important concept in the Multidimen-

sional Knapsack problem (MKP) [27, 28], originally given by Schinzinger and

Saunders [26]. It is also applicable to MMKP since MMKP is extended from

MKP with an additional choice-constraint.

For both MMKP and MKP, suppose we have known a feasible solution

with objective value v(P), then to find solutions with better lower bounds,

the following constraint needs to be satisfied [27]:

∑

j∈J0(x̄)

|rj|xj +
∑

j∈J1(x̄)

|rj|(1− xj) ≤ v̄(P)− v(P) (5)

Following Constraint (5), some fixing rules are defined by Proposition 1.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Proposition 1. ∀j ∈ J(x̄), if |rj| > v̄(P)− v(P), then x∗j = x̄j.

The proof is trivial, since for any nonbasic variable xj with |rj| > v̄(P)−
v(P), if we let xj = 1−x̄j, Constraint (5) would certainly be violated. There-

fore, if we want better lower bounds, Proposition 1 indicates that only those

nonbasic variables with an absolute reduced cost not greater than v̄(P)−v(P)

in x̄ should allow to change their values. Indeed, Proposition 1 has been in-

tensively used in [21, 22, 23, 24] to reduce the problem size by fixing the

nonbasic variables with absolute reduced costs greater than the gap between

the known upper bound and lower bound.

3.3. Derived Pseudo Cuts

An upper bound v̄(P) could be obtained by solving LP (P). Assume that

we have also a pseudo-gap named as ζ, we show that a new family pseudo

cuts could be further derived following Constraint (5).

We partition J0(x̄) into n0 + 2 (n0 ≥ 0) disjoint subsets, i.e., J0(x̄) =

J0
0 (x̄)∪ J0

1 (x̄)∪ ...∪ J0
n0

(x̄)∪ J0
n0+1(x̄). For any 0 ≤ k ≤ n0, subset J0

k (x̄) has

the property that 1) the summed absolute reduced costs of any k variables

from J0
k (x̄) does not exceed ζ, and 2) the sum of any k+1 variables’ absolute

reduced costs is greater than ζ. The special case is k = 0, in which situation

we say condition 1) is satisfied automatically. J0
n0+1(x̄) is the residual subset

that J0
n0+1(x̄) = J0(x̄)− {J0

0 (x̄) ∪ J0
1 (x̄) ∪ ... ∪ J0

n0
(x̄)}.

More formally, let Hl(A) be a function that returns all l-element subsets

of a given set A, where l ≤ |A|. For any 0 ≤ k ≤ n0, the property of J0
k (x̄)

could be expressed by Formula (6).

∀S ∈ Hk(J0
k (x̄)),

∑

j∈S
|rj| ≤ ζ and ∀S ∈ Hk+1(J0

k (x̄)),
∑

j∈S
|rj| > ζ (6)

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This property of J0
k (x̄) implies that at most k variables could be flipped

from 0 to 1, since any k + 1 variables’ summed absolute reduced costs is

greater than ζ, violating Constraint (5).

So, it is obvious that a set of cuts could be derived from Formula (6):

∑

j∈J0
k(x̄)

xj ≤ k, k = 0, 1, . . . , n0 (cuts-0)

Analogously, we partition J1(x̄) into n1 + 2 (n1 ≥ 0) disjoint subsets, i.e.,

J1(x̄) = J1
0 (x̄) ∪ J1

1 (x̄) ∪ ... ∪ J1
n1

(x̄) ∪ J1
n1+1(x̄), such that

∀S ∈ Hk(J1
k (x̄)),

∑

j∈S
|rj| ≤ ζ and ∀S ∈ Hk+1(J1

k (x̄)),
∑

j∈S
|rj| > ζ (7)

Formula (7) and Constraint (5) indicate that for any J1
k (x̄), at most k vari-

ables could be flipped from 1 to 0. Therefore, we obtain another set of cuts

as follows:

∑

j∈J1
k(x̄)

xj ≥ |J1
k (x̄)| − k, k = 0, 1, . . . , n1 (cuts-1)

It’s quite different from the choice-constraint, the derived cuts (cuts-0)

and (cuts-1) try to restrict those variables from different groups, so we call

them Cross Group Cuts (CGCs). The fixing rule defined by Proposition 1

is just the special case of our CGCs (with n0 = n1 = 0). If n0 = n1 = 0,

both J0(x̄) and J1(x̄) are divided into two parts, and variables indicated

by J0
0 (x̄) and J1

0 (x̄) are fixed as 0 and 1, respectively. That is, our CGCs

are a generalization of Proposition 1, producing more fixing rules implied by

Constraint (5).

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.4. Implementation of the CGCs

It is still a question that, for a given ζ, how to efficiently generate all

the CGCs. We present the procedure to computing CGCs in Algorithm 1.

Note that before calling Algorithm 1, we suppose that the reduced costs

for all variables have been computed by solving the LP (P), and we sort

the variables in J0(x̄) and J1(x̄) in non-increasing order according to their

absolute reduce costs.

Algorithm 1: Generating the CGCs

Input: ζ: a pseudo gap value; l: the type of the CGCs, l = 0, 1; J l(x̄):
the nonbaisc variables with value equal to l, sorted in
non-increasing order according to the absolute value of their
reduced costs, s.t. |rj1| ≥ |rj2| ≥ | . . . ≥ |rj|Jl(x̄)|

|;
Output: Cl: the derived cuts-l. Any cut in Cl is represented by the

indices of variables occurred in the cut and the bound value.
k ← 0; /* k:the subscript of J l

k(x̄) */

start← 0; /* start:the start position of J l
k(x̄) in J l(x̄) */

Cl ← ∅;
while start < |J l(x̄)| − 1− k do

for s← start to |J l(x̄)| − 1− k do

if
∑s+k

i=s |rji | < ζ then
break;

end

end
end← s+ k; /* set the end position of J l

k(x̄) */

if l = 0 then

Cl ← Cl ∪ (
∑end−1

i=start xji ≤ k);
end
if l = 1 then

Cl ← Cl ∪ (
∑end−1

i=start xji ≥ (end− start)− k);
end
k ← k + 1;
start← end;

end
return Cl;

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

As we can see from Algorithm 1, the most time-consuming part to com-

puting CGCs is the for-loop, which is used to find some continuous subse-

quences of the decreasing reduced cost sequence of |rj1|, |rj2|, . . . , |rj|Jl(x̄)|
|. If

a subsequence found is denoted by J l
k(x̄), then the sum of the first k reduced

costs in this subsequence, which is certainly one of the biggest sum of k el-

ements in this subsequence, is smaller than ζ, and the sum of the last k + 1

reduced costs in this subsequence, which is surely one of the smallest sum

of k + 1 elements in this subsequence, is greater than ζ. Algorithm 1 only

conducts one reduced cost sequence scan, and then start and end mark all

the subsequences successively. Hence, the time complexity of Algorithm 1

would be concluded as O(|J l(x̄)|), which is very efficient.

3.5. Iteration Cut

We introduce yet another type of cut in our algorithm, which is used to

avoid revisiting the searched space in the successive iterations. So this cut is

used from the second iteration and henceforth.

At first, we explain some notations used in the following presentation. Let

ζt and (cuts-0)t, (cuts-1)t be the pseudo-gap and the derived CGCs in the

t-th iteration, respectively, where t = 1, 2, The set of feasible solutions

defined by the strengthened ILP problem (P |(cuts-0)t, (cuts-1)t) is denoted

by F t.

Since the greater ζ is, the looser our CGCs will be. If we set ζt+1 greater

than ζt, we will have F t ⊆ F t+1, which means a large amount of solutions

explored in the t-th iteration do not need to be searched once again, so we

want to reduce as many solutions searched as possible in the next iteration.

A new constraint, entitled (cut-3), is deduced as below.

For xj = 0 or 1, let nt
0 and nt

1 respectively be the n0 and n1 in iteration

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

t, we have

0 ≤
∑

j∈J0
k(x̄)

xj, k = 0, . . . , nt
0 (8)

and

∑

j∈J1
k(x̄)

xj ≤ |J1
k (x̄)t|, k = 0, . . . nt

1 (9)

Combine the results of summing Inequalities (8) and (9) with different k

values, a new inequality (10) is obtained

nt
1∑

i=0

∑

j∈J1
i (x̄)

xj −
nt

0∑

i=0

∑

j∈J0
i (x̄)

xj ≤
nt

1∑

i=0

|J1
i (x̄)| (10)

So, if any constraint in (cuts-0) or (cuts-1) is violated, the left hand side of

inequality (10) will be reduced at least by 1. Therefore, a new Constraint

(cut-3) would be used to cut the visited solutions which makes the equality

in Inequality (10) hold.

nt
1∑

i=0

∑

j∈J1
i (x̄)t

xj −
nt

0∑

i=0

∑

j∈J0
i (x̄)t

xj ≤
nt

1∑

i=0

|J1
i (x̄)t| − 1 (cut-3)

It should be noticed that Constraint (cut-3) is very loose in essence, how-

ever, since the computation of this cut does not cause computation overhead,

it is still better with than without.

3.6. Iteratively Enumerating Pseudo Gap

So far, the only issue unsolved in our IPGE approach is how to set the

pseudo-gap ζ and adjust its value iteratively. Ideally, the pseudo-gap ζ should

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

be equal to the smallest valid gap value, which will result in tight bounds

while the optimal solutions of problem P still remain in (P |C). However, we

do not know the value of the smallest valid gap, so iteratively enumerating

the pseudo gap values is suggested. The sequence of these pseudo gap values

that will be used in our algorithm is called the strategy for setting ζ and is

denoted by S.

We observe that in MMKPs, the number of nonbasic variables indicated

by J1(x̄) is usually relatively small, but they tend to be critical, because if

one of them is fixed to 1, the rest in the same group should be set to 0 due

to the choice-constraint. Therefore, in our IPGE approach, the strategy S
is defined as a sorted subsequence of all reduced costs of variables in J1(x̄).

More precisely, Let S , (ζ0, ζ1, . . .) be an increasing sequence, where ζt ∈
{|rj|Jl(x̄)|

|, . . . , |rj2|, |rj1|}, subject to ζt+1 − ζt > ∆, t ≥ 0, and ∆ is a small

positive constant used to avoid generating cuts based on very similar ζ values.

The size of the strategy S is bounded by the gap between the known upper

bound v̄(P) and the obtained best lower bound v(P) due to ζt ≤ v̄(P)−v(P).

To keep our algorithm as simple as possible, ζ0 is set to the smallest absolute

reduced costs of the variables in J1(x̄). ∆ is a tuning parameter which is set

to 0.1.

The details of IPGE are illustrated in Algorithm 2. The LP-relaxation

of the original MMKP is solved by the LP solver CPLEX at first, and an

optimal solution is recorded as x̄, the reduced costs of all variables are stored

in the vector (r1, r2, . . . , r|N |), and J0(x̄), J1(x̄) are calculated. The upper

bound v̄(P) is set to the optimal objective value of the LP-relaxation of P ,

while v(P) is initialized with −1, which will be updated to the best solutions

found iteratively in Algorithm 2. Once we have (r1, r2, . . . , r|N |) and J1(x̄),

we can also initialize S, the strategy of setting the pseudo gap values.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2: Iterative Pseudo Gap Enumeration for MMKP (IPGE)

Input: P : a given MMKP instance; ∆: the minimum difference of ζ
values; TLimit: time limit to stopping algorithm;

Output: x′: the best solution found, or NIL if no feasible solution
found.

Solve LP (P) by CPLEX, obtain x̄ and ri, i = 1, 2, . . . , |N |;
Compute J0(x̄), J1(x̄);
v̄(P)← p · x̄; /* p:the profit value vector given in P */

v(P)← −1;
x′ ← NIL;
Sort J1(x̄), J0(x̄) respectively in decreasing order according to |rj|;
Generate S = {ζ0, ζ1, . . .} based on sorted J1(x̄);
t← 0; /* t:iteration count */

while TLimit not reached and t < |S| do
generate (cuts-0)t, (cuts-1)t by Algorithm 1 with ζt;
if t == 0 then

C ← (cuts-0)t ∪ (cuts-1)t;
else

C ← (cuts-0)t ∪ (cuts-1)t ∪ (cut-3)0 ∪ (cut-3)1 ∪ . . . ∪ (cut-3)t−1;
end
calculate the remaining time limit Tremains;
xt ← solve the ILP model (P |C) by CPLEX with Tremains;
/* xt:the best solution found in the t-th iteration. */

if p · xt > v(P) then
v(P)← p · xt;
update S by replacing {ζk, ζk+1, . . . |ζk > v̄(P)− v(P)} with
ζk = v̄(P)− v(P);
x′ ← xt;

end
t← t+ 1;

end
return x′;

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In the t-th iteration of Algorithm 2, the CGCs, (cuts− 0)t and (cuts− 1)t,

are generated by Algorithm 1 with a giving pseudo gap ζt, and the iteration

cuts, (cut− 3)k, k = 0, 1, . . . , t − 1, are generated in the previous iterations.

We note that (cut− 3) are used from the second iteration, so in the t = 0

iteration, no (cut− 3) are applied. The union of these cuts, denoted by C,

are used to define a strengthened ILP model (P |C), which is solved by the

ILP solver CPLEX with the remaining time budget.

As shown in Algorithm 2, another stopping criterion is when all ζ values

in S are visited, which indicates that the returned solution from Algorithm

2 is an optimal solution of P .

In implementation, both the LP (P) and the strengthened IP models are

solved by the academic solver CPLEX. In each iteration, we call CPLEX by

setting the best found integer solutions as its starting point so as to speed

up the computation.

4. Computational Results

4.1. Problem Instances

In order to evaluate our IPGE approach, we execute it on the benchmark

instances that have been widely studied in the literature. We use two differ-

ent sets of benchmark instances. The first set contains 27 regular structure

instances with identical group sizes [16, 21, 22, 23, 24, 25] . The second set

has 10 irregular structure instances with varying group sizes. These two sets

of problem instances are described in Tables 1 and 2, respectively.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Details of the 27 regular structure instances. n indicates the number of
groups, |Ni| indicates the size of group i, i = 1 . . . n, and m is the resource dimension.

v̄(P) is the best upper bound found in the literature.

Instance n |Ni| m v̄(P) Instance n |Ni| m v̄(P)
I07 100 10 10 24604.1 INST08 80 10 10 17528.4
I08 150 10 10 36900.6 INST09 80 10 10 17776.1
I09 200 10 10 49190.6 INST10 90 10 10 19333.1
I10 250 10 10 61483.5 INST11 90 10 10 19457.9
I11 300 10 10 73795.6 INST12 100 10 10 21753.4
I12 350 10 10 86098.8 INST13 100 30 10 21590.1
I13 400 10 10 98446.7 INST14 150 30 10 32884.5

INST01 50 10 10 10738 INST15 180 30 10 39172.8
INST02 50 10 10 13598 INST16 200 30 10 43376.4
INST03 60 10 10 10975.4 INST17 250 30 10 54370.2
INST04 70 10 10 14472.2 INST18 280 20 10 60476.1
INST05 75 10 10 17072.7 INST19 300 20 10 64941.1
INST06 75 10 10 16850.7 INST20 350 20 10 75625.4
INST07 80 10 10 16455.0
+ For INST01 and INST02, the v̄(P) is proved to be the optimal objective value.
+ The first 6 (I01 to I06) instances are ignored in our experiments, because the sizes of these problems

are relatively small and usually used to evaluate fast heuristics, and their optima can be easily
obtained by an ILP solver such as CPLEX.

Table 2: Details of the 10 irregular structure instances [25]. n indicates the number of
groups, |Ni|max indicates the maximum size of groups, and m is the resource dimension.

v̄(P) is the best known upper bound found in the literature.

Instance n |Ni|max m v̄(P) Instance n |Ni|max m v̄(P)
INST21 100 10 10 44315 INST26 100 20 20 45011
INST22 100 10 20 42076 INST27 200 10 10 87650
INST23 100 10 30 42763 INST28 300 10 10 134672
INST24 100 10 40 42252 INST29 400 10 10 179245
INST25 100 20 10 44201 INST30 500 10 10 214257

The regular structure instances are available from the website 1. The

optima of instances included in Table 1 are unknown in the literature except

for INST01 and INST02. A common feature of these instances in Table 1 is

that their dimensionalities are all 10. The number of items in a group ranges

1http://www.info.univ-angers.fr/pub/hao/mmkp.html

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

from 10 to 30, number of groups ranges from 50 to 400, and hence the total

number of variables scales from 500 to 7000. The best upper bounds are

also included in Tables 1 and 2, and most of them were found by PEGF and

PERC which are two variants from the “reduce and solve” approach [24].

Table 2 contains the 10 irregular structure instances that are recently in-

troduced by CPH [25], on which a few results were reported in the literature.

These instances in Table 2 are available from the website 2, and the optima

of them are all unknown. The included upper bounds were reported in [25]

by solving the LP relaxation problem. Note that we do not consider those

7 instances (RTI07 to RTI13) [25] used by CPH for the reason that their

problem sizes are very small and were only suggested to evaluate real-time

heuristics, which is not the subject of this paper.

4.2. Experimental Results

Our IPGE is programmed in C++, compiled using Visual Studio 2010

with CPLEX12.5. Our experiments are carried out on an Intel(R) Core(TM)

i3-3220 3.3GHz CPU machine with 4GB RAM, running Windows 7 32Bit

system. The same CPLEX12.5 is used to solve the LP relaxation as well

as for solving the strengthened problem after applying the pseudo-cuts at

each iteration. Setting the time limit as 1 hour for each instance, we first

compare our computational results with the best solutions reported by other

approaches in the literature, then, we give direct comparison between our

algorithm and the recent “reduce and solve” approach.

4.2.1. Comparison of Best Solutions Found by Different Approaches

To show the solution qualities we have obtained by running IPGE, we

compare our results with the best solutions reported by the other well-

2http://www.es.ele.tue.nl/pareto/mmkp

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

performing algorithms in the literature. The comparisons on the 27 regular

structured instances and 10 irregular instances are shown in Tables 3 and 4,

respectively. Since those results except IPGE are all from the literature, we

list their detailed running configurations in below:

• CH: A hybrid heuristic proposed by Cherfi and Hifi [16], results were

obtained on an UltraSparc10 2.5 GHz CPU with 1200 seconds as the

time limit.

• ILPH-IMIPH-IIRH-ISCRH: The iterative semi-continuous approach in

which four variants are proposed in [22],i.e., ILPH, IMIPH, IIRH and

ISCRH. We combine the best results of each variant here. The results

were obtained on a Pentium IV 3.4 Ghz CPU with CPLEX11.2, time

limit 3600 seconds each instance.

• MACH1-2-3: Three variants are introduced in [23], they are MACH1,

MACH2 and MACH3. We collect the best solutions of each variant

which were obtained on a Dell 2.4GHz CPU Machine with CPLEX11.2,

time limit roughly 500 seconds per instance.

• PEGF-PERC: The “reduce and solve” approach by Chen and Hao [24],

running on an Intel Xeon 2.83GHz E5440 CPU with 2GB RAM and

CPLEX12.4. Two variants PEGF and PERC were presented, and best

results were obtained by setting the time limit as 3600 seconds.

• CPH: The fully parameterized heuristic [25] was running on Intel 2.8GHz

CPU with 12G RAM and CPLEX version 9. When testing on the 27

regular instances, best results were found by parallel version pCPH with

10 processors, time limit was set to 1200 seconds. On the 10 irregular

instances, time limit was set to 3600 seconds, best results were obtained

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by two variants with default aggregation or scare-aw. aggregation, by

CPH+OptPP.

Table 3: The comparison of best solutions on the 27 regular structured instances found
by different algorithms, i.e., CH [16], MACH1-2-3: three MACH variants [23], pCPH: a

fully parameterized heuristic with parallel implementation [25], PEGF-PERC: two
variants of “reduce and solve” approach [24], ILPH-IMIPH-IIRH-ISCRH: four variants of

the iterative semi-continuous approach [22] and our IPGE.

Inst. BKLB CH ILPH-IMIPH-
IIRH-ISCRH

MACH1-2-3 PEGF-PERC pCPH IPGE

I07 24595 24587 24592 24590 24592 24592 24595
I08 36896 36894 36889 36888 36894 36886 36893
I09 49185 49179 49183 49182 49185 49185 49187*
I10 61480 61464 61471 61480 61478 61465 61479
I11 73791 73780 73784 73789 73791 73782 73791
I12 86095 86080 86091 86094 86095 86084 86094
I13 98445 98433 98445 98440 98441 98437 98443

INST01 10738 10738 10738 10738 10738 10733 10738
INST02 13598 13498 13598 13598 13598 13598 13598
INST03 10955 10944 10949 10949 10947 10955 10952
INST04 14456 14442 14446 14456 14456 14452 14456
INST05 17061 17055 17058 17057 17061 17059 17061
INST06 16840 16823 16835 16835 16840 16830 16843*
INST07 16444 16440 16440 16442 16444 16440 16442
INST08 17514 17510 17511 17508 17514 17509 17521*
INST09 17763 17761 17760 17760 17763 17754 17763
INST10 19320 19316 19320 19316 19316 19316 19320
INST11 19449 19441 19446 19441 19449 19441 19446
INST12 21741 21732 21738 21738 21741 21738 21742*
INST13 21580 21577 21580 21577 21578 21577 21580
INST14 32875 32872 32873 32872 32875 32872 32873
INST15 39163 39160 39162 39161 39162 39161 39163
INST16 43367 43362 43366 43366 43367 43363 43367
INST17 54363 54360 54361 54363 54363 54360 54363
INST18 60467 60460 60467 60467 60467 60464 60469*
INST19 64932 64925 64932 64932 64932 64932 64933*
INST20 75618 75612 75613 75618 75616 75615 75616
#BKLB 1 7 8 18 4 18

Sum 1018731 1018445 1018648 1018657 1018703 1018600 1018728
+ All results except those of IPGE are from the literature. BKLB is the best known lower bound.

We note that the BKLBs of I07(24595), INST15(39163) were reported by Chen and Hao using
CPLEX12.4 [24], the BKLB of I08(36896) was reported by Mansi et al [23] using CPLEX11.2,
other BKLBs were found by algorithms in the table excluding IPGE.

+ For those approaches consisting of two or more variants, we combine the best results of each variant
together.

Table 3 summarizes the best lower bounds visited by the recent algorithms

CH, ILPH-IMIPH-IIRH-ISCRH, MACH1-2-3, PERC-PEGF and pCPH, along

with our computational results by IPGE. The BKLB stands for best known

lower bound, boldface indicates the solution value attains or surpasses the

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

BKLB. We notice that IPGE has improved 6 lower bounds on the 27 regular

instances in the literature, as starred.

In terms of solution quality, from Table 3, we can see IPGE has vis-

ited or updated 18 BKLBs, and its summed solution is superior to the rest

five methods. Following IPGE, the two variants PEGF-PERC attained 18

BKLBs and the summed solution value is larger than the other 4 methods.

The combined results of three MACH variants (column MACH1-2-3) are bet-

ter than the four variants ILPH-IMIPH-IIRH-ISCRH, even though the time

limit of MACH was smaller.

Table 4 contains the comparison of CPH, PEGF-PERC and IPGE. Among

those 10 instances, PEGF-PERC attained 7 BKLBs, CPH attained 2, while

CPLEX12.4 visited 1 [24]. It is easy to notice that the new computational

results of IPGE contain 5 new BKLBs, and its summed value is higher than

that of PEGF-PERC, although the best result combination of PEGF and

PERC has two more better lower bounds than IPGE.

In summary, IPGE has discovered 11 new BKLBs on these 37 instances

from the literature. By the comparisons above, we may further conclude that

IPGE has obtained very competitive results. Considering that the results in

Tables 3 and 4 of PEGF-PERC are the best of two different variants, it is

tempting to say that IPGE performs slightly better than PEGF or PERC.

However, due to the discrepancies of running configurations, it is far from

fair to conclude which algorithm is better or worse by just comparing their

best reported solutions. To have more accurate assessment of IPGE as well

as give better comparative results, we will run PEGF and PERC on the

same computer as IPGE and compare their performance directly in the next

section.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: The comparison of best solutions on the 10 irregular structured instances found
by CPH+OptPP: [25], PEGF-PERC: two variants of “reduce and solve” approach [24],

and our IPGE.

Instance BKLB PEGF-PERC CPH+OptPP
(default or
scar.-aw.
aggr.)

IPGE

INST21 44280 44280 44270 44284*
INST22 41976 41966 41976 41964
INST23 42584 42584 42562 42536
INST24 41918 41876 41918 41998*
INST25 44159 44159 44156 44156
INST26 44879 44879 44869 44869
INST27 87630 87630 87616 87634*
INST28 134648 134642 134634 134654*
INST29 179228 179228 179206 179222
INST30 214230 214230 214198 214242*
#BKLB 7 2 5

SUM 875532 875474 875405 875559
+ All results except those of IPGE are from the literature. BKLB

is the best known lower bound, the BKLB of INST28(134648) was
reported by Chen and Hao using CPLEX12.4 [24].

4.2.2. Direct Comparison with PEGF and PERC

The PEGF and PERC are two variants of the “reduce and solve” approach

proposed by Chen and Hao [24]. In the previous section, we have seen the

superior performance of PEGF-PERC and IPGE in terms of solution quality.

However, it is still a question whether IPGE would outperform PEGF and

PERC when running those algorithms in the same computer with the same

CPLEX installed?

To answer such a question precisely, we download and compile the source

code from the authors’ website 3, compile it with the same compiler and

CPLEX as IPGE. We then run PEGF and PERC on the same Intel i3-3220

CPU machine with the same time limit (1 hour each instance). We show

the detailed comparative results in in Tables 5 and 6. The solutions by pure

CPLEX12.5 on the same machine are also included as a reference of the

solution quality of PEGF, PERC and IPGE.

3http://www.info.univ-angers.fr/pub/hao/mmkp.html

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Tables 5 and 6 contain the comparative results of PEGF, PERC, IPGE

and CPLEX12.5 running the same computer with the same time limit. For

each instance, we use boldface to indicate whose solution is the best among

the four. The starred case indicates that solution is better than the best

known lower bound (BKLB) from the literature.

In Table 5, IPGE has 12 (#Best) solutions better than PEGF, PERC

and CPLEX12.5, while PEGF and PERC each has 4, CPLEX12.5 has 1.

In the last row of Table 5, we summarize the total of the reported values,

where the value of IPGE is the highest. Both CPLEX12.5 and PEGF have

updated 1 BKLB, i.e., I12 and INST04 respectively, while IPGE improved 6

(I09, INST06, INST08, INST12, INST18 and INST19).

Table 6 contains the computational results of IPGE, PEGF, PERC and

CPLEX12.5 on the 10 irregular instances. It is easy to see that IPGE has

5 better lower bounds than the other, while PEGF and PERC each has 3

and 2 respectively. CPLEX12.5 failed to visit even one best solution. If

comparing with PEGF and PERC separately, we can see that IPEG has 6

and 7 better results respectively. The summed values in the last row shows

that the value of PEGF is much better than CPLEX12.5, but surprisingly,

the value of PERC is much worse than CPLEX12.5. The summed value of

IPGE still dominates all the rest, although the combined best results from

PEGF and PERC are very close.

In summary, on the 37 tested instances, IPGE has 18 higher lower bounds

than PEGF and PERC, while PEGF combined PERC has 11 better cases

than IPGE in total. The summed results also indicate that IPGE has better

performance than PEGF and PERC. Therefore, this direct comparison cer-

tificates that IPGE is a very competitive MMKP approach in finding high

quality solutions. The authors of “reduce and solve” claim that the two

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

approaches PEGF and PERC have complementary property [24]. Our ex-

periments demonstrate that our IPGE could be a further complement, since

IPGE outperformed PEGF and PERC on 18 out of 37 instances.

Table 5: Direct comparison of IPGE, PEGF, PERC and CPLEX on the 27 standard
regular instances.

Instance IPGE
“reduce and solve”

CPLEX12.5
PEGF PERC

I07 24595 24593 24592 24592
I08 36893 36895 36895 36880
I09 49187* 49185 49185 49173
I10 61479 61478 61477 61474
I11 73791 73791 73790 73779
I12 86094 86093 86092 86096*
I13 98443 98444 98438 98435

INST01 10738 10738 10738 10738
INST02 13598 13598 13598 13598
INST03 10952 10945 10947 10946
INST04 14456 14457* 14456 14456
INST05 17061 17057 17057 17050
INST06 16843* 16837 16838 16825
INST07 16442 16444 16444 16440
INST08 17521* 17512 17515 17508
INST09 17763 17762 17764 17757
INST10 19320 19314 19316 19312
INST11 19446 19446 19449 19436
INST12 21742* 21739 21739 21729
INST13 21580 21580 21578 21577
INST14 32873 32873 32873 32871
INST15 39163 39163 39162 39160
INST16 43367 43367 43367 43367
INST17 54363 54361 54360 54360
INST18 60469* 60467 60467 60464
INST19 64933* 64932 64930 64930
INST20 75616 75616 75614 75610
#Best 12 4 4 1
SUM 1018728 1018687 1018681 1018563

+ All approaches are running on the same Intel i3 3220 CPU
machine with 4GB RAM.

+ Time limit is 3600 seconds for each instance.
+ The starred case indicates the newly improved BKLB.

The boldface indicates the result is better than all other
approaches in the table.

4.2.3. Convergence of IPGE

IPGE adopts a simple strategy that enlarges the pseudo gap each itera-

tion, this makes IPGE converges to an optimal solution when ζ becomes a

valid gap larger than the gap of an upper bound and lower bound. To better

demonstrate the convergence property as well as investigate the performance

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Direct comparison of IPGE, PEGF, PERC and CPLEX on the 10 irregular
instances.

Instance IPGE
“reduce and solve”

CPLEX12.5
PEGF PERC

INST21 44284* 44280 44280 44272
INST22 41964 41970 41948 41934
INST23 42536 42560 42464 42520
INST24 41998* 41792 41796 41904
INST25 44156 44159 44156 44144
INST26 44869 44865 44844 44844
INST27 87634* 87630 87636* 87616
INST28 134654* 134640 134652 134626
INST29 179222 179230* 179218 179214
INST30 214242* 214220 214214 214214
#Best 5 3 2 0
SUM 875559 875346 875208 875288

+ All approaches are running on the same Intel i3 3220 CPU
machine with 4GB RAM.

+ TIme limit is 3600 seconds for each instance.
+ The starred case indicates the newly improved BKLB. The

boldface indicates the result is better than all other ap-
proaches in the table. IPGE’s result on INST27 is starred
but not with boldface, since 87634 is better than the BKLB
(87630) in the literature, however, our running of PERC has
yielded an even better solution (87636).

of IPGE in detail, we illustrate the computation process of IPGE on several

representative instances, i.e., I07, INST01, INST02, INST21 and INST23.

The detailed computational results of IPGE on INST01, INST02, I07,

INST21 and INST23 are illustrated in Figures 1, 2, 3, 4 and 5. The optima

of INST01 and INST02 are known in the literature, and it is observed that

on both instances, IPGE terminates much earlier than the time limit of 3600

seconds, for the reason that the ζ has become valid, and hence the optimal

solution of the strengthened problem is also optimal to the original problem.

Note that for INST02, IPGE fails to yield a feasible solution on iteration 0

and 1, this is because that the very small ζ makes the derived pseudo cuts

such strict that the choice constraint becomes unsatisfiable, hence the LB

remains as -1.

Figure 3 demonstrates how IPGE performs on I07. It is easy to see that at

iteration 9, within 300 seconds, the solution visited by IPGE is already 24594,

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which is very high, compared to the best solutions reported in the literature.

Similar result is observed on INST21 too — within 1200 seconds, at iteration

13, the solution of IPGE has surpassed the BKLB (44280), showing the

efficiency of IPGE in discovering high quality solutions.

However, it is also observed that the solution of IPGE on INST23 is

significant worse than those of PEGF and PERC, which may imply a poten-

tial drawback of IPGE at certain circumstance. For a better understanding

of such a circumstance, we also present the detailed computation of IPGE

on INST23 in Figure 5. One obvious character of Figure 5 is that there is a

plateau from iteration 8 to 12 where IPGE’s search over 900 seconds is futile.

Recalling that the strengthened problem is primarily defined by the pseudo

gap threshold ζ, by comparing the ζ value at different iteration, we may

conclude that a minimal increase ∆ = 0.1 might be insufficient to include

new promising regions to the next iteration for this instance. It seems a more

intelligent enumerate strategy that taking into account the distribution of the

values in J1(x̄) might be able to help alleviate this problem, and further im-

prove the efficiency of IPGE. We further note that for instances I07, INST21

and INST23, the solution statuses for the corresponding strengthened prob-

lems are all “optimal” except the last iteration. In the final iteration, IPGE

terminates because it has reached the indicated time limit, which is a normal

stopping condition for IPGE when solving large scale instances.

5. Conclusions and Future Work

We have presented a new approach for solving MMKPs namely IPGE.

The key idea of IPGE is to use a family of pseudo-cuts to further strengthen

the problem. Since the effectiveness of the generated cuts is directly related

to the choices of the pseudo-gap, we then introduced a simple strategy that

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 10550

 10600

 10650

 10700

 10750

 0 1 2 3 4 5 6 7 8

S
o
lu

ti
o
n
 v

a
lu

e

Iteration number

INST01

T=0.08,
P=0.26,

LB=10577

T=0.10,
P=0.37,

LB=10595

T=23.18,
P=3.69,

LB=10714

T=45.72,
P=4.02,

LB=10727

T=177.09,
P=4.54,

LB=10727

T=416.52,
P=4.91,

LB=10732

T=1110.46,
P=12.73,

LB=10738

T=1321.21,
P=15.37,

LB=10738

INST01

Figure 1: Detailed computational results of IPGE on INST01. T, P and LB in the figure
represent respectively the cpu time, pseudo-gap value ζ as well as the discovered lower

bound, at the corresponding iteration.

 13540

 13550

 13560

 13570

 13580

 13590

 13600

 13610

 13620

 0 1 2 3 4 5 6 7 8 9

S
o
lu

ti
o
n
 v

a
lu

e

Iteration number

INST02

T=0.24,
P=2.68,

LB=13561

T=0.30,
P=2.95,

LB=13561

T=0.57,
P=4.38,

LB=13589

T=4.11,
P=6.30,

LB=13596

T=16.43,
P=8.25,

LB=13596

T=53.19,
P=10.36,

LB=13598

T=185.84,
P=35.21,

LB=13598

INST02

Figure 2: Detailed computational results of IPGE on INST02. T, P and LB in the figure
represent respectively the cpu time, pseudo-gap value ζ as well as the discovered lower

bound, at the corresponding iteration.

enumerates the pseudo-gap values for the next value in J1(x̄) that has a

minimum ∆ increase, where ∆ is set to 0.1 throughout our experiments.

Our approach has been evaluated on 37 benchmark instances with two

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 24450

 24500

 24550

 24600

 24650

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
o
lu

ti
o
n
 v

a
lu

e

Iteration number

I07

T=0.16,
P=0.50,

LB=24476

T=0.18,
P=0.79,

LB=24584

T=0.20,
P=0.92,

LB=24584

T=0.24,
P=1.11,

LB=24584

T=0.32,
P=1.33,

LB=24584

T=2.41,
P=1.98,

LB=24584

T=19.16,
P=2.32,

LB=24585

T=90.56,
P=2.73,

LB=24585

T=286.88,
P=2.99,

LB=24594

T=537.59,
P=3.19,

LB=24594

T=1485.21,
P=3.68,

LB=24595

T=2562.56,
P=3.86,

LB=24595

T=3600.92,
P=4.95,

LB=24595

I07

Figure 3: Detailed computational results of IPGE on I07. T, P and LB in the figure
represent respectively the cpu time, pseudo-gap value ζ as well as the discovered lower

bound, at the corresponding iteration.

 44000

 44050

 44100

 44150

 44200

 44250

 44300

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
o
lu

ti
o
n
 v

a
lu

e

Iteration number

INST21

T=0.01,
P=0.10,

LB=44020

T=0.03,
P=0.60,

LB=44058

T=0.08,
P=0.71,

LB=44058

T=0.13,
P=0.83,

LB=44140

T=0.19,
P=1.32,

LB=44158

T=0.24,
P=1.65,

LB=44166

T=0.43,
P=2.56,

LB=44172

T=1.26,
P=2.84,

LB=44212

T=6.69,
P=3.85,

LB=44222

T=21.43,
P=4.53,

LB=44260

T=52.10,
P=5.01,

LB=44260

T=164.51,
P=5.66,

LB=44274

T=284.02,
P=5.99,

LB=44274

T=1173.45,
P=7.33,

LB=44282

T=2371.22,
P=7.50,

LB=44284

T=3331.05,
P=7.66,

LB=44284

T=3600.85,
P=7.81,

LB=44284

INST21

Figure 4: Detailed computational results of IPGE on INST21. T, P and LB in the figure
represent respectively the cpu time, pseudo-gap value ζ as well as the discovered lower

bound, at the corresponding iteration.

different characteristics. The experimental results indicate that IPGE could

outperform the state-of-the-art “reduce and solve” approach on 18 cases.

Moreover, IPGE improves 10 new lower bounds, even though the qualities of

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 42200

 42250

 42300

 42350

 42400

 42450

 42500

 42550

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
o
lu

ti
o
n
 v

a
lu

e

Iteration number

INST23

T=4.30,
P=4.88,

LB=42236

T=6.52,
P=5.72,

LB=42236

T=9.87,
P=6.04,

LB=42236

T=15.16,
P=6.65,

LB=42464

T=60.83,
P=8.61,

LB=42520

T=113.46,
P=9.09,

LB=42520

T=348.60,
P=10.31,

LB=42520

T=652.24,
P=10.52,

LB=42520

T=990.09,
P=10.65,

LB=42520

T=2506.45,
P=12.91,

LB=42536

T=3600.95,
P=14.18,

LB=42536

INST23

Figure 5: Detailed computational results of IPGE on INST23. T, P and LB in the figure
represent respectively the cpu time, pseudo-gap value ζ as well as the discovered lower

bound, at the corresponding iteration.

the best known solutions from the literature have been regarded as very high.

Our result confirms that a proper integration of effective heuristics with a

state-of-the-art ILP solver is a promising approach to solving MMKPs.

In spite of the good performance of IPGE, future work are needed in the

following directions. First, we have not yet investigate other enumeration

strategies other than the simple one proposed, more intelligent enumeration

strategies are worth of trying, which may help enhance IPGE’s performance

on instances like INST23. Second, our iteration cut is in essence loose, per-

haps better heuristic cuts or exact cuts exist, and if so, should be identified

and added so as to further eliminate the regions visited in the previous it-

erations. Third, our experimental results have shown that the empirical

performances of IPGE, PEGF and PERC seem to be complementary, how-

ever, it is still not very clear what kind of pseudo-cuts are most effective on

which circumstances, the relation between the effectiveness of heuristic cuts

and problem instance features remains as another future research task ahead.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgment

We thank Yuning Chen and Jin-Kao Hao for answering questions about

their solvers PEGF and PERC. We are grateful to the anonymous review-

ers for their constructive comments, which have been very helpful for us in

improving the quality and presentation of this paper. This research work

was supported by the National Natural Science Foundation of China under

Grants 61573328 and Grants 61329302. Xin Yao was supported by a Royal

Society Wolfson Research Merit Award.

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] M. Hifi, A. Sbihi, Heuristic algorithms for the multiple-choice multidi-

mensional knapsack problem, Journal of the Operational Research So-

ciety 55 (12) (2004) 1323–1332(10).

[2] C. Basnet, J. Wilson, Heuristics for determining the number of ware-

houses for storing noncompatible products, International Transactions

in Operational Research 12 (5) (2005) 527–538.

[3] C. Ykman-Couvreur, V. Nollet, F. Catthoor, H. Corporaal, Fast multi-

dimension multi-choice knapsack heuristic for mp-soc run-time manage-

ment, in: In Proc. SoC06, 2006, pp. 1 – 4.

[4] H. Shojaei, T. H. Wu, A. Davoodi, T. Basten, A pareto-algebraic frame-

work for signal power optimization in global routing, in: Low-Power

Electronics and Design (ISLPED), 2010 ACM/IEEE International Sym-

posium on, 2010, pp. 407 – 412.

[5] T. Yu, Y. Zhang, K.-J. Lin, Efficient algorithms for web services selection

with end-to-end qos constraints, ACM Trans. Web 1 (1) (2007) 1–26.

[6] D. Pisinger, Budgeting with bounded multiple-choice constraints, Euro-

pean Journal of Operational Research 129 (3) (2001) 471–480.

[7] V. Li, G. L. Curry, E. A. Boyd, Towards the real time solution of

strike force asset allocation problems, Computers & Operations Research

31 (2) (2004) 273–291.

[8] T. Ghasemi, M. Razzazi, Development of core to solve the multidimen-

sional multiple-choice knapsack problem, Computers & Industrial Engi-

neering 60 (2) (2011) 349–360.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[9] M. S. Khan, Quality adaptation in a multisession multimedia system:

Model, algorithms and architecture, Canada: Department of Electroni-

cal and Computer Engineering, University of Victoria. Thesis (PhD).

[10] A. Sbihi, A best first search exact algorithm for the multiple-choice mul-

tidimensional knapsack problem, Journal of Combinatorial Optimization

13 (4) (2007) 337–351.

[11] M. Moser, D. P. Jokanovic, N. Shiratori, An algorithm for the multidi-

mensional multiple-choice knapsack problem, Ieice Transactions on Fun-

damentals of Electronics Communications & Computer Sciences 80 (3)

(1997) 582–589.

[12] M. M. Akbar, E. G. Manning, G. C. Shoja, S. Khan, Heuristic solutions

for the multiple-choice multi-dimension knapsack problem, in: Proceed-

ings of the International Conference on Computational Science-Part II,

ICCS ’01, Springer-Verlag, London, UK, UK, 2001, pp. 659–668.

[13] S. Khan, K. F. Li, E. G. Manning, M. M. Akbar, Solving the knap-

sack problem for adaptive multimedia systems., Studia Informatica An

International Journal Special Issue on Cutting Packing & Knapsacking

Problems 2 (4) (2002) 157–178.

[14] M. Hifi, M. Michrafy, A. Sbihi, A reactive local search-based algorithm

for the multiple-choice multi-dimensional knapsack problem, Computa-

tional Optimization & Applications 33 (2-3) (2006) 271–285.

[15] N. Cherfi, M. Hifi, A column generation method for the multiple-choice

multi-dimensional knapsack problem, Computational Optimization and

Applications 46 (1) (2010) 51–73.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] N. Cherfi, M. Hifi, Hybrid algorithms for the multiple-choice multi-

dimensional knapsack problem, International Journal of Operational Re-

search 5 (1) (2009) 89–109.

[17] S. Htiouech, S. Bouamama, R. Attia, Using surrogate information to

solve the multidimensional multi-choice knapsack problem, in: 2013

IEEE Congress on Evolutionary Computation, IEEE, 2013, pp. 2102–

2107.

[18] R. Parra-Hernandez, N. J. Dimopoulos, A new heuristic for solving the

multichoice multidimensional knapsack problem, IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans 35 (5)

(2005) 708–717.

[19] Y. Xia, C. Gao, J. Li, A stochastic local search heuristic for the

multidimensional multiple-choice knapsack problem, in: Bio-Inspired

Computing-Theories and Applications, Springer, 2015, pp. 513–522.

[20] H. Shojaei, A. H. Ghamarian, T. Basten, M. Geilen, A parameterized

compositional multi-dimensional multiple-choice knapsack heuristic for

cmp run-time management, in: Design Automation Conference, 2009.

DAC ’09. 46th ACM/IEEE, 2009, pp. 917–922.

[21] S. Hanafi, R. Mansi, C. Wilbaut, Iterative relaxation-based heuristics

for the multiple-choice multidimensional knapsack problem, in: Hybrid

Metaheuristics, Springer, 2009, pp. 73–83.

[22] I. Crévits, S. Hanafi, R. Mansi, C. Wilbaut, Iterative semi-continuous

relaxation heuristics for the multiple-choice multidimensional knapsack

problem, Computers & Operations Research 39 (1) (2012) 32–41.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[23] R. Mansi, C. Alves, J. Valério de Carvalho, S. Hanafi, A hybrid heuristic

for the multiple choice multidimensional knapsack problem, Engineering

Optimization 45 (8) (2013) 983–1004.

[24] Y. Chen, J.-K. Hao, A reduce and solve approach for the multiple-choice

multidimensional knapsack problem, European Journal of Operational

Research 239 (2) (2014) 313 – 322.

[25] H. Shojaei, T. Basten, M. Geilen, A. Davoodi, A fast and scalable mul-

tidimensional multiple-choice knapsack heuristic, ACM Trans. Des. Au-

tom. Electron. Syst. 18 (4) (2013) 51:1–51:32.

[26] R. M. Saunders, R. Schinzinger, A shrinking boundary algorithm for

discrete system models, IEEE Trans. Systems Science and Cybernetics

6 (2) (1970) 133–140.

[27] Y. Vimont, S. Boussier, M. Vasquez, Reduced costs propagation in an ef-

ficient implicit enumeration for the 01 multidimensional knapsack prob-

lem, Journal of Combinatorial Optimization 15 (2) (2008) 165–178.

[28] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, P. Michelon, A multi-

level search strategy for the 0–1 multidimensional knapsack problem,

Discrete Applied Mathematics 158 (2) (2010) 97–109.

34

