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Abstract 

 

 

In-situ high temperature nanoscratching of Si(110) wafer under reduced oxygen 

condition was carried out for the first time using a Berkovich tip with a ramp load at 

low and high scratching speeds. Ex-situ Raman spectroscopy and AFM analysis were 

performed to characterize high pressure phase transformation, nanoscratch 

topography and nanoscratch hardness. No remnants of high pressure silicon phases 

were observed along all the nanoscratch residual tracks in high temperature 

nanoscratching, whereas in room temperature nanoscratching, phase transformation 

showed a significant dependence on the applied load and scratching speed i.e. the 

deformed volume inside the nanoscratch made at room temperature was comprised 

of Si-I, Si-XII and Si-III above different threshold loads at low and high scratching 

speeds. Further analysis through AFM measurements demonstrated that the scratch 

hardness and residual scratch morphologies i.e. scratch depth, scratch width and total 

pile-up heights are greatly affected by the wafer temperature and scratching speed.  

mailto:s.zare@imperial.ac.uk


2 

 

 

 

 

Keywords: High temperature; Nanoscratching; Single crystal silicon; Polymorphs 

 

 

1. Introduction 

Silicon is a technologically crucial material and is the workhorse of the 

semiconductor industry due to its excellent stability, wear resistance and abundance. 

However, bulk wafers of single crystal silicon exhibit poor machinability at room 

temperature owing to their relatively low fracture toughness and high 

nanoindentation hardness. It is a common belief that the yield strength and hardness 

of silicon would reduce at high temperature. As such, the fracture toughness of 

silicon improves and its hardness decreases which would ease the plastic deformation 

and improve the machinability [1, 2]. 

Molecular dynamics (MD) simulation studies have been conducted on high 

temperature nanometric cutting of silicon for the sake of making important 

contributions to our fundamental understanding of the occurring processes at the 

atomic scale at elevated temperatures [1, 3-5]. It has been revealed that MD 

simulation is a robust numerical analysis tool in addressing a range of complex 

nanometric cutting problems that are otherwise difficult or impossible to understand 

using other methods. For example, the mechanics of high temperature nanometric 

cutting of silicon is influenced by a number of variables such as machine tool 

performance, cutting conditions, material properties, and cutting tool performance 

(material microstructure and physical geometry of the contact) and all these variables 

cannot be monitored online through experimental examination. However, these could 
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suitably be studied using an advanced simulation based approach such as MD 

simulation. Although MD simulation offers a unique opportunity to explore the 

atomic level discrete processes of nanometric cutting/scratching of silicon under 

desired conditions, there exists some other phenomena which are impossible to be 

investigated using MD simulation, attributable to either the lack of a proper 

interatomic potential function or the excessive intricacy of the phenomenon. For 

instance, the available potential functions are not robust in describing and capturing 

all the structural phases of silicon; hence phase transformation mechanisms during 

nanometric cutting/scratching at room and elevated temperatures cannot be 

understood through MD simulation. Furthermore, the MD simulated depth of cut is 

only several nanometres, which is much smaller than the actual depth of cut (~ 

several hundred nanometres to tens of micrometres). Consequently, high pressure 

phase transformation cannot be simulated under such condition. Therefore, 

experimental determination of the formation of polymorphs is required. It should be 

noted here that the material removal mechanism in scratching is similar to that in 

cutting/machining. Hence, it is possible to substitute the complicated 

cutting/machining with a relatively simple scratching so as to study material removal 

mechanism involved in cutting/machining [6].  

In this paper, the focus will be on the experimental studies of the pressure-induced 

silicon polymorphs, nanoscratch topography and nanoscratch hardness in 

nanoscratching of silicon at room and elevated temperatures. To this end, using the 

state-of-the-art nanoindentation equipment, in-situ high temperature nanoscratching 

trials on single crystal silicon wafer under inert gas are performed and ex-situ 

characterization techniques, such as Raman spectroscopy and atomic force 
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microscopy (AFM) are employed to shed some light on the aforementioned 

processes.  

 

2. Literature review 

The previous work on nanoscale cutting/scratching/indentation by MD simulation 

has primarily focused on demystifying the material removal mechanisms at “room 

temperature”. What is known from these studies is that the current pool of 

knowledge on the nanometric cutting/scratching/indentation at elevated temperatures 

is still sparse. Only limited work has been done so far on studying hot nanoscale 

cutting/scratching/indentation by MD. In preliminary investigations performed by the 

authors, hot nanometric cutting of single crystal silicon and silicon carbide on 

different crystal orientations was compared with the cutting at room temperature 

(27°C) so as to characterize the cutting mechanics such as material flow, stagnation 

region, specific cutting energy, cleavage and defect-mediated plasticity [1, 3-5, 7-9]. 

Fang et al. [10] and Liu et al. [11] performed MD simulations to examine the 

variation in Young’s modulus, hardness and elastic recovery of copper, diamond and 

gold during nanoindentation at high temperatures (up to 327°C). They concluded that 

Young’s modulus, hardness and the extent of elastic recovery decreases with the 

increase of temperature. Hsieh et al. [12] used MD simulation to investigate the 

effect of temperature on maximal normal forces and elastic recovery during 

nanoindentation of copper. They reported a reduction in the aforementioned 

parameters with an increase in the substrate temperature. 

On the experimental side, there is no study hitherto on high temperature nanometric 

cutting/scratching. However, there is a history of using ‘hot hardness’ 
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microindentation tests, beginning with Atkins and Tabor [13]. Nevertheless, 

instrumented hardness tests at high temperatures have a shorter history. Wheeler and 

co-workers [14-16] have described the general nano-mechanical test platform 

capable of performing variable temperature and variable strain rate testing. The 

thermal management and measurement techniques and vacuum nanoindentation have 

been discussed in their review papers. Similarly, Schuh and his colleagues [17, 18] 

produced an elegant discussion of the technical issues surrounding high temperature 

nanoindentation in ambient and inert environments. 

In 1996, Suzuki and Ohmura [19] performed ultra-microindentations on {110} 

surfaces of single crystal silicon in the temperature range of 20-600°C and concluded 

that below 500°C, the temperature-insensitive hardness is determined by the 

transformation to the metallic β-tin phase, which amorphizes or nanocrystallizes 

during unloading, while above 500°C, plastic deformation due to dislocation activity 

causes temperature-dependent hardness. Smith and Zheng [20] modified a depth 

sensing indentation instrument to measure small scale hardness and elastic modulus 

of glass, gold, and single crystal silicon at 200°C. The hardness and elastic modulus 

of soda lime glass and gold were found to be lower than that at room temperature. In 

contrast, indentation testing of Si(100) at 200°C produced a similar hardness value to 

that obtained at room temperature, although the modulus was reduced, from 140.3 to 

66 GPa. In addition, the well-known ‘pop out’ event, which is observed during 

unloading of a silicon indentation at room temperature, disappeared at 200°C. Beake 

and Smith [21] demonstrated that mechanical properties of fused silica exhibit a 

completely different temperature dependence from those of soda-lime glass during 

high temperature nanoindenation at 400°C, since fused silica is an anomalous glass. 
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Xia et al. [22] observed that the surface hardness of Fe-40Al, an iron aluminide, is 

higher and the elastic modulus is lower at elevated temperatures (400°C) than the 

corresponding values at room temperature. Lund et al. [23] investigated the effect of 

temperature during nanoindentation of pure platinum. They reported that the 

transition from elastic to plastic deformation takes place at progressively lower stress 

levels as temperature is increased. By adapting a commercial nanoindenter to allow 

testing at up to 200°C, Schuh et al. [24] explored the deformation map of two type of 

metallic glasses, and found that increasing the temperature at a constant indentation 

rate sees the gradual emergence of homogeneous flow, as thermal relaxations allow 

dissipation of strain localization into general viscous flow. Nanoindentation studies 

of single crystal Ni-base superalloy CMSX-4 oriented in the <001> and <110> 

directions were conducted by Sawant and Tin [25] over a range of temperatures from 

30°C to 400°C. Trelewicz and Schuh [26] carried out high-temperature 

nanoindentation experiments to assess the activation enthalpy for deformation of 

nanocrystalline Ni-W alloys, for grain sizes between 3 and 80 nm. They reported that 

thermal softening becomes less pronounced at finer grain sizes, and the activation 

enthalpy has an apparent inflection at a grain size near ∼10-20 nm, in the vicinity of 

the Hall-Petch breakdown. It should be noted here that large amount of studies have 

been performed on the high temperature nanoindentation of various materials [27-

36]. However, for the sake of brevity, only studies on silicon are discussed in the 

following paragraphs. Bradby and his co-workers [37, 38] reported that in hot 

nanoindentation of silicon, increasing temperature enhances the nucleation of Si-III 

and Si-XII during unloading but the final composition of the phase transformed zone 

is also dependent on the thermal stability of the phases in their respective matrices. 



7 

 

 

Besides, they found that the region under the indenter undergoes rapid volume 

expansion at temperatures above 125°C during unloading. Moreover, polycrystalline 

Si-I was the predominant end phase for indentation in crystalline silicon whereas 

high-pressure Si-III/Si-XII phases were the result of indentation in amorphous 

silicon. They also concluded that the Si-II phase is unstable in a c-Si matrix at 

elevated temperatures. In a similar work, Domnich et al. [39] carried out high-

temperature nanoindentation using Berkovich probe and observed that up to a certain 

critical temperature (350°C), the nanoindentation hardness of silicon is dictated by 

the pressure required to transform the semiconducting Si-I phase into the metallic Si-

II phase of silicon. However, no phase transformation was observed above 350°C 

and it was suggested that the nanoindentation hardness in silicon above 350°C is 

dictated by dislocation glide. From what was discussed above, it can be inferred that 

although some studies have been performed so as to improve our understanding of 

high temperature nanoindentation behaviour, no methodical work is available to date 

on the area of high temperature nanometric cutting/scratching of silicon. It might be 

argued that both techniques are beneficial in understanding and characterizing the 

materials; nevertheless, nanometric cutting/scratching unlike nanoindentation is 

dominated by deviatoric stresses carrying pronounced component of shear. 

Consequently, the stress distribution in nanometric cutting/scratching is considerably 

different from that of nanoindentation; hence the results are not transferable. 

Accordingly, it is suggested that there is a strong need to understand the high 

temperature nanometric cutting/scratching mechanisms of hard-brittle materials such 

as silicon.  
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3. Experimental setup and test procedure 

3.1. Equipment 

Nanoscratching trials were performed on a MicroMaterials Ltd. (MML) nanoindenter 

called NanoTest Vantage. This equipment permits testing at elevated temperatures 

with low thermal drifts under reduced oxygen/purged condition and controlled 

humidity levels, which offers the perfect capability for testing materials in extreme 

conditions. Figure 1 demonstrates the heating arrangement in the MML NanoTest 

Vantage system.  

 

 

Figure 1: Schematics of the heating arrangement of NanoTest Vantage [14] 

 

It is known that silicon is reactive with oxygen at high temperatures; hence 

performing nanoscratching trials under reduced oxygen condition is indispensable. 

NanoTest Vantage system uniquely features a chamber which can be over-

pressurized with a shield gas i.e. high purity Argon to surround the hot zone during 

testing. Figure 2 shows the configuration of NanoTest Vantage system employed for 

conducting the nanoscratching tests. 
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Figure 2: NanoTest Vantage equipment used to perform nanoscratching trials 

 

3.2. Wafers and nanoindenters 

The polished undoped n-type single crystal silicon wafers with the orientation (110) 

of size 10×10×0.5 mm were utilized for the experiments. As pointed out recently by 

Gerbig et al. [40], the augmented deviatoric stress, especially the shear stress, for the 

Si(110) surface as compared with the Si(100) and Si(111) surfaces could ease the 

plastic deformation processes leading to decreased transformation pressures in 

silicon. Moreover, there is little work on the material removal mechanisms of the 

Si(110) surface in nanoscratch testing [41]. 

Prior to trials, the silicon wafers were first ultrasonically cleaned for 20 min in 

acetone, then dipped into 2% HF (Hydrofluoric) aqueous solution for 60 min to 

remove the oxide layers, followed by a thorough rinse in de-ionized water. The 

surface roughness of the etched wafers was measured in four areas using a white 

light interferometer (Zygo CP300). The etched wafers had an average flatness of 
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~239±65 nm in terms of PV height while average Ra was measured as ~0.56±0.06 

nm.  

Berkovich nanoindenter with a nominal tip radius of     nm and having 3-sided 

pyramidal faces forming an angle of 65.03° with the vertical axis was employed in 

the nanoscratching experiments reported here. The Berkovich nanoindenter would 

provide the more pragmatic conditions which could be confronted in actual 

applications. In addition, the use of this type of nanoindenter would lead to the much 

higher local pressure with similar load thus would be beneficial in elucidating the 

pressure-induced phase transformation problems. 

 

3.3. Experimental procedure 

Nanoscratching experiments were carried out at substrate temperatures of 25°C and 

500°C using a linearly increasing load spanning from 0 to 10 mN along a total 

scratch length of 100 μm at two constant speeds of 0.1 μm/s (low speed) and 10 μm/s 

(high speed). At each scratching speed, three scratches were produced. The 

nanoscratches were made along the Si<100> direction. Nanoscratching trials at room 

temperature (25°C) were conducted under atmospheric conditions whereas hot 

nanoscratching experiments were performed under reduced oxygen condition 

through an overpressure of pure Argon in the chamber. The amount of oxygen in the 

chamber was kept in the range of ~0.2-0.3% during the experiments. The 

experimental parameters and conditions used for the trials are summarized in Table 

1. 

 

Table 1: Nanoscratching conditions 
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Silicon 

wafer 

Scratching 

direction 

Temperature 

(°C) 

Scratching 

speed 

(    ) 

Ramp 

load 

(mN) 

Total 

scratch 

length 

(μm) 

Inert gas for 

high 

temperature 

testing 

Si 

(110) 

Si <100> 25 and 500 0.1 and 10 0-10 100 Argon 

 

For the room temperature experiments, the wafer was glued with Cyanoacrylate onto 

a stainless steel disc and then fixed on the metal holder of the nanoindenter machine. 

For the high temperature nanoscratch testing, the wafer was glued onto the hot stage 

using high temperature cement, as shown in Figure 3.  

 

 

Figure 3: Glued silicon wafer on the hot stage 

 

To perform high temperature nanoscratching experiments, the wafer was heated at a 

low rate of 1.6°C/min to reach the target temperature. It should be mentioned that the 

nanoindenter was not independently heated. The swift heat transfer and thermal 

gradients between the heated wafer and the cold nanoindenter tip could lead to a 
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substantial thermal drift, which influences the reliability of the results. In order to 

minimize the thermal drift, the wafer-tip contact was achieved and wafer-tip was 

kept in contact during the heating process. Note that after performing high 

temperature nanoscratching, the wafer was cooled in the chamber at the same rate 

(1.6°C/min) until the room temperature was reached. Figure 4 illustrates a close 

snapshot of experimental system during high temperature nanoscratching. The 

nanoindenter and glued wafer on the hot stage were surrounded by mineral wool in 

order to reduce heat loss by convection and to stabilize the temperature.  

After nanoscratching trials at room and high temperatures, a Thermo Scientific DXR 

Raman Microscope with a 532 nm diode-pumped solid state laser was used to detect 

the presence of crystalline and high pressure phases inside the scratches. Also, a 

Veeco Dimension 3100 atomic force microscope (AFM) with silicon tip was utilized 

to determine the topography of the nanoscratches.  

 

Figure 4: A close snapshot of experimental system during high temperature 

nanoscratching  
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4. Experimental observations and discussion 

4.1. Scratch topography 

Figure 5 shows the typical topography of the residual nanoscratch measured by using 

the tapping mode AFM at four different positions. The cross profile topography 

shows a permanent pile-up (vertical height from a-b and a-d illustrated in Figure 5) at 

the both edges of track, which is closely associated to the plastic extrusion of silicon 

during nanoscratching. The heights of pile-ups are found to be asymmetric, plausibly 

due to the indenter tilt [42]. 

 

 

Figure 5: Typical AFM image of the nanoscratch and cross section profiles measured 

at four different positions. Scratch depth (vertical height from a-c), scratch width 
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(horizontal width b-d) and pile-ups (vertical height from a-b and a-d) are shown on 

the top profile. 

 

Figure 6 illustrates the variation of scratch depth, scratch width and total pile-up 

heights at four various positions of the nanoscratch shown in Figure 5 during 

nanoscratching at room and high temperatures and at two scratching speeds i.e. low 

speed (0.1 μm/s) and high speed (10 μm/s). It can be seen that with the increase of 

applied load and consequently pushing more material to the side of the scratches, the 

residual scratch depth, scratch width and total pile-up heights increase along the 

scratch length. Furthermore, the aforementioned parameters increase with the rise of 

temperature as a result of thermal softening. It is also found that the residual scratch 

morphologies are strongly affected by the scratching speed i.e. scratch depth, scratch 

width and total pile-up heights decrease with the increase of scratching speed. It can 

be inferred that the degree of nanoscale elastic recovery during nanoscratching is 

more serious at high speeds than at low speeds. The obtained results are in accord 

with the trend reported by Li et al. [43], where the residual scratch depth of K9 glass 

decreased with the increase of the scratching speed at the same normal load. 
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Figure 6: Variation of scratch depth, scratch width and total pile-up heights along the 

scratch length with the temperature and scratching speed 

 

Nanoscratch hardness (H) can be employed so as to ascertain the resistance of 

material to the scratch, and it is described as the response of material under dynamic 

deformation of the surface. This parameter is defined as the ratio of the vertical load 

(P) to the surface area of the tip-sample contact or the contact area projection onto 

the horizontal plane which depends on the residual scratch width (b): 

                                                                   
 

  
                                                  (1) 

where k is the nanoindenter tip shape factor, which is dependent on the tip 

configuration. For a Berkovich indenter, this factor is 2.31 [44]. The average values 

of scratch hardness obtained from the trials are listed in Table 2. Due to an effective 

reduction in the shear stress at high temperatures, the scratch hardness has lower 

magnitudes at high temperatures. Moreover, the scratch hardness increases as the 

scratching speed increases, signifying a strain rate strengthening of the silicon 



16 

 

 

material at higher scratching speed. In scratch hardness, the effective strain rate can 

be defined as the ratio of the scratching speed to the scratch width. The strain rate 

hardening effect means that the material provides a greater resistance to plastic 

deformation [45]. 

 

Table 2: Scratch hardness at different conditions 

Nanoscratching condition Scratch hardness (GPa) 

Room temperature, Low speed 12.2 

Room temperature, High speed 16.7 

High temperature, Low speed 7.4 

High temperature, High speed 9 

 

4.2. Nanoscratching-induced phase transformation  

In order to identify the existence of high pressure phases of silicon inside the 

nanoscratch tracks, Raman spectroscopy was employed. For each scratch, the Raman 

spectra were collected at five different locations i.e. at the position of blue lines 

shown in Figure 5. It should be mentioned here that the reported phases in this study 

are the stable or remnant phases since the residual nanoscratch impressions were 

measured at room temperature after the nanoscratching experiments. Figure 7 and 

Figure 8 illustrate the Raman spectra of silicon obtained from the five various 

locations of the scratch made at room and high temperatures, respectively, at low 

(0.1 μm/s) and high (10 μm/s) scratching speeds. On all spectra, the single line at 

519.4 cm
-1

 can be observed, which is close to the reported 520 cm
-1

 optical mode of 

bulk silicon (Si-I). Note that a small amount of stress may cause a shift. It can be 
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inferred from Figure 7a that while room temperature nanoscratching at low 

scratching speed, the nanoscratch is composed of Si-I (bands at 520 and 300 cm
-1

) 

and high pressure phase Si-XII (band at 352 cm
-1

) when the scratching load is lower 

than ~4 mN, corresponding to the locations 1 and 2 in Figure 5. However, the 

intensity of the peak corresponding to Si-XII is very low, signifying that the content 

of Si-XII is relatively small. Above the transition load of ~5 mN, the nanoscratch is 

formed of Si-I, Si-XII characterized by bands at 166, 182, 352, 374, 396, 440, and 

491 cm
-1

, and Si-III (bc8, body-centred cubic structure) identified by bands at 166 

and 385 cm
-1

. Both Si-III and Si-XII (r8, the rhombohedral distortion of bc8) are 

known to show semi-metallic electronic behaviours. It is of note that the band at 385 

cm
-1

 predicted by Plitz et al. [46] for the bc8 structure, was attributed by Ge et al. 

[47] to Si-III together with other bands at 415 and 465 cm
-1

. Nevertheless, the 

absence of these last bands would indicate that Si-III is in minor quantity in the 

nanoscratch track. This observation is in good agreement with the decompression 

path proposed by Gassilloud et al. [48]. It is informative to note that there are strong 

indications that the presence of metastable crystalline phases (Si-XII and Si-III) in 

the residual imprints can be a consequence of formation of β-tin silicon (Si-II) during 

contact loading of silicon [49]. In other words, metallic Si-II is formed during 

nanoscratching owing to the highly localized stresses underneath the indenter and 

subsequently is transformed to Si-III and Si-XII, accompanied by >10% volume 

increase [6], which contributes to the elastic recovery of the scratched surface. 

Interestingly, above the transition load of ~5 mN, the probability of forming Si-III 

and Si-XII phases was found to increase. However, the intensities remain almost 
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constant for these phases, suggesting that the volume of Si-III and Si-XII phases does 

not change at scratch loads higher than ~5 mN.  

The literature suggests that the mode of unloading/release of the pressure plays a 

crucial rule in reverse transformation from metallic phase to crystalline phases i.e. 

upon slow unloading, a crystalline phase of Si-XII and Si-III may persist whereas Si-

IX, amorphous silicon and Si-I could be obtained upon fast unloading. The Raman 

spectra shown in Figure 7b demonstrate that the nanoscratch made at high scratching 

speed is composed of Si-I when the scratch load is below ~7.5 mN. At higher loads i. 

e. ~9.5 mN, some small remnants of Si-XII and Si-III can be observed inside the 

scratch. As mentioned above, the high scratching speed corresponds to a high 

unloading rate, which likely leads to the formation of the Si-I. 
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Figure 7: Raman spectra collected from five different locations of the nanoscratch 

shown in Figure 5, and fabricated under room temperature condition at constant 

scratching speed of: a) 0.1 μm/s (low speed) and b) 10 μm/s (high speed) 

 

As evident in Figure 8a and Figure 8b, the Raman peaks for the Si-III and Si-XII 

phases disappear and no remnants of polymorph phases are detected all along the 

nanoscratch residual track when high temperature nanoscratching is performed at 

low and high speeds. This means the Si-III/XII → Si-I phase transition occurs during 

the nanoscratching at high temperature of 500°C. This observation agrees with the 

idea that high temperature promotes the transition of metastable silicon phases (Si-III 

and Si-XII) into thermodynamic stable Si-I [39]. In nanoindentation process of 

silicon, Domnich et al. [39] observed that when the temperature was above 300-

350°C, only cubic diamond silicon was detected, which is in excellent agreement 

with the obtained results of high temperature nanoscratching in our study. Moreover, 

there is some evidence that Si-III and Si-XII transform back to Si-I with annealing. 

Ruffle et al. [50] reported that the intensity of the peaks related to the Si-III and Si-
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XII phases drops with increasing annealing time at 175°C, and after 120 min, none of 

these phases are detected and the Raman spectrum is similar to that of pristine 

silicon. Moreover, they claimed that the lifetime of the Si-III/XII is temperature 

dependent, and it is over 1 min at 320°C and at ambient pressure. Taking into 

account the high temperature nanoscratching at 500°C performed in this study, it can 

be assumed that annealing at 500°C with the cooling rate of 1.6 °C/min can 

commence a fast Si-III/XII → Si-I phase transition during the trials. Hence, the only 

stable phase which is detectable from the Raman spectra shown in Figure 8 is the 

pristine silicon (Si-I). The obtained results in this study are also consistent with the 

high power laser irradiation of the indentations carried out by Zeng et al. [51], where 

rapid Si-III/XII → Si-I phase transition within 1s was realized. 

It should be noted here that other metastable phases like hexagonal diamond (Si-IV), 

which is characterized by a broad band at 510 cm
-1

, or amorphous silicon (a-Si), 

which is characterized by broad bands at near 170 and 490 cm
-1

, were not observed 

within the residual scratches while nanoscratching of silicon at room temperature and 

high temperature of 500°C using the adopted ramp load ranging from 0 to 10 mN at 

two constant speeds of 0.1 μm/s (low speed) and 10 μm/s (high speed). A possible 

hypothesis is that the adequate pressure for amorphization of silicon is not attained 

inside the scratch tracks. It can be also postulated that a-Si crystallizes during high 

temperature nanoscratching trials since very small volumes of a-Si typically do not 

require annealing temperatures exceeding 550°C in order to exhibit significant 

crystallization [52]. Meanwhile, there is some evidence that nanoclusters of a-Si can 

crystallize at temperatures as low as 70°C [53, 54]. Therefore, it is not surprising to 

observe the absence of a-Si within the scratch tracks. However, there might exist a 
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small amount of residual a-Si within the phase transformed zone, yet its amount (if 

present) should be very limited which cannot be detected since Raman spectroscopy 

itself is not very sensitive and trace amounts may not be detectable with this 

technique. This may be resolved by using more advanced Raman techniques such as 

surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering 

(TERS) etc. It can be argued that cross-sectional transmission electron microscopy 

(XTEM) analysis can be employed to further investigate the presence of a-Si in the 

scratch. However, the focused ion beam (FIB) can damage the cross-sectional sample 

which in turn could generate a-Si within the scratch. 
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Figure 8: Raman spectra collected from five different locations of the nanoscratch 

shown in Figure 5, and fabricated under high temperature condition (500°C) at 

constant scratching speed of: a) 0.1 μm/s (low speed) and b) 10 μm/s (high speed) 

 

 

 

 

4. Summary 

Single crystal silicon nanoscratching experiments were performed at room and high 

temperatures to comprehend the influence of substrate temperature on the high 

pressure phase transformation, nanoscratch topography, nanoscratch hardness and 

condition of the tool tip in nanoscratching. The Raman spectroscopy results revealed 

that while room temperature nanoscratching at low scratching speed, above the 

transition load of ~5 mN, the nanoscratch is formed of Si-I, Si-XII and Si-III, and the 

probability of forming high pressure phases of Si-III and Si-XII increases above this 

load. Nevertheless, Si-III phase was found to be in minor quantity in the nanoscratch 
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track. At high scratching speed, small remnants of Si-XII and Si-III phases were 

detected when the scratch load was greater than a threshold value i. e. ~9.5 mN. 

When high temperature nanoscratching was carried out at low and high speeds, no 

remnants of polymorph phases were observed all along the nanoscratch residual 

track, suggesting the transition of metastable silicon phases (Si-III and Si-XII) into 

thermodynamic stable Si-I. 

AFM measurements revealed that the residual scratch morphologies are profoundly 

influenced by the scratching speed viz. scratch depth, scratch width and total pile-up 

heights decrease with the increase of scratching speed. Moreover, the 

aforementioned parameters were observed to increase with the rise of temperature as 

a result of thermal softening. Further analysis through calculating the nanoscratch 

hardness showed a reduction at high temperatures. Additionally, the nanoscratch 

hardness was found to increase as the scratching speed increases, signifying a strain 

rate strengthening of silicon material at higher scratch speeds. 
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The wear mechanism of a diamond nanoindenter is very complex, involving 

chemical, physical, electrical, and mechanical interactions between diamond and 

substrate [55]. Figure A shows the scanning electron microscopy (SEM) micrograph 

of the nanoindenter tip taken by a Hitachi SU-6600 field emission scanning electron 

microscope (FE-SEM) after nanoscratching of silicon at room and high temperatures. 

As can be seen from the figure, under the present scratching conditions, the 

nanoindenter tip is not blunted i.e. mechanical wear does not occur for both cases 

owing to high surface hardness and wear resistance of diamond. 

 

 

Figure A: SEM image of Berkovich nanoindenter tip used for nanoscratching at: a) 

room temperature and b) high temperature (500°C). The nanoindenter tips are not 

blunted under the present scratching conditions. The numbers "1, 2, 3, 4" in Figure 

Aa show the four locations used to collect Raman spectra. 

 

In order to study the probable microstructural changes of the diamond nanoindenter 

tip, Raman spectroscopy was performed at four different points on the nanoindenter 

edges shown in Figure Aa. Figure B illustrates the Raman spectra of the diamond 

obtained from the four locations of the nanoindenter tip used for nanoscratching at 

room and high temperatures. The strong sharp peak at 1332 cm
-1

 corresponds to the 

first-order Raman peak of crystalline diamond [56]. Disordered graphite displays two 
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distinct modes in the Raman spectrum: the G band centred at ~1580 cm
-1

 and the D 

band centred at ∼1350 cm
-1

 [57]. However, such peaks were not observed in Figure 

B, suggesting that under the present nanoscratching conditions, no direct diamond to 

graphite transformation occurred. Hence, the diamond nanoindenter is not supposed 

to be worn by graphitization. 
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Figure B: Raman spectra collected from four different locations of the nanoindenter 

shown in Figure Aa, used for nanoscratching at a) room temperature and b) high 

temperature (500°C).  
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