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Abstract
Tuberculosis remains a major global health concern. The ability toBackground. 

prevent phagosome-lysosome fusion is a key mechanism by which intracellular
mycobacteria, including , achieve long-termMycobacterium tuberculosis
persistence within host cells. The mechanisms underpinning this key
intracellular pro-survival strategy remain incompletely understood. Host
macrophages infected with persistent mycobacteria share phenotypic
similarities with cells taken from patients suffering from Niemann-Pick Disease
Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking
defects and lipid accumulation within the lysosome lead to cell dysfunction and
cell death. We investigated whether these shared phenotypes reflected an
underlying mechanistic connection between mycobacterial intracellular
persistence and the host cell pathway dysfunctional in NPC. TheMethods. 
induction of NPC phenotypes in macrophages from wild-type mice or obtained
from healthy human donors was assessed via infection with mycobacteria and
subsequent measurement of lipid levels and intracellular calcium homeostasis.
The effect of NPC therapeutics on intracellular mycobacterial load was also
assessed. Macrophages infected with persistent intracellularResults. 
mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid
types, reduced lysosomal Ca levels, and defects in intracellular trafficking.
These NPC phenotypes could also be induced using only lipids/glycomycolates
from the mycobacterial cell wall. These data suggest that persistent intracellular

mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein,
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mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein,
and subsequently induce altered acidic store Ca  homeostasis. Reduced
lysosomal calcium levels may provide a mechanistic explanation for the
reduced levels of phagosome-lysosome fusion in mycobacterial infection.
Treatments capable of correcting defects in NPC mutant cells via modulation of
host cell calcium were of benefit in promoting clearance of mycobacteria from
infected host cells. These findings provide a novel mechanisticConclusion. 
explanation for mycobacterial intracellular persistence, and suggest that
targeting interactions between the mycobacteria and host cell pathways may
provide a novel avenue for development of anti-TB therapies.

 Frances M. Platt ( )Corresponding author: frances.platt@pharm.ox.ac.uk
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Introduction
Approximately one-third of the world’s population is infected 
with Mycobacterium tuberculosis (Mtb), the causative agent of  
tuberculosis (TB). TB causes around 1.5 million deaths per year1, 
a significant number of which are in immune-compromised  
individuals2. The only approved vaccine, Bacillus Calmette-Guerin 
(BCG) has limited efficacy3 and the emergence of antibiotic-
resistant TB strains has led to a reduction in available therapeutic 
options. Consequently, the development of new TB therapies is of  
paramount importance.

Environmental mycobacteria, including Mycobacterium  
smegmatis (Msm), bind host cell-surface receptors and are ingested 
into phagosomes that subsequently mature and fuse with lyso-
somes, leading to the bacteria’s destruction. In contrast, persistent/ 
pathogenic mycobacteria, such as Mtb (and the Mtb-related 
attenuated vaccine strain M.bovis BCG), can inhibit phagosome- 
lysosome fusion and hence have the ability to invade, persist and 
replicate within cells of the innate immune system, particularly 
alveolar macrophages4. Mtb-infected cells develop a cholesterol-
laden foamy cell phenotype5 and metabolise host cholesterol as a 
carbon source6–8. Multiple mechanisms have been proposed to 
explain how pathogenic mycobacterial species can block phago-
some-lysosome fusion, including phagosome maturation arrest9,10, 
defective acidification11 and inhibition of phosphatidylinositol-
dependent trafficking pathways12,13. Calcium ions (Ca2+) have also 
been implicated: Phagosome-lysosome fusion has been suggested 
to be stimulated by an elevation of cytosolic Ca2+14, and a pharmaco-
logical elevation of host cell Ca2+ was observed to lead to an increase 
in markers of phagosomal maturation and a decrease in the survival 
of intracellular mycobacteria15. In Mtb-infected macrophages this 
Ca2+ elevation is reduced, thereby blocking phagosome-lysosome 
fusion and facilitating mycobacterial survival within host cells15. 
However, another study has indicated that phagosome-lysosome 
fusion may be a Ca2+ independent process16. Defects in phagosome-
lysosome fusion, and failure to clear intracellular mycobacteria, 
mean that the infection can persist within the host for decades. The 
formation of a granuloma serves to isolate the infected macrophages 
and render the host asymptomatic and non-contagious (latent 
tuberculosis)17. Individuals with latent TB still harbour the  
mycobacteria, and may progress to the active form of the disease 
in the future5.

Cholesterol storage and failures in the fusion of late endosomes/
lysosomes (LE/Lys) also occur in the lysosomal storage dis-
ease, Niemann-Pick type C (NPC)18. NPC is caused by muta-
tions in the NPC1 (95% of clinical cases) or NPC218 genes, with 
defects in either gene resulting in identical clinical phenotypes. 
NPC1 encodes NPC1, a membrane protein in the limiting LE/Lys  
membrane19. In contrast, NPC2 is a soluble cholesterol-binding 
protein of the lysosomal lumen20. It has been proposed that NPC1 
and NPC2 exchange cholesterol, although whether the NPC path-
way serves primarily to efflux cholesterol or is instead a cholesterol 
regulated/sensing pathway that effluxes/interacts with other  
substrates remains unresolved21. Upon the pharmacological inacti-
vation of NPC1 the first measurable event is an increase in sphingo-
sine levels in the LE/Lys, rapidly followed by decreased lysosomal 
Ca2+ levels and subsequent attenuated Ca2+ release from the LE/Lys. 

This leads to downstream endocytic trafficking defects, failure in  
LE/Lys fusion22,23 and the subsequent storage of cholesterol 
and glycosphingolipids (GSLs) in a distended endo-lysosomal  
compartment. In addition to storage of multiple lipids, NPC cells 
also accumulate autophagic vacuoles, due to a failure in their  
clearance24,25. Many of these NPC cellular phenotypes21 are also 
observed in Mtb-infected macrophages, including endocytic  
transport abnormalities, defective autophagy, accumulation of  
free cholesterol, elevated levels of GSLs and the presence of  
lamellar storage bodies4. These shared phenotypes prompted us  
to investigate whether there is a mechanistic link between  
infection with persistent intracellular mycobacteria and the host cell 
NPC pathway. We hypothesised that inhibition of the functional 
NPC pathway upon the infection of wild-type host cells, and the  
subsequent formation of an NPC-like cell with the associated 
defects in lysosomal Ca2+ homeostasis and lysosomal fusion, could 
account for the defect in phagosome-lysosome fusion and the 
reduced mycobacterial clearance.

Here, we have found that infection with persistent intracellular 
mycobacteria, such as BCG and TB, induced the full range of NPC 
phenotypes in wild-type cells, and lipids shed by these mycobac-
teria were able to phenocopy NPC disease cellular phenotypes 
in the absence of the mycobacteria itself. Furthermore, therapies 
developed for the treatment of NPC disease promoted mycobacterial 
clearance, suggesting novel host-targeted therapeutic approaches 
to treat mycobacterial infection, including TB.

Methods
Ethics statement
All experiments involving animals were conducted under the 
authority of project licence number PPL 30/2923, approved by the 
University of Oxford Animal Welfare and Ethical Review Body 
and granted by the United Kingdom Home Office. Animals were 
housed in the Biomedical Research Services facilities, University 
of Oxford. All licensed procedures were performed in accordance 
with the United Kingdom Animals (Scientific Procedures) Act 
1986.

Human peripheral blood mononuclear cells used in this study were 
from healthy anonymous donors, and were isolated from buffy 
coats processed by and purchased from The National Blood and 
Transplantation Services, Bristol, UK.

Cells
RAW 264.7 macrophages were obtained from the European Cell 
Culture Collection (Porton Down, UK). Bone marrow macrophages 
were isolated from 8-week-old mice and cultured at 37°C with 
5% CO

2
 in RPMI with 10% foetal calf serum (FCS), 1% penicil-

lin/streptomycin and 1% L-glutamine (Lonza, Basel, Switzerland). 
Mtb (H37Rv) and M. bovis BCG (Pasteur strain) were kindly 
provided by Simon Clark (Public Health England). Fluorescent Msm 
(mc2155 strain expressing mCherry) was kindly provided by David 
Russell (Cornell University). Mycobacteria were grown on 7H11 
agar plates (with Oleic Albumin Dextrose Catalase) before transfer 
to 7H9 liquid medium (with Albumin Dextrose Catalase). Myco-
bacterial cultures were maintained at 37oC, with shaking speed of 
220rpm for liquid cultures. NPC1-overexpressing CHO cells26 were 
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kindly provided by Daniel Ory (Washington University School of 
Medicine) and were grown at 37°C with 5% CO

2
 in DMEM-F12, 

10% FCS, 1% penicillin/streptomycin and 1% glutamine. U18666A 
(Sigma) was used at 1μg/ml for 48h. HeLa cells were obtained from 
ATCC and were kept in DMEM with low glucose (1g/L), 10% 
FCS and 1% primocin (InvivoGen). HEK293 cells were obtained 
from ATCC and were kept in DMEM with high glucose (4.5g/L) 
supplemented with 10% FCS and 1% penicillin/streptomycin.

Human monocyte-derived macrophages
Peripheral blood CD14+ monocytes were isolated using microbeads 
(Miltenyi Biotec), differentiated in the presence of M-CSF 
(10ng/ml) in X-vivo media (Lonza) and used after 7 days.

FLUOS labelling of mycobacteria
A small volume (5ml) of a mid-exponential (OD

600
 between 0.8 

and 1.2) mycobacteria culture was centrifuged (3000g/10min), 
resuspended in 500μl of HEPES buffer (pH 9.1) and incubated for 
5min with 25μl of 20mg/ml FLUOS (5(6)-carboxyfluorescein-N-
hydroxysuccinimide ester) (Sigma) in DMSO. The bacteria were 
washed twice with warm 7H9 (37°C) and resuspended in 500μl of 
RPMI-FCS. The OD

600
 of the solution was measured via spectro-

photometry (Jenway 6305 spectrophotometer) and the concentra-
tion of the bacteria was determined.

Generation of mCherry-expressing BCG
BCG was electroporated with pV116 plasmid DNA (250–500ng) 
(kindly provided by David Russell, Cornell University) containing  
the gene for mCherry production and selective markers for  
kanamycin resistance, using standard parameters (Equibio Easyject 
Plus Eletroporator at 2.5kV, 25μF, 1000Ω). Transformed colonies 
were selected on 7H11 OADC agar plates supplemented with 
kanamycin. Individual colonies were picked and grown in liquid  
culture as detailed above.

Host cell infection
The multiplicity of infection (MOI) used was 12.5. Host cells were 
plated out 18h prior to infection. Mid-log phase mycobacteria were 
centrifuged (3000g/10min) and resuspended in medium prior to 
dilution.

Indirect calcium quantification
Cells were infected with mycobacteria or treated with lipids 
24hr prior to Ca2+ measurements. Cells were loaded with 2μM  
fura-2 AM (Teflabs), washed once with Ca2+-free buffer [121 NaCl, 
5.4 KCl, 0.8 MgCl

2
, 6 NaHCO

3
, 25 HEPES, 10 glucose (mM)] 

supplemented with 1mM ethylene glycol tetraacetic acid (EGTA) 
and twice with Ca2+-free buffer containing 100μM EGTA; subse-
quent experiments were conducted in this same buffer. Cells were 
mounted on an Olympus IX71 microscope equipped with a 40x 
UApo/340 objective (1.35 NA) and a 12-bit Photometrics Coolsnap  
HQ2 CCD camera. Cells were excited alternately by 350- and 
380-nm light using a Cairn monochromator; emission data were 
collected at 480–540 nm using a bandpass filter. Experiments were 
conducted at room temperature with an image collected every 
2–3 seconds.

Lysosomal Ca2+ release was assessed upon addition of 200μM 
glycyl-L-phenylalanine-β-napthylamide (GPN; Santa Cruz 

Biotechnology). At the end of each run, autofluorescence was 
determined by addition of 1μM ionomycin (Calbiochem) with 
4mM MnCl

2
, which quenches fura-2. Images were analysed using 

custom-written Magipix software v3.02 (R. Jacob, King’s College 
London, UK) on a single-cell basis, the autofluorescence signal 
was subtracted and the data expressed as the mean ± SEM  
maximum fluorescence changes (Δ350/380).

Direct calcium quantification
Calcium concentrations were quantified as described22 with 
low-affinity Rhod-dextran (Kd=551 ± 107μM) (Invitrogen) in  
conjunction with the calcium-insensitive Alexa-Fluor 488 dextran 
(Invitrogen) at concentrations of 0.25mg/ml and 0.1mg/ml, respec-
tively. Dextrans were loaded for 12hr, followed by a 12hr chase.

Determination of lysosomal pH
RAW 264.7 cells were loaded with fluorescein (pH-insensitive) and 
Texas Red (pH-insensitive) dextrans (10,000MW; Thermo Fisher 
Scientific) at 0.2 mg/ml in complete RPMI in 96-well plates at 37oC 
for 16h. Cells were washed three times with dextran-free media and 
incubated for a further 7h to chase the dextrans to the lysosomes. 
Fluorescence measurements of labelled lysosomes were collected 
using a Novostar plate reader (BMG Labtech) using excitation/
emission 485/520nm (fluorescein) and 570/620nm (Texas Red). For 
the calibration curves, lysosomal pH was set at the indicated val-
ues by equilibrating dextran-loaded cells in a high K+ extracellular 
buffer [5 NaCl, 145 KCl, 1 MgCl

2
, 1 CaCl

2
, 10 glucose (mM)] and 

adjusted to a series of defined pH values in buffers (10mM acetate 
for pH 4–5; 10mM MES for pH 5.5 – 6.5; and 10mM HEPES for 
pH 7) containing 10μM nigericin and 10μM valinomycin (Sigma). 
Autofluorescence was subtracted and the fluorescein fluorescence 
(G) was divided by the Texas-Red fluorescence (R) and an in situ 
pH standard curve was constructed for both treatments [with cells 
maintained in normal medium, the resting G/R ratio of untreated 
(Ctrl) or BCG-treated cells was calibrated in terms of absolute 
pH].

Indirect assessment of lysosomal cathepsin C activity
The lysosomes of RAW 264.7 macrophages, which had been infected 
with BCG mCherry for 24h, and control cells were labelled with 
100nM LysoTracker Green DND-26 (Thermo Fisher Scientific) for 
5min at room temperature in a buffer containing (mM): 121 NaCl, 
5.4 KCl, 0.8 MgCl

2
, 1.8 CaCl

2
, 6 NaHCO

3
, 25 HEPES, 10 glucose. 

The cells were washed once in the same buffer, but without Ca2+ 
(Ca2+-free buffer), and supplemented with 1mM EGTA. The cells 
were then washed twice with Ca2+-free buffer containing 100μM 
EGTA and subsequent experiments conducted in this buffer. The 
cells were mounted on the stage of a Zeiss LSM510 Meta confocal 
laser-scanning microscope equipped with a 40x objective; excita-
tion/emission (nm): green (488/505–530), red (543/>560). Experi-
ments were conducted at room temperature with an image collected 
every 1s. The activity of cathepsin C was assessed by the release of 
LysoTracker (i.e. a decrease in fluorescence) from lysosomes upon 
the addition of 200μM GPN. Images were analysed using custom-
written Magipix software (R. Jacob, King’s College London, UK) 
on a single-cell basis. Data are presented as the mean ± SEM of the 
initial rate (units of LysoTracker fluorescence per second normal-
ised to the basal fluorescence) and by the rate constant calculated 
from an exponential curve fit.
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Sphingosine HPLC measurement
Lipids were extracted as previously described27 with the following  
modifications. Post-addition of 2ml 1:1 chloroform:methanol 
(C:M) samples were spiked with 1μl (1mM) C

20
 sphingosine 

standard (Avanti Polar Lipids). Solvent A was replaced with 1:1 
MeOH:H

2
O and RP18 SPE 1ml columns (Supelco) were used 

for solid-phase extraction. Post-sample addition, columns were  
washed with 2×1ml 1:1 MeOH:H

2
O and 4×1ml 3:1 MeOH:H

2
O 

w/0.1% acetic acid, and the sample was eluted in 4×1ml 9:1 MeOH-
10mM KH

2
PO

4
. The elutant was dried under N

2
 and resuspended 

in 1ml HPLC-grade EtOH, prior to drying down and resuspen-
sion in 50μl warm EtOH. Extracted sphingoid bases were labelled 
with 50μl orthophthaldehyde reagent (12.5mg orthophthaldehyde 
(Sigma-Aldrich), 12.5μl 2-mercaptoethanol (Sigma-Aldrich), 
0.25ml EtOH, 24.75ml 3% boric acid (pH 10.5) and incubated 
for 5min at room temperature. Reverse Phase High Performance 
Liquid Chromatography (RP-HPLC) was carried out using a sys-
tem consisting of a VWR Hitachi Organizer module, L-2200  
Autosampler, L-2130 Pump, L-2485 FL Detector and BetaBasic-
18 column (3μm; 100×4.6mm). Chromatography was carried out 
using a mobile phase of 85% acetonitrile/15% H2O at a flow rate 
of 1.0ml/min. The orthophthaldehyde-labelled derivatives were 
monitored at an excitation wavelength of 340nm and an emission 
wavelength of 450nm. Quantification of trace peak area was carried 
out using EZChrom Elite software v3.2.1 (http://www.jascoinc.
com/ezchrom).

GSL HPLC measurement
GSLs were extracted from cellular homogenates (~200μg protein) 
in 4 volumes of C:M (1:2 v/v) overnight at room temperature. 
The mixture was centrifuged (1200g/10min) before the addition 
of 0.5ml chloroform and 0.5ml PBS to the supernatant, and a rep-
etition of centrifugation (1200g/10min). The resulting lower phase 
was dried under N

2
, re-suspended in 50μl C:M 1:3 and recom-

bined with the upper phase. GSLs were recovered using 25mg C18  
Isolute columns (Biotage) pre-equilibrated with 4×1ml MeOH 
and 2×1ml H

2
O. The sample was eluted via 1ml C:M 98:2, 2×1ml 

C:M 1:3, 1ml MeOH. Column elutant was dried under N
2
 and 

re-suspended in 100μl C:M 2:1, before being dried down and 
re-suspended in ceramide glycanase (CGase) buffer. CGase 
(50mU) was added, and samples were incubated at 37oC for 16h. 
Released oligosaccharides were anthranilic acid (2-AA), labelled 
as previously described28. Labelled oligosaccharides were puri-
fied via mixing with 1ml acetonitrile:H

2
O 97:3 and addition to  

Discovery DPA-6S columns (pre-equilibrated with 1ml acetonitrile, 
2×1ml H

2
O and 2×1ml acetonitrile). The column was washed with 

2×1ml acetonitrile:H
2
O 95:5. Purified GSLs were then eluted into 

2×0.75ml H
2
O. NP-HPLC was carried out as previously described28, 

with the following modifications: Solvent A was pure acetonitrile; 
Solvent B was mQ H

2
O water; Solvent C was 100mM NH

4
OH 

(pH 3.85) in mQ H
2
O.

Cholesterol measurement
Cholesterol and cholesterol esters were quantified using an  
Amplex Red Molecular Probes Kit, according to manufacturer’s  
instructions. Cellular cholesterol was visualised using filipin 
(Sigma). Fixed cells were incubated with 1ml filipin working solu-
tion (0.05mg/ml in PBS with 0.2% Triton X100) for 1h at room 

temperature, before being washed with 3×1ml PBS. Imaging 
was carried out using an Axio Imager A1 microscope in conjunc-
tion with an Axiocam High-Resolution Camera and Axiovision  
software v4.8.

Cholera toxin B subunit transport assays for GM1 
ganglioside trafficking
Cells were washed twice in PBS and incubated with 0.5μM  
Texas red cholera toxin B subunit (CtxB) for 30min at 37°C  
followed by a 2h chase in fresh medium at 37°C. Cells were  
subsequently washed three times with 1% bovine serum albumin  
in PBS and then fixed in 4% paraformaldehyde. Imaging was 
carried out using an Axio Imager A1 microscope in conjunction  
with an Axiocam High-Resolution Camera and Axiovision  
software v4.8.

Intracellular sphingomyelin staining
Cells infected with fluorescent live mycobacteria were washed 
three times with PBS, fixed with paraformaldehyde (4%; 15min) 
and then stained with the sphingomyelin stain lysenin (0.1μg/ml; 
Peptides International, Louisville, USA) for 12h at 4°C. The cells 
were washed with PBS, incubated with lysenin anti-serum (1:500 
dilution; Peptide International; rabbit; NLY-14802-v) at 20°C 
for 1h, and then incubated with a fluorescent secondary antibody 
(1:200 dilution; donkey anti-rabbit IgG Alexa Fluor 488; Invit-
rogen Molecule Probes, A21206; RRID: AB_2535792) at 20°C 
for 30min. Imaging was carried out using an Axio Imager A1  
microscope in conjunction with an Axiocam High-Resolution  
Camera and Axiovision software ver. 4.8.

LysoTracker staining for fluorescence microscopy
Cells were live stained with 50nM LysoTracker green (Molecular 
Probes) in PBS at room temperature for 30min prior to washing. 
Imaging was carried out using an Axio Imager A1 microscope 
in conjunction with an Axiocam High-Resolution Camera and  
Axiovision software v4.8.

Extraction of mycolic acid and fatty acid methyl-esters
Extraction and analysis of total lipids and mycolic acid  
methyl-esters (MAMES) was carried out with M. bovis BCG and 
genetically modified M. bovis BCG, as previously described29.  
A 100ml culture of bacteria were grown to an absorbance of 1.0 at 
600nm, centrifuged (3000g/10min), and the bacteria were resus-
pended in 5ml PBS [0.137 NaCl, 2.7 KCl, 4.3 Na

2
PO

4
, 1.4 KH

2
PO

4
, 

pH 7.4 (mM)]. This bacterial solution was transferred to a 8.5ml 
screw top glass culture tube (VWR International, Lutterworth, UK) 
and centrifuged (3000g/10min). The supernatant was removed 
and the bacterial pellet was dried at room temperature overnight 
under reduced pressure. The desiccated bacterial pellet was incu-
bated with 2ml of 5% aqueous tetrabutylammonium hydroxide at 
100°C for 16h. The sample was cooled and 100μl of methyl iodide, 
4ml dichloromethane and 2ml H2O was added. The sample was 
mixed for 30min and the lower organic layer was removed, washed 
three times with 5ml of H

2
O and dried under nitrogen. The dried  

extract was resuspended in 1ml diethyl ether, mixed for 60min 
and centrifuged at 3,000 x g for 5min. The supernatant was  
carefully removed, dried under nitrogen and resuspended in 500μl 
of dichloromethane to give the MAMES and fatty acid methyl  
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esters (FAMES). The sample was applied to a TLC plate and 
separated in one dimension with a petroleum ether:acetone 
(95:5) solvent system. The TLC plate was sprayed with 5% (v/v)  
molybdophosphoric acid and charred at 110oC to reveal the lipid 
species.

Commercially available mycobacterial lipids
The BCG mycolic fraction and trehalose dimycolate were pur-
chased from Sigma and incubated with cells for the indicated length 
of time at the indicated concentrations.

Purification of glycomycolates from mycobacterial cell walls
Dried cell pellets were stirred in 220ml of methanolic saline (20ml 
of 0.3% NaCl and 200ml of CH

3
OH) and 220ml of petroleum ether 

for 2h. The biomass was allowed to settle overnight and centrifuged 
(3000g/5 min). The resulting bi-phasic solution was separated and 
the upper layer containing non-polar lipids recovered. The lower 
layer was treated with a further 220ml petroleum ether, mixed and 
harvested. The two upper petroleum ether fractions were combined 
and dried under reduced pressure.

To extract polar lipids, a mixture of CHCl
3
/CH

3
OH/NaCl was 

added to the lower methanolic saline layer. The solution was stirred 
for 4h and left to settle overnight. This mixture was filtered and the 
filter cake re-extracted twice with CHCl

3
/CH

3
OH/NaCl solution. 

Appropriate amounts of CHCl
3
 and NaCl solution were added to 

the combined filtrates and the mixture stirred for 1h and allowed 
to settle. The lower layer containing the polar lipids was recovered 
and dried under reduced pressure. The non-polar and polar lipid 
extracts were examined by 1D thin-layer chromatography (TLC) 
on aluminium TLC plates of silica gel 60 F254 (Merck EMD 
Millipore). Lipids were visualized by spraying plates either with 
5% ethanolic molybdophosphoric acid and charring, α-naphthol/
sulphuric acid followed by gentle charring of plates for glycolipids, 
a Dittmer and Lester reagent, which is specific for phospholipids 
and glycophospholipids, or ninhydrin, an amino-specific reagent 
for detecting amino residues on extracted lipids.

After analysing the lipid profiles by TLC, purifications were per-
formed using diethylaminoethyl cellulose chromatography. The 
crude polar lipid extract was dissolved in Solution A [CHCl

3
/

CH
3
OH (2:1, v/v)] and a few drops of H

2
O added as necessary 

to dissolve the lipids. The polar lipid fraction was eluted using 
Solution A to remove all mycolates, their glycosylated forms and 
other zwitterionic lipids. Charged lipids were then eluted using 
ammonium acetate dissolved in Solution A in a stepwise gradient 
of increasing concentrations of ammonium acetate in C:M ranging 
from 1mM to 300mM.

The glycolate mycolate fraction was further purified either using 
silica gel packed into glass columns or by preparative TLC. In the 
silica gel procedure, the mycolate fraction was dissolved in 100% 
CHCl

3
 and initially eluted with CHCl

3
/CH

3
OH (80:1, v/v) and  

further eluted with decreasing concentration of CHCl
3
 [with con-

stant (CH
3
OH)]. The glycomycolate fractions were monitored by 

TLC on 10×10cm aluminium-backed TLC plates of silica gel 60 
F254, and plates developed in either CHCl

3
/CH

3
OH (80:10, v/v) 

or CHCl
3
/CH

3
OH/H

2
O (65:25:4 v/v/v). The glycomycolates were 

visualized by spraying with α-naphthol/sulphuric acid followed 
by gentle charring. In preparative 1D, TLC the mycolate extract 
was loaded on 10cm × 20cm plastic-backed TLC plates of silica 
gel 60 F254 (Merck EMD Millipore) and ran in TLC solvent sys-
tem (CHCl

3
/(CH

3
)

2
CO/CH

3
OH/H

2
O (50:60:2.5:3 v/v/v/v)). TLC 

plates were subsequently sprayed with either ethanolic Rhodam-
ine 6G (Sigma) for detection of non-polar lipids or 1,6-diphenyl-
1,3,5-hexatriene for polar lipids. The lipid bands were visualized, 
marked under UV light and the corresponding purified lipid spots 
were scraped from the plates, silica extracted and used for biologi-
cal testing.

Quantification of LysoTracker fluorescence via plate reader
Purified glycomycolates were re-suspended in CHCl

3
:EtOH  

(1:4 v/v) to a concentration of 1mg/ml prior to serial dilution into 
RPMI to a final concentration of 1ng/ml. A 96-well plate was seeded 
with RAW 264.7 cells (5×104 cells/well), which were allowed to 
adhere overnight. Glycomycolates were then added prior to 24h 
incubation at 37oC/5% CO

2
. Post-incubation, the cells were stained 

with LysoTracker. Cells were live stained with 50nM LysoTracker 
green (Molecular Probes) in PBS at room temperature for 30min 
prior to washing. Fluorescence was quantified using a 96-well plate 
reader (ex/em, 485/520nm; FLUOstar OPTIMA).

Visualization of sphingosine in cells
HEK cells were seeded onto 11mm coverslips, placed in wells of 
a 24-well plate, incubated for 24h and treated with mycobacte-
rial lipids for another 24h. Labelling was performed with a solu-
tion of 3μM trifunctional sphingosine (TFS) in imaging buffer (20 
HEPES, 115 NaCl, 1.8 CaCl

2
, 1.2 MgCl

2
, 1.2 K

2
HPO

4
 and 0.2% 

(w/v) glucose (mM)] for 10min. Cells were washed, overlaid with 
0.5mL imaging buffer and UV-irradiated on ice for 2.5min at wave-
lengths >400nm and either immediately crosslinked at wavelengths 
of >355nm for a further 2.5min, or incubated for 10min at 37°C 
before crosslinking. Cells were immediately fixed with MeOH 
at -20°C for 20min. Non-crosslinked lipids were extracted by  
washing three times with 1mL of CHCl

3
/MeOH/AcOH 10:55:0.75 

(v/v) at room temperature. To visualize sphingosine distribution, 
cells were incubated with 50μl of click mixture [1mM ascorbic 
acid, 100μM TBTA, 1mM CuSO4 and 2μM Alexa488-azide (Life 
Technologies) in PBS] for 1h at room temperature in the dark. 
The coverslips were washed with PBS and mounted onto glass 
slides using mounting medium. Microscopy images were captured 
at room temperature using a confocal laser scanning microscope 
(Zeiss LSM780) with a 63× oil objective (excitation, 488nm;  
emission, 489–550nm). Images were further processed using Fiji 
software v1.51g (http://fiji.sc/Fiji).

Calcium measurements post-sphingosine uncaging
HeLa cells in 8-well Labteks at 70–80% confluency were labelled 
with 100μL of 5μM Fluo4 AM solution (Molecular Probes) in 
imaging buffer [20 HEPES, 115 NaCl, 1.8 CaCl

2
, 1.2 MgCl

2
, 1.2 

K
2
HPO

4
 and 0.2% (w/v) glucose (mM)] at 37°C for 30min. In total, 

15min prior to the start of the experiment, trifunctional sphingosine 
(TFS) was added to a final concentration of 2μM. The cells were 
then washed and kept in imaging buffer at 37°C for the duration of 
the experiment.
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The fluorescence of the calcium indicator Fluo4 was monitored 
on a dual scanner confocal laser scanning microscope (Olympus 
FluoView 1200) using a 63× oil objective at 488nm excitation 
and emission settings between 500–550nm at an interval of 1s per 
frame. A baseline of 10 frames (= 10s) was captured before photoac-
tivation (‘uncaging’) in a circular region (10 pixel units diameter; 
8.9μm2) inside the cells using the tornado function of the Olympus 
software v3.0. Uncaging was carried out using the 405nm laser line 
set to 50% intensity for 3s at 2μs per pixel. The time lapse images 
were analyzed using Fiji software with the FluoQ macro30 set to the 
following parameters: 

     Background subtraction method: Mean of an interactively 
selected ROI

     Noise reduction/smoothing method: None

     Threshold method: Interactively with ImageJ’s built-in 
threshold window

     ROI segmentation: Semi-automatically with binary mask 
modification

     Calculate amplitude changes: Using maximum observed 
amplitude change

The resulting intensity series/amplitude values represent mean 
values of whole cells and were loaded in R v3.3.1 (https://www.
r-project.org/) and grouped according to conditions (Ctrl vs. MA 
vs. TDM). Single cell traces belonging to the same groups were 
summarized using the R function ‘summarySE’, which calculated 
the mean, as well as the standard error of the mean, of all traces 
for every time point. Line and bar graphs were generated using the 
ggplot2 package (http://ggplot2.org/) in R v3.3.1.

Quantification of NPC1/2 levels via western blot
Protein (10μg) was separated on 7% acrylamide gel at 25mA 
before transfer onto nitrocellulose membrane (Immobilon P (EMD 
Millipore)) at 40mA/membrane. Membranes were blocked over-
night at 4°C in Tris-buffered saline containing 0.1% Tween-20 
and 5% powdered milk, before probing with primary antibody 
against NPC1 (1:5000 dilution; Thermofisher; Rabbit polyclonal;  
PA1-16187; RRID:AB_2298492) overnight at 4°C. Membrane 
was then probed with horseradish peroxidase-linked secondary 
antibody (1:20,000 dilution; Thermo Fisher 31460; goat anti- 
rabbit polyclonal; RRID: AB_228341) for 1h at room temperature. 
Membranes were stripped and re-probed with anti-actin specific 
antibody (1:25,000 dilution; Sigma A3854; mouse monoclonal) 
for 1h at room temperature to demonstrate equal protein loading  
into each lane.

Clearance of Mycobacterium smegmatis (Msm)
Host cells grown on coverslips were infected with Msm (MOI, 
12.5) and incubated at 37°C/5% CO

2
 for 2h. Cells were washed 

and incubated at 37°C/5% CO
2
 with fresh medium. At stated  

time points, coverslips were washed, paraformaldehyde fixed  
and Msm clearance quantified via microscopy. Imaging was  

carried out using an Axio Imager A1 microscope at x63, in con-
junction with an Axiocam High-Resolution Camera and Axiovision  
software v4.8.

Treatment of infected cells
Cells were infected with BCG 48h prior to washing and addition 
of the drugs. Cells were fixed (4% paraformaldehyde; 15min at 
room temperature), and levels of host cell fluorescence (due to the 
fluorescence of the mCherry-expressing intracellular mycobac-
teria) quantified by flow cytometry (BD FACS CantoTM II flow 
cytometer; BD FACSDivaTM software version 6.1; 10,000 events). 
Curcumin (high purity; Enzo), tetramethylcurcumin (FLLL31; 
Sigma), cyclodextrin (HPBCD; Sigma) and miglustat (Actelion) 
were used at the indicated concentrations.

Assessment of the ability of curcumin analogues to release 
Ca2+ from the ER
Ca2+ changes in response to curcumin treatment were measured 
using the genetically encoded O-GECO1 (Addgene plasmid 46025; 
provided by Robert Campbell)31, since curcumin is fluorescent 
when incorporated into cells (90% of signal: 370–540nm) and 
hence precludes the use of standard UV and blue excited Ca2+ dyes. 
RAW 264.7 macrophages were transfected with 2μg O-GECO1 
using jetPRIME (Source Bioscience) and used 24h after transfec-
tion. Cells were then incubated with or without 30μM curcumin-
oids (high purity curcumin; Enzo, FLLL31; Sigma) in tissue culture 
medium for 1h at 37°C and 5% CO

2
. Recordings were conducted in 

Ca2+-free medium to eliminate Ca2+ influx. Thus, cells were washed 
once in a Ca2+-free medium containing (mM): 121 NaCl, 5.4 KCl, 
0.8 MgCl

2
, 6 NaHCO

3
, 25 HEPES, 10 glucose, and supplemented 

with 1mM EGTA and then washed twice in the same medium, 
except with a lower EGTA concentration (100μM). The cells were 
mounted on an Olympus IX71 microscope equipped with a 20x 
UApo/340 objective and a 12-bit Photometrics Coolsnap HQ2 
CCD camera. Cells were excited at 543nm using a Cairn mono-
chromator, and emission collected >585nm. Experiments were con-
ducted at room temperature with an image collected every 2s. The 
effect of the curcuminoids on ER Ca2+ store depletion was tested 
by subsequent addition of 2μM ionomycin (Sigma), which releases 
Ca2+ from the ER in control cells. At the end of each run, 10mM 
CaCl

2
 was added to verify O-GECO1 expression and viability of the 

cells. Images were analysed on a single-cell basis using Optafluor 
software v7.6.3.0 and Microsoft Excel 2013. The fluorescence 
of high-purity curcumin (815 ± 35RFU) was subtracted from the 
O-GECO1 signal.

Effect of calcium chelation on curcumin efficacy
RAW 264.7 cells were infected with FLUOS-labelled M.bovis 
BCG and incubated at 37°C for 6h. Cells loaded with BAPTA-AM 
(Sigma) and were incubated with this substrate at 20μM for 30min 
before the addition of curcumin. Following incubation, the cells 
were washed three times with PBS, fixed with 4% paraformalde-
hyde and stained with Filipin.
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Assessment of the effect of curcuminoids on BCG growth 
in broth
Exponentially growing BCG culture in 7H9 (20ml containing 
∼5×108 cells/ml) was diluted into 100ml in the presence of 30μM 
curcuminoids. Growth was measured spectrophotometrically 
(Jenway 6305 spectrophotometer) via absorbance at 600nm.

Statistical analysis
All statistical analysis was performed with Graphpad Prism 6.

Results
Infection with pathogenic mycobacteria induces NPC 
phenotypes in murine and human macrophages
NPC cells display a unique combination of phenotypes, includ-
ing reduced LE/Lys Ca2+ levels21,22, and mistrafficking and stor-
age of sphingosine, glycosphingolipids (GSLs), cholesterol and 
sphingomyelin32. Induction of these phenotypes in wild-type cells 
post-infection with intracellular mycobacteria would therefore be 
indicative of NPC pathway inhibition. We infected RAW 264.7 
murine macrophages with live BCG (Pasteur strain), an attenu-
ated form of M. bovis, which is commonly used to model early 
stage Mtb infection. To assess the effect of infection on lysosomal 
Ca2+, we first monitored Ca2+ content indirectly by releasing 
Ca2+ from the lumen to the cytosol with the lysomotropic agent 
glycyl-L-phenylalanine-β-napthylamide (GPN). We have previ-
ously shown that GPN responses faithfully reflect lysosomal Ca2+ 
levels22.

In agreement with known NPC cellular phenotypes22, BCG- 
infected macrophages exhibited a significant decrease in LE/Lys-
mediated Ca2+ release compared to the uninfected population  
(Figure 1A; p<0.001), consistent with less Ca2+ within the lyso-
somes of BCG-infected macrophages. In contrast, infection with 
the environmental mycobacteria M. smegmatis (Msm) gave no 
significant change in GPN responses (Figure 1A). The signifi-
cant decrease in the GPN response with BCG could not simply be 
accounted for by changes in basal cytosolic Ca2+ (Supplementary 
Figure 1) nor by changes in the activity of the lysosomal enzyme 
cathepsin C, which is responsible for hydrolysing GPN and thereby 
inducing lysosomal osmotic stress and Ca2+ release (Supplemen-
tary Figure 2). Consistent with results using the indirect approach, 
direct measurement of endo-lysosomal Ca2+ content with a luminal 
Ca2+-dye (low-affinity Rhod-dextran) confirmed reduced levels of 
lysosomal Ca2+ in BCG-infected RAW cells (Figure 1B; p<0.001). 
As in NPC cells, macrophages infected with BCG exhibited a 
significant accumulation of sphingosine (Figure 1C; p<0.05) and 
glycosphingolipids  (Figure 1D; p<0.05). Accumulation of lac-
tosylceramide (LacCer) (the levels of which are elevated in NPC 
cells/ tissues of Npc1-/- mice and in the caseum from human TB 
granulomas33) was not detected at 24 and 48h post-infection 
(BCG-infected RAW 264.7 cells), but was significantly elevated 
7 days post-infection (Figure 1E; p<0.01). The most widely rec-
ognised cellular hallmark of NPC cells is the storage of choles-

terol within LE/Lys18,34, detected using the fluorescent cholesterol- 
binding antibiotic filipin. Cholesterol accumulation was observed 
in punctate structures in BCG-infected RAW 264.7 cells, but not in 
cells infected with non-pathogenic Msm (Figure 1Fi). Biochemical  
quantitation of cholesterol confirmed higher levels in BCG- 
infected cells (Figure 1Fii; p<0.05). Interestingly, storage of  
cholesterol was not restricted to cells infected with BCG; neigh-
bouring, uninfected cells also displayed elevated cholesterol storage  
(Figure 1Fi), suggesting that local paracrine factors capable 
of inducing NPC phenotypes are released from infected cells.  
Other cellular hallmarks of NPC, such as sphingomyelin and GSL 
accumulation, were also induced by BCG infection, but not by  
Msm. This was demonstrated using fluorescently conjugated 
cholera toxin subunit B and lysenin that measure the storage and 
mislocalisation of GM1 ganglioside (Figure 1Gi) and sphingomy-
elin respectively (Figure 1Gii). To determine the relevance of our  
findings with BCG to Mtb, we infected the same cell line with 
live Mtb (H37Rv strain). Total cellular GSLs were significantly  
elevated 48h post Mtb infection (Figure 1H; p<0.05).

To determine whether our findings in a murine macrophage  
cell line would be replicated in primary human macrophages, 
which are more relevant for Mtb infection/TB, monocyte-derived 
macrophages from healthy donors were infected with BCG and 
Msm. We observed that BCG infection was associated with reduced 
LE/Lys-mediated Ca2+ release (Figure 1I; p<0.001), increased 
levels of sphingosine (Figure 1J; p<0.05) and elevated GSLs  
(Figure 1K; p<0.05). Cholesterol storage in LE/Lys was also 
detected in BCG-infected human macrophages and in non-infected 
neighbouring cells (Figure 1Li), accompanied by mistrafficking 
of GM1 ganglioside (Figure 1Lii). Significant expansion of the  
lysosomal compartment, as visualised with LysoTracker (another 
hallmark of lysosomal storage disorders, including NPC)35,36), 
was also detected (Figure 1Liii). None of these changes occurred 
in human macrophages infected with non-pathogenic Msm  
(Figure 1Li–iii). Electron microscopy revealed that BCG-infected 
cells showed both the presence of intracellular mycobacteria and 
electron-dense lamellar storage bodies. These were similar to 
those observed in uninfected Kupffer cells in the liver of Npc1-/- 
mice and in cells with pharmacologically-induced NPC pheno-
types (U18666A treatment) (Supplementary Figure 3). In contrast, 
cells infected with Msm exhibited no evidence of storage bodies. 
Together, these data indicate that pathogenic mycobacteria induce 
cellular phenotypes indistinguishable from the lysosomal storage 
disease, NPC.

Mycobacterial cell wall lipids induce NPC phenotypes
Cholesterol accumulation was observed in non-infected as well as 
infected cells (Figure 1F and Li). We hypothesised that there is a 
factor(s) derived from BCG and Mtb that inhibits the NPC pathway 
of the host cells and that is also released from infected cells and 
endocytosed by non-infected neighbouring cells, wherein it also 
induces NPC pathway dysfunction.
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It has previously been shown that mycolic acids (a group of  
long chain β-hydroxy fatty acids that constitute a major compo-
nent of the mycobacterial cell wall (Figure 2A) may play a role 
in enabling the intracellular persistence of some mycobacterial  
species37. Whilst mycolic acids are present in the cell walls of 
both intracellular and environmental mycobacteria, there are cer-
tain structural features present in the mycolic acids found in those 
species capable of persisting within host cells, such as increased 
levels of cyclopropanation38.

A purified lipid fraction consisting of mycolic acid methyl  
esters (MAMES) and fatty acid methyl esters (FAMES) from the 
cell wall of BCG was applied to wild-type murine macrophages.
We observed that BCG MAMES/FAMES induced accumula-
tion/re-distribution of cholesterol in a dose-dependent manner  
(Figure 2B). MAMES/FAMES treatment also induced mistraf-
ficking of GM1 ganglioside (Figure 2Ci) and accumulation/ 
re-distribution of sphingomyelin (Figure 2Cii), similar to that 
observed in both NPC cells and wild-type RAW 264.7 macro-
phages infected with live BCG (Figure 1G). Heat-treating the 
MAMES/FAMES mixture did not affect the mixture’s ability to 
affect GM1 ganglioside distribution, suggesting that the NPC  
phenotype-inducing factor was a lipid (Figure 2D). Further  

experiments with a commercially available mycolic acid fraction 
from the BCG cell wall supported the role of this lipid class in 
inducing NPC phenotypes, as this fraction induced accumulation 
of cholesterol and GM1 gangliosides in both wild-type RAW 264.7 
macrophages (Figure 2E) and primary human macrophages from 
healthy donors (Figure 2F). 

Within the mycobacterial cell wall mycolic acids may be present 
as free lipid or esterified to sugars to form glycomycolates. Note 
that the name of a glycomycolate indicates the identity of the sugar 
molecule and the number of mycolic acid motifs to which it is 
esterified. One such glycomycolate from Mtb, trehalose dimyco-
late (TDM) (consisting of two mycolic acid motifs esterified to a 
trehalose sugar), has previously been shown to prevent phagosomal 
maturation and induce formation of caseating granulomas and 
foamy macrophages in the absence of the mycobacteria itself39–41. 
We assayed the effect of purified glycomycolates obtained from 
both intracellular and environmental mycobacteria on LysoTracker 
fluorescence (reflecting relative lysosomal volume). Treat-
ment with Mtb TDM was associated with a significant increase 
in LysoTracker fluorescence, indicative of lysosomal storage  
(Figure 2G; p<0.05). Glucose monomycolate (GMM) and tre-
halose monomycolate (TMM) from Mtb caused only modest  
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Figure 1. Pathogenic mycobacteria induce NPC phenotypes in RAW 264.7 cells and human macrophages. (A) Lysosomal Ca2+ levels 
in mycobacterial-infected RAW 264.7 macrophages as quantified by measuring GPN-induced release of lysosomal Ca2+ (24h infection; MOI, 
12.5). (i) Ca2+ responses from representative single fura-2 loaded RAW 264.7 cells upon addition of GPN (point of addition indicated by 
arrow). At the end of each run all cells responded to 1μM ionomycin. (ii) Maximal Ca2+ response upon addition of GPN as determined by the 
difference between basal and maximum fura-2-ratio (Δ350/380). Changes given as percentage difference relative to Δ350/380 in uninfected 
control. Mean ± SEM of n=167–311 individual cells per group. ****p<0.001 vs uninfected control (via 1-way ANOVA). (B) Intra-lysosomal [Ca2+] 
in BCG-infected RAW 264.7 cells quantified by loading cells with low-affinity Rhod-dextran and Cascade blue-dextran (18h infection; MOI, 
12.5). (i) Mean ± SEM of intralysosomal [Ca2+] in 90 cells/group following BCG infection (dextran). ****p<0.001 vs uninfected control (student 
t-test) (ii) Representative images of dextran-loaded cells. Scale bar, 5μm. (C) Sphingosine levels in BCG-infected RAW 264.7 macrophages 
(48h infection; MOI, 12.5). Values adjusted for sample protein concentration. Mean ± SEM. N=4. *p<0.05 vs uninfected control (student  
t-test). (D) GSL levels in BCG-infected RAW 264.7 macrophages (MOI, 12.5). Values adjusted for sample protein concentration. Mean ± 
SEM. N=4. *p<0.05 vs uninfected control (student t-test). (E) LacCer levels in BCG-infected RAW 264.7 macrophages (1 week infection; MOI, 
12.5). Values adjusted for sample protein concentration. Mean ± SEM. N=4. *p<0.05 vs uninfected control (student t-test). (F) (i) Cholesterol 
distribution in mycobacteria-infected RAW 264.7 macrophages (24h infection; MOI, 12.5). Blue, filipin (cholesterol); red, mCherry-expressing 
mycobacteria. Scale bar, 5μm (ii) Quantification of cholesterol storage in BCG-infected RAW 264.7 macrophages (18h infection; MOI 12.5). 
Values are adjusted for sample protein concentration. Mean ± SD. N=3. *p<0.05 vs uninfected control (student t-test). (G) (i) Trafficking 
of GM1 ganglioside in mycobacteria-infected RAW 264.7 macrophages (18h infection; MOI, 12.5). Green, FLUOS-labelled mycobacteria; 
red, cholera toxin subunit B (GM1 ganglioside); blue, Hoescht 33258 (nucleus). (ii) Sphingomyelin distribution in mycobacteria-infected 
RAW 264.7 macrophages (18h infection; MOI, 12.5). Green, FLUOS-labelled mycobacteria; red, lysenin (sphingomyelin); blue, Hoescht 
33258 (nucleus). Scale bar, 5μm. (H) GSL levels in Mtb-infected RAW 264.7 macrophages. (MOI 12.5) Values adjusted for sample protein 
concentration. Mean ± SEM. N=4. *p<0.05 vs uninfected control (student t-test). (I) Lysosomal Ca2+ levels in mycobacterial-infected primary 
human macrophages as quantified by GPN-induced release of lysosomal Ca2+ (24h infection; MOI, 12.5) (i) Ca2+ responses from representative 
single fura-2 loaded primary human macrophages upon addition of GPN (point of addition indicated by arrow). At the end of each run all 
cells responded to 1μM ionomycin. (ii) Maximal Ca2+ response upon addition of GPN as determined by the difference between basal and 
maximum fura-2-ratio (Δ350/380). Changes are given as percentage difference relative to Δ350/380 in uninfected control. Mean ± SEM of 
n=71–173 individual cells per group. ****p<0.001 vs uninfected control (1-way ANOVA). (J) Sphingosine levels in mycobacteria-infected 
primary human macrophages (48h infection; MOI, 12.5) Values adjusted for sample protein concentration. Mean ± SEM. N=4. *p<0.05 vs 
uninfected control (1-way ANOVA).(K) GSL levels in mycobacteria-infected primary human macrophages (48h infection; MOI, 12.5). Values 
adjusted for sample protein concentration. Mean ± SEM. N=4. *p<0.05 vs uninfected control (1-way ANOVA). (L) (i) Cholesterol distribution 
in mycobacteria-infected primary human macrophages. Blue, filipin (cholesterol); red, mCherry-expressing mycobacteria. (ii) Trafficking of 
GM1 ganglioside in mycobacteria-infected primary human macrophages. Green, cholera toxin subunit B (GM1 ganglioside); red, mCherry-
expressing mycobacteria. (iii) Lysosomal expansion in mycobacteria-infected primary human macrophages. Green, LysoTracker (LE/Lys); 
red, mCherry-expressing mycobacteria; blue, Hoescht 33258 (nucleus) (24h infection; MOI, 12.5). Scale bar, 5μm. NPC, Niemann-Pick Type C 
disease; GPN, glycyl-L-phenylalanine-β-napthylamide; BCG, Bacillus Calmette-Guerin; GSL, glycosphingolipid; LacCer, lactosylceramide.
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lysosomal expansion, whilst GMM from Msm had a minimal effect.  
Crucially, commercially available TDM from BCG induced 
NPC phenotypes in the absence of the bacteria itself, including 
reduced  LE/Lys-mediated Ca2+ release (Figure 2H; p<0.001) and  
accumulation of cholesterol (Figure 2I) in both murine and 
human macrophages. The reduction in LE/Lys-mediated Ca2+ 
release post-TDM treatment was comparable to that induced by 
BCG itself (Figure 2H). Both TDM and MA were also observed 
to have a deleterious effect on the ability of cells to traffic sphin-
gosine. These experiments utilised a novel, trifunctional sphin-
gosine probe42, in which the lipid is covalently attached to a 
photolabile group, rendering it biologically inactive. Whilst the  
caged form is taken up into cells, it is not metabolised. Upon  
exposure to UV light the biologically active form of the 
lipid is released within cells42. In addition to the pho-
tolabile group, the trifunctional sphingosine used in this  
experiment also features a diazirine moiety, enabling photo- 
activated crosslinking, and a functionality that allows the sphin-
gosine to be fluorescently labelled post-fixation. HEK293 cells 
were subjected to a 10min pulse with trifunctional sphingosine.  
Immediately post-uncaging, sphingosine was localized to the  
late-endosome/lysosome in both the control and lipid/ 
glycomycolate-treated cells (0min) (Figure 2J). After a 10min  

chase period post-uncaging, the punctate sphingosine localization 
pattern was much less pronounced in control cells, indicating move-
ment of the lipid out of the lysosome. This movement was much 
less pronounced in the MA/TDM-treated cells, as indicated by the  
sphingosine sequestration to the punctate structures of the LE/
Lys, as previously shown for NPC-patient fibroblasts36. A sudden 
increase in intracellular sphingosine, as achieved by uncaging, was 
previously demonstrated to induce a transient rise in cytosolic cal-
cium mediated by the lysosomal TPC1 calcium channel42. Upon 
sphingosine uncaging, calcium transients were reduced in MA/
TDM-treated HeLa cells, relative to untreated controls (Figure 2K). 
This is in agreement with the experiments shown above, in which 
the amount of calcium released by GPN treatment was significantly 
reduced as a result of TDM treatment (Figure 2H).

Mycobacteria target the NPC1 protein
Inhibition of the host NPC pathway could occur at the level of the 
NPC1 or NPC2 protein. Mutations in either the NPC1 or NPC2 
genes gives identical cellular phenotypes43. If TDM inhibited the 
NPC pathway via interaction with NPC1, we reasoned that hetero-
zygous NPC1 cells would be more susceptible to inhibition than 
wild-type cells due to reduced NPC1 protein levels. In the absence 
of TDM the proportion of cells with mislocalised GM1 was not 
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Figure 2. Mycobacterial cell wall lipids induce NPC phenotypes in the absence of live mycobacteria. (A) General structure of mycolic 
acids. The lipid consists of a mycolic motif (with alkyl chain of variable length) and meromycolate chain with a distal and proximal functional 
group (X/Y) (adapted from 74). (B) Cholesterol storage in RAW 264.7 macrophages treated with BCG MAMES/FAMES (18h treatment). Blue, 
filipin (cholesterol). Scale bar, 5μm. (C) (i) Trafficking of GM1 ganglioside in RAW 264.7 macrophages treated with MAMES/FAMES. Red, 
cholera toxin subunit B (GM1 ganglioside); blue, Hoescht 33258 (nucleus). (ii) Sphingomyelin distribution in RAW 264.7 macrophages treated 
with MAMES/FAMES. Green, lysenin (sphingomyelin); blue, Hoescht 33258 (nucleus). (MOI 12.5; 5μg/ml). Scale bar, 5μm. (D) Trafficking 
of GM1 ganglioside in (i) untreated RAW 264.7 macrophages, post 18h incubation with secreted BCG lipids (ii) or heat-treated lipids (iii). 
Red, cholera toxin subunit B (GM1 gangliosides); blue, Hoescht 33258 (nucleus). (E) (i) Cholesterol storage in RAW 264.7 macrophages 
treated with BCG mycolic acids. Blue, filipin (cholesterol); red, propidium iodide (nucleus). (ii) Sphingomyelin distribution in RAW 264.7 
macrophages treated with BCG mycolic acids. Red, lysenin (sphingomyelin); blue Hoescht 33258 (nucleus) (24h treatment; 5μg/ml). Scale 
bar, 5μm. (F) (i) Cholesterol storage in primary human macrophages treated with BCG mycolic acids. Blue, filipin (cholesterol) (ii) Trafficking 
of GM1 ganglioside in primary human macrophages treated with BCG mycolic acids. Green, cholera toxin subunit B (GM1 ganglioside) 
(24h treatment; 5μg/ml). Scale bar, 5μm. (G) LysoTracker staining of RAW 264.7 macrophages 24h post incubation with purified mycolic 
acid esters (glycomycolates; 1ng/ml). Mean ± SEM. N=4. *p<0.05 vs untreated control (1-way ANOVA). (H) Lysosomal Ca2+ levels in RAW 
264.7 (i, ii) and primary human macrophages (iii, iv) treated with commercial BCG TDM as quantified by GPN-induced release of lysosomal 
Ca2+ (24h treatment; 50ng/ml). (i, iii) Ca2+ responses from representative single fura-2 loaded RAW 264.7/primary human macrophages upon 
addition of GPN (point of addition indicated by arrow). (ii, iv) Maximal Ca2+ response upon addition of GPN as determined by the difference 
between basal and maximum fura-2-ratio (Δ350/380). Changes given as percentage difference relative to Δ350/380 in uninfected control. 
Mean ± SEM of n=127–252 (RAW 265.7) and 71–156 (human) individual cells per group. ****p<0.001 vs untreated control (1-way ANOVA). 
(I) Cholesterol storage in RAW 264.7 (i) and primary human macrophages (ii) treated with BCG TDM. Blue, filipin (cholesterol) (50ng/ml; 24h 
treatment). Scale bar, 5μm. (J) Subcellular localization of sphingosine in HEK293 cells treated with either BCG MA (5μg/ml) or BCG TDM 
(50ng/ml). Cells were treated with lipids/glycomycolates for 24h prior to investigation of sphingosine localization. Cells were incubated with 
3μM trifunctional sphingosine for 10min prior to washing and either immediately subjected to photo-crosslinking and MeOH fixation (0min) 
or incubated for 10min before crosslinking/fixation (10min). Visualization achieved by clicking Alexa488-azide to terminal alkyne bond of 
sphingosine. Scale bar, 10μm. (K) Sphingosine-induced calcium release from HeLa cells pre-treated with either BCG MA (5μg/ml) or BCG 
TDM (50ng/ml). Cells were treated with lipids/glycomycolates for 24h prior to investigation of sphingosine-induced calcium release. Mean 
Fluo-4 fluorescence of control and lipid/glycomycolate-treated HeLa cells upon UV-induced uncaging of trifunctional sphingosine (point of 
uncaging indicated). Traces represent mean values of 13–21 cells per group, with the standard error of the mean plotted as error bars. GPN, 
glycyl-L-phenylalanine-β-napthylamide; MAMES/FAMES, mycolic acid methylesters / fatty acid methyl esters.
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significantly different between populations of bone marrow-
derived macrophages generated from wild-type and Npc1+/- mice  
(Figure 3A; p>0.05). Incubation of bone marrow-derived mac-
rophages with TDM revealed that macrophages from Npc1+/-  
mice were more susceptible to glycomycolate-induced lipid  
mislocalization relative to their wild-type counterparts, with a 
given concentration of TDM causing a great percentage of the 
heterozygous cells to mislocalise GM1 ganglioside (Figure 3A; 
p<0.05/0.01). Conversely, CHO cells overexpressing NPC1 were 
more resistant to TDM-induced NPC cellular phenotypes than 
wild-type cells. Whereas wild-type cells incubated with 50ng/ml 
TDM exhibited dramatic mistrafficking of GM1, the effects were 
much less pronounced in the overexpressing cells. Cells overex-
pressing NPC1 by 15-fold were more resistant than those over-
expressing NPC1 5-fold (Figure 3B). We examined NPC1 and 
NPC2 protein expression levels in RAW 264.7 cells infected 
with BCG. NPC1 was significantly upregulated in infected cells  
(Figure 3C; p<0.001), with no changes in NPC2 levels.

Mycobacterial species, such as Msm, are readily cleared by healthy 
cells, due to their inability to inhibit phagosome-lysosome fusion. 
One prediction arising from the above experiments is that a pre-
existing dysfunction in the NPC pathway and subsequent defects 
in lysosomal fusion (as found in NPC patient cells) will render a 
cell less able to clear typically non-persistent mycobacteria. Con-
sistent with this hypothesis, RAW 264.7 cells, in which an NPC 
phenotype was induced by treatment with U18666A (a widely-used 
pharmacological inducer of NPC phenotypes in wild-type cells that 
targets NPC1)44, had an impaired ability to clear non-pathogenic 
Msm (Figure 3D; p<0.05) relative to untreated RAW 264.7 mac-
rophages. Impaired clearance of Msm was also observed in Npc1-/- 
and U18666A-treated wild-type bone marrow-derived mouse 
macrophages, (Figure 3E; p<0.05).

NPC therapeutics promote clearance of pathogenic 
mycobacteria
A number of compounds correct NPC cellular phenotypes. These 
include curcumin (a modulator of intracellular Ca2+22), miglustat (an 
imino sugar inhibitor of GSL biosynthesis that is EMA-approved 
for NPC therapy45,46) and β-cyclodextrin (HPβCD; a cyclic oli-
gosaccharide efficacious in animal models of NPC47–50). All three 
compounds are capable of reducing levels of cholesterol storage in 
genetically and pharmacologically induced NPC cells (Figure 4A). 
Infection with persistent intracellular mycobacteria induces pheno-
types associated with NPC in wild-type cells. Those compounds 
capable of correcting NPC phenotypes were therefore investigated 
for any effect on promoting clearance of intracellular mycobacteria 
from infected host macrophages. The concentrations and duration 
of treatments used in these clearance experiments (Figure 4B–E) 
were identical to those demonstrated to correct U18666A-induced 
NPC cellular phenotypes (Figure 4A). Flow cytometry was used 
to determine the extent to which host cells were infected with 
fluorescent BCG, with increasing MOIs associated with increased 
host cell fluorescence (Figure 4B). RAW 264.7 cells were infected 
with mCherry-expressing BCG for 48h then treated with NPC- 
correcting compounds. A decrease in host cell fluorescence was 
indicative of mycobacterial clearance. Treatment with curcumin was 
associated with significantly lower levels of infection (i.e. enhanced 

clearance) relative to untreated cells (Figure 4C; p<0.05). Miglustat  
and cyclodextrin had no significant benefit, although combin-
ing  miglustat and curcumin showed a small but significant  
benefit relative to curcumin alone (Figure 4C; p<0.05). Curcumin 
also significantly reduced mycobacterial burden in infected primary  
human macrophages (Figure 4D; p<0.05).

Curcumin is hypothesized to be beneficial in NPC cells due to 
its inhibition of the sarco-endoplasmic reticulum Ca2+-ATPase 
(SERCA)51. This inhibition leads to decreased Ca2+ re-uptake into 
the ER, so that cytosolic Ca2+ levels remain elevated for longer. 
The increased availability of Ca2+ within the cytosol is able to at 
least partially compensate for the reduced lysosomal Ca2+ release 
seen in NPC cells, and overcome the block in LE/Lys fusion22. The 
enhancement of BCG clearance by curcumin was dependent upon 
its ER Ca2+-mobilising properties. This was assessed in two ways: 
we first tested the ability of curcuminoids to increase cytosolic Ca2+ 
and subsequently assessed whether this Ca2+ emanated from the ER 
by probing residual ER Ca2+ store content with ionomycin which, 
under these conditions, targets the ER Ca2+ stores. The ability of 
a curcuminoid to reduce mycobacterial load correlated with its ability 
to modulate host cell Ca2+. A curcumin analogue FLLL31 (tetram-
ethylcurcumin) had no effect on either intracellular BCG levels  
(Figure 4E) or host cell cytosolic Ca2+ and ER Ca2+ levels assessed 
with ionomycin (Figure 4F; p<0.001). In contrast, curcumin, which 
promotes bacterial clearance, did increase cytosolic Ca2+ via mobi-
lization of the ER Ca2+ stores (Figure 4F; p<0.001). The importance 
of host cell Ca2+ in promoting BCG clearance is further supported 
by loading the cytosol with the Ca2+ chelator BAPTA. Co-incubating 
infected cells with curcumin and membrane-permeant BAPTA/AM  
abrogates the beneficial effect of curcumin on both mycobacte-
rial burden and levels of host cell cholesterol (Figure 4G). Note 
that whilst curcuminoids have direct anti-BCG activity in host-cell 
free systems (Supplementary Figure 4) the kinetics of this anti-
bacterial action are too slow to account for the relatively rapid 
effects we observed: it took >4 days for curcumin to reduce BCG 
growth in broth. The evidence presented here supports a model in 
which curcumin promotes mycobacterial clearance by providing 
an alternative source of Ca2+ that can compensate for the reduced  
lysosome-mediated Ca2+ release observed in host cells infected  
with persistent intracellular mycobacteria (Figure 1). Experiments 
with a zebrafish model of mycobacterial infection demonstrated  
the in vivo efficacy of curcumin. Treatment with curcumin for 
24h was associated with a significant decrease in fluorescent pixel 
count in M. marinum-infected zebrafish larvae, indicative of a 
lower bacterial burden in the treated animals when compared to  
DMSO-treated controls (Figure 4H; p<0.01).

Discussion
Here, we present evidence that mycobacteria are capable of  
preventing host phagosome-lysosomal fusion, and thereby persist-
ing intracellularly (such as BCG and Mtb), may do so via lipid-
mediated inhibition of the host NPC pathway (Figure 5). The link 
between this rare lysosomal storage disorder and Mtb infection has 
important implications for understanding host-pathogen interac-
tions and for developing new therapies to combat TB, particularly 
in this era of antibiotic resistance.
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Figure 3. Pathogenic mycobacteria inhibit NPC1. (A) Localisation of GM1 ganglioside in bone marrow macrophages from wild-type 
and Npc1+/- mice treated with purified Mtb TDM (48h treatment). Expressed as percentage of total number of cells mislocalising GM1. 
Mean ± SEM. N>40 cells/group. *p<0.05; **p<0.01 vs treated wild-type (1-way ANOVA). (B) Trafficking of GM1 ganglioside in CHO cells 
expressing variable levels of NPC1 protein post-treatment with commercial BCG TDM. Green, cholera toxin subunit B (GM1 ganglioside); 
blue, Hoescht 33258 (nucleus) (48h treatment). Scale bar, 5μm. (C) (i.) Quantification of NPC1/NPC2 protein levels in BCG-infected RAW 
264.7 macrophages, as determined by western blot (48h infection; MOI, 12.5). Mean ± SEM. N=3. ***p<0.01 vs control (student t-test) (ii) 
Western blot showing NPC1 and NPC2 bands and loading control β-actin. (D) (i–iv) Persistence of M. smegmatis in untreated (i and ii) primary 
human macrophages or macrophages pre-treated with U18666A (iii and iv) at 2μg/ml for 48h prior to 2h infection (MOI, 12.5), washing and 
18h incubation. Blue, Hoescht 33258 (nucleus); red, mCherry-expressing M. smegmatis (v) Quantification of results shown in upper panel. 
Mean ± SEM. N>84 individual cells per group. *p<0.05 vs untreated control (student t-test). (E) (i–vi) Persistence of M. smegmatis in untreated 
(i, ii) and U18666A-treated (iii ,iv) resident peritoneal macrophages from wild-type mice and from untreated resident peritoneal macrophages 
from Npc1-/- mice (v,vi). Treatment with U18666A at 2μg/ml for 48h prior to 2h infection with M. smegmatis (MOI, 12.5), washing and 4h 
incubation. Blue, Hoescht 33258 (nucleus); red, mCherry-expressing M. smegmatis (vii) Quantification of results shown in left panel. Mean 
± SEM. N>73 individual cells per group. *p<0.05 vs untreated wild-type control (1-way ANOVA). CHO, Chinese hamster ovary cells; BCG, 
Bacillus Calmette-Guerin; TDM, trehalose dimycolate.
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Phagocytosed Mtb bacilli undergo a period of rapid multiplication, 
concomitant with granuloma development4. A significant element 
of the mycobacterial intracellular survival strategy is its ability to 
inhibit phagosome-lysosome fusion. Here, we provide evidence 
supporting a model in which persistent intracellular mycobacte-
ria, such as Mtb and BCG, secrete lipids that inhibit the host NPC  
pathway, phenocopying NPC1-/- cells (Figure 5). The NPC phe-
notypes induced in the wild-type host cells include elevated 
levels of sphingosine, which in turn reduces LE/Lys-mediated Ca2+  
release22, leading to reduced phagosome-lysosome fusion,  
facilitating intracellular mycobacterial survival. Pharmacologi-
cal compensation for this lysosomal Ca2+ homeostatic defect, by 
decreasing Ca2+ buffering by the ER (via the action of curcumin) 
and subsequently elevating cytosolic Ca2+ levels, enhanced clear-
ance of pathogenic mycobacteria in vitro and in zebrafish infected 
with M. marinum. These findings suggest a new host-targeted 
approach for treating latent Mtb infection. Our findings also con-
tribute to the debate on the involvement of Ca2+ in phagosome- 
lysosome fusion and support published studies suggesting it is a 
Ca2+ dependent process15.

Induction of NPC phenotypes was not restricted to macro-
phages that harbour internalised mycobacteria, but was also 
observed in uninfected bystander cells. Cell wall-derived lipids 
from persistent intracellular mycobacteria have been previously  
noted to be actively trafficked out of the phagosome and  

distributed within the infected cell, as well as within extracellular 
vesicles that can be endocytosed by neighbouring macrophages52 
(Figure 5). We found that exposure to either the mycolic acid frac-
tion (from BCG) or glycomycolates (mycolic acid esters) derived 
from Mtb or BCG resulted in induction of NPC cellular pheno-
types in a number of wild-type cell lines, replicating the effect of 
the intact mycobacterium. Of the glycomycolates that were ini-
tially tested (Figure 2G) the largest response, in terms of increased 
LysoTracker fluorescence (a measure of relative acidic compart-
ment volume), was seen using TDM purified from the Mtb cell 
wall. Subsequent experiments using BCG TDM demonstrated the 
ability of the glycomycolate to induce NPC disease cellular phe-
notypes, including the lysosomal Ca2+ defect, increased LE/Lys 
localisation of sphingosine (or reduced transport of sphingo-
sine from LE/Lys), and accumulation of cholesterol in wild-
type murine and human macrophages (Figure 2H, I, J and K).  
The immunomodulatory properties of TDM (cord factor) have 
been previously documented, with it initiating pro-inflammatory 
responses53 and inducing granuloma and lipid droplet formation in 
mice in the absence of the intact mycobacterium5,33. The importance 
of TDM supports previous work which demonstrated that myco-
bacteria possessing lower levels of the glycomycolate (either due 
to mutation or chemical removal) have reduced virulence and an 
impaired capacity to modulate endocytic trafficking and phagosome 
maturation40,54,55. Probing the relationship between the structure of 
mycobacterial lipids/glycomycolates and their ability to induce 
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Figure 4. Certain NPC therapeutics promote clearance of intracellular mycobacteria. (A) Cholesterol distribution in wild-type RAW 
264.7 macrophages treated with U18666A (2μg/ml) for 48h and subsequently treated with either vehicle (DMSO), curcumin (30μM/24h), 
miglustat (50μM/72h) or hydroxypropryl-β-cyclodextrin (250μM/24h). Blue, filipin (cholesterol). Scale bar, 5μm. (B) Correlation between extent 
of infection with mCherry-expressing BCG and levels of RAW 264.7 fluorescence as quantified using flow cytometry (i) Representative 
histograms showing fluorescence of RAW 264.7 cell cultures infected with BCG at low or high MOI (10 or 100 respectively). (ii) Fluorescence 
of RAW 264.7 cell cultures infected with BCG at low or high MOI (10,000 cells counted). Mean ± SEM, N=4. (C) Effect of curcumin on 
intracellular BCG levels in RAW 264.7 macrophages. Fold change in mean fluorescence of RAW 264.7 macrophages after 48h infection with 
mCherry-BCG (MOI, 12.5) and subsequent treatment with curcumin (30μM; 24h), miglustat (50μM; 72h), combined curcumin (30μM; 24h) 
and miglustat (50μM; 72h) or hydroxypropyl-β-cyclodextrin (250μM; 24h). Fold change in fluorescence given relative to untreated, infected 
control. Mean ± SEM. N=4. *p<0.05 vs untreated, infected control (1-way ANOVA). (D) Effect of curcumin on intracellular BCG levels in primary 
human macrophages. Fold change in mean fluorescence of primary human macrophages after 48h infection with mCherry-BCG (MOI, 12.5) 
and subsequent treatment with 30μM curcumin. Fold change in fluorescence given relative to untreated, infected controls. Mean ± SEM. N=4. 
*p<0.05 vs untreated, infected control (1-way ANOVA). (E) Effect of curcuminoids on intracellular BCG levels in RAW 264.7 macrophages. 
Fold change in mean fluorescence of RAW 264.7 macrophages after 48h infection with mCherry-BCG (MOI, 12.5) and subsequent 24h 
treatment with 30μM curcumin or curcumin analogue FLLL31. Fold change in fluorescence given relative to untreated, infected controls. 
Mean ± SEM. N=4. *p<0.05 vs untreated, infected control (1-way ANOVA). (F) Effect of curcuminoids on ER Ca2+ store depletion in uninfected 
RAW 264.7 macrophages. RAW 264.7 macrophages were transfected with the fluorescent Ca2+ reporter O-GECO131 (i) Raw fluorescence 
(arbitrary units, AU) in RAW 264.7 macrophages post-treatment with curcuminoids (30μM/1h). Mean ± SEM of n=42–125 individual cells per 
group. ***p<0.0001 vs untreated control (1-way ANOVA) (ii) Representative single-cell Ca2+ traces of RAW 264.7 macrophages pre-treated 
with curcumin or FLLL31 normalised to the “basal” (min) (i) and Ca2+-induced (max) dynamic range; 2μM ionomycin and 10mM CaCl2 were 
added when indicated by the arrows. (iii) Maximum Ca2+ responses (ΔF/ F0) upon addition of 2μM ionomycin. Mean ± SEM of n= 42–105 
individual cells per group. ****p<0.0001 vs untreated control (1-way ANOVA). (G) Effect of intracellular calcium chelation on beneficial effects 
of curcumin. RAW 264.7 macrophages were infected with FLUOS-labelled BCG (18h; MOI, 12.5) prior to treatment with either curcumin alone 
(6h/10μM) or BAPTA-AM (30min/20μM) prior to addition of curcumin (6h/10μM). Blue, filipin (cholesterol); green, FLUOS-labelled BCG. Scale 
bar, 5μm. (H) Effect of curcumin on M. marinum burden in infected zebrafish larvae. Larvae were infected for 2 days post fertilisation and 
subsequently treated for 48h with vehicle (DMSO) or curcumin (1.5μM). Fluorescent pixel count is a measure of the overall bacterial burden 
in the larvae. **p<0.01 vs DMSO-treated control (1-way ANOVA).
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NPC phenotypes in wild-type host cells is a complex issue. Whilst 
a given glycomycolate, such as TMM, can be found in the cell walls 
of both persistent intracellular and non-persistent environmen-
tal mycobacteria, the structure of the mycolic acid moiety of the 
glycomycolate will differ greatly between species56. For example, 
mycolic acids from Mtb have a relatively high degree of cyclopro-
panation when compared to Msm, with 70% of mycolic acids from 
Mtb possessing two cyclopropane rings38. There is also great vari-
ation with regards to the structure of the mycolic acid motifs of a 
given glycomycolate, even within a species. For example, the use of 
MALDI-TOF mass spectrometry to determine the molecular mass of 
the mycolic acid in Mtb trehalose monomycolates (TMM) revealed 
up to 38 significant distinct molecular species57. The importance 
of ‘canonical’ mycolic acid structures in host cell-mycobacteria 
interactions is indicated by the reduction in granuloma formation 
induced by a mutant strain of Mtb unable to catalyse mycolic acid  
cyclopropanation58.

The simplest hypothesis to explain our findings is that inhibitory 
mycobacterial lipids/glycomycolates directly bind to functional 
host cell NPC1 and inhibit its function, although an indirect mecha-
nism cannot be ruled out. Unfortunately, a reliable binding assay 
for NPC1 does not exist, and there is also no direct functional assay 
for NPC1, making this a technically difficult hypothesis to test.  
However, the level of susceptibility of a cell to lipid-induced NPC 

phenotypes appears inversely proportional to the levels of func-
tional NPC1 (Figure 3A and B); Npc1+/- macrophages were more 
sensitive to TDM-induced lipid mistrafficking than their wild 
type counterparts, whilst NPC1 overexpression conferred resist-
ance. Increased levels of NPC1 (but not NPC2) protein expression 
post-BCG infection (Figure 3C) may reflect attempts by the 
host cell to compensate for reduced protein function by increas-
ing NPC1 expression. Significantly, the NPC1 protein is also 
up-regulated in Mtb granulomas in vivo33. This is not accompanied 
by an up-regulation in other lysosomal markers (e.g. LAMP1). 
Little is currently known about the mechanisms by which NPC1 
expression is regulated. The NPC1 up-regulation we observed 
may slow the rate of induction of NPC disease cellular phenotypes 
by the mycobacterium, as we saw in the NPC1 overexpressing 
cells (Figure 3B). However, the enhanced copy number of NPC1 
protein will still be subject to inhibition by mycobacterial lipids, so 
cannot prevent the development of stable infection over time. Phar-
macological or genetic blockade of NPC1 significantly enhanced 
the survival of non-pathogenic mycobacterial species (Figure 3D 
and E). This may have significant implications for NPC patients 
as it suggests they are likely to have altered microbial handling, 
and as a result harbour an unusual microbiome, and potentially 
have greater susceptibly to Mtb infection. Indeed, altered microbial 
handling was recently demonstrated in vitro and linked to a high 
penetrance of Crohn’s disease in NPC1 patients59.

Figure 5. Schematic of proposed lipid-mediated inhibition of the NPC pathway by pathogenic mycobacteria. Following internalization 
by phagocytosis mycobacteria residing in the phagosome shed cell wall lipids, which reach the LE/Lys of the host cell where they inhibit the 
NPC1 protein. This causes a reduction in LE/Lys Ca2+ levels and blocks phagosome-lysosome fusion. Lipids released by infected cells are 
endocytosed by neighboring cells and induce NPC phenotypes, including blockade of late endosome-lysosome fusion. EE, early endosome; 
LE, late endosome; Lys, lysosome; Phago, phagosome.

Page 17 of 25

Wellcome Open Research 2016, 1:18 Last updated: 25 DEC 2016



NPC1 is a mammalian orthologue of an ancient family of bacte-
rial transporters termed Resistance Nodulation Division (RND)  
permeases19. Interestingly, a member of this family of proteins 
(termed MmpL) acts as a mycolic acid transporter, facilitating lipid 
secretion by mycobacteria (including Mtb)60. A drug that targets this 
transporter - SQ109 - is currently in clinical trials for treating TB61. 
Members of this conserved family of RND proteins have the ability 
to bind glycomycolate, with binding of Mmpl3 (essential for Mtb 
viability) to TMM previously demonstrated60,62. It may therefore 
be the case that the mammalian NPC1 protein also binds mycolic 
acids/glycomycolates, but with the lipid acting as an inhibitor not 
a substrate. Taken together, these studies demonstrate a remarkable 
role for mycobacterial RND permease family members. They are 
essential virulence factors for pathogen survival where they serve as 
mycolic acid transporters, with their mammalian counterpart NPC1 
targeted by the pathogen once within the host cell (Figure 5). The 
complex biology of the RND permease family of proteins remains 
incompletely understood and merits further investigation. Addi-
tionally, it has been proposed that free mycolic acids can assume 
a three-dimensional conformation similar to that of cholesterol63,64. 
Binding of cholesterol to the N-terminal domain of the NPC1 
protein has been previously demonstrated65. Mycolic acids may 
act as mimics of cholesterol, and in doing so bind to and inhibit 
NPC1.

This is the second human pathogen whose mechanism of infection 
has been linked to host NPC1. The second luminal loop of NPC1 
serves as the first known intracellular viral receptor essential for 
Ebola virus infection66–68. Whether NPC1, and the broader NPC 
pathway, is targeted by other human pathogens (beyond Ebola and 
Mtb) is currently under investigation (Platt Lab, Department of 
Pharmacology, Oxford University).

Should inhibition of the NPC pathway be central to the intracel-
lular survival of pathogenic mycobacteria, pharmacological agents 
that correct NPC cells may promote clearance of the mycobacte-
rium. We did not detect enhanced microbial clearance when either 
HPβCD (which can ameliorate disease symptoms in animal models 
of NPC47, most likely via stimulation of lysosomal exocytosis69) or 
miglustat (a GSL biosynthesis inhibitor70 clinically approved for 
NPC71,72) were tested (Figure 4C). Whilst miglustat and HPβCD are 
both able to reduce cholesterol storage in NPC cells (Figure 4A), 
this does not translate to a reduced intracellular mycobacterial 
load. It has been suggested that cholesterol storage is a downstream 
event in the NPC pathogenic cascade, occurring as a consequence 
of aberrant lysosomal fusion22. Correction of cholesterol storage 
would therefore not be expected to lead to a restoration of lyso-
somal fusion. An earlier event in the pathogenic cascade is the 
reduced release of Ca2+ from the LE/Lys. Curcumin is a SERCA 
inhibitor that reduces Ca2+ uptake into the ER (hence increasing 
the availability of cytosolic Ca2+) and driving lysosomal 
fusion22. The ability of curcumin to modulate intracellular Ca2+ 
appears key to its ability to reduce host cell mycobacterial load  
(Figure 4C and 4D). A significantly lower bacterial load was meas-
ured in cells treated with curcumin, a natural product that raises 
cytosolic Ca2+ and reduces ER Ca2+, but not in those exposed to a 

curcumin analogue (FLLL31) that has no effect on cytosolic or ER 
Ca2+ levels (Figure 4E and F). Chelation of host cell Ca2+ abrogates 
the beneficial effect of curcumin with regards to both improving 
cholesterol storage and reducing BCG levels. Interestingly, miglu-
stat showed synergy when combined with curcumin. Miglustat’s 
potential efficacy as a mono-therapy merits re-evaluation over a 
more prolonged time course, to allow more GSL turnover to take 
place. The lack of effect with cyclodextrin would support the pro-
posed exocytotic mechanism of action in NPC69, which would not 
affect the phagosome. Finally, we have demonstrated the in vivo 
efficacy of curcumin in a zebrafish larvae model of mycobacte-
rial infection, in which curcumin gave a significant decrease in  
M. marinum load (Figure 4H). Curcumin may prove to be of ben-
efit in murine models of mycobacterial infection, although this may 
first require issues of bioavailability to be surmounted.

In summary, we have identified an unanticipated mechanistic 
relationship between a rare, inherited lysosomal storage disorder 
and the process used by persistent intracellular mycobacteria to 
subvert cellular defences. These findings provide not only an 
explanation for the defective phagosomal maturation observed 
following Mtb infection, but also provide a unified mechanistic 
framework accounting for other unexplained phenotypes in Mtb-
infected macrophages, including cholesterol5 and LacCer storage33, 
calcium homeostatic defects15, GM1 mistrafficking73, elevated 
NPC1 expression33 and bystander effects on neighbouring cells52. 
These findings also suggest that correcting or compensating for 
reduced NPC1 function may offer a novel therapeutic approach for 
treating tuberculosis that targets the host cell and should therefore 
not be subject to development of resistance.
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Supplementary material

Supplementary Figures 1–4
Click here to access the data. 

Supplementary Figure 1. Basal [Ca2+]I in RAW 264.7 macrophages prior to addition of GPN. Fura-2 350/380 ratios as a measure of the 
basal Ca2+ (i.e. before stimulation) and maximum Ca2+ released upon addition of 200μM GPN. Cells were exposed to mycobacteria (MOI 
12.5) for 24h prior to Ca2+ imaging. There was a minor (~7%) lowering of the basal Ca2+ as a result of mycobacterial infection. However, 
this change was not large enough to account for observed differences in maximum Ca2+ release between BCG and control/Msm upon GPN 
addition. Mean ± SEM of n=167–311 individual cells per group. ****p<0.001 vs uninfected control post-GPN addition (1-way ANOVA). 
##/### p<0.05/0.01 vs uninfected control prior to GPN addition (1-way ANOVA). GPN, glycyl-L-phenylalanine-β-napthylamide; BCG, 
Bacillus Calmette-Guerin.

Supplementary Figure 2. Cathepsin C activity in control and BCG-infected RAW 264.7 macrophages. Single-cell recordings of  
LysoTracker fluorescence (green) from the lumen of lysosomes released upon addition of the cathepsin C substrate GPN (200μM; indicated 
by the arrow) to control or BCG-infected RAW 264.7 macrophages (i/ii). No difference in rate of release of LysoTracker from lysosomes 
upon GPN was detected between the uninfected and infected macrophages when quantified by either linear regression of the initial rate or 
by exponential fit of the entire post-GPN period (iii/iv respectively). GPN, glycyl-L-phenylalanine-β-napthylamide; BCG, Bacillus Cal-
mette-Guerin

Supplementary Figure 3. Electron microscopy of primary human macrophages. Cells were infected (where indicated) for 48h at MOI 
12.5 in the presence or absence of 2μg/ml U18666A. A Npc1-/- mouse liver Kupffer cell is provided for comparison. Arrows indicate storage 
bodies. Scale bar, 500nm.

Supplementary Figure 4. Effect of curcuminoids on BCG growth in broth. The effect of curcuminoids on BCG growth in 7H9 media 
was measured via absorbance at 600nm. Curcumins used at 30μM. Mean ± SEM. N=3. BCG, Bacillus Calmette-Guerin.
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Fineman et al. authors provide a detailed description of the macrophage modification in term of lipid
contents and Niemann-Pick Type C phenotype induced by mycobacterial infection. Using well-adapted
methods, they fully described acquisition of the foamy macrophage phenotype and impact of NPC
treatment of mycobacteria growth. Taken together, these data provide a well performed description of
macrophage lipid alteration during mycobacteria infection and the potential target of this pathway as host
targeted therapy that would be of interest for the scientific community working on NPC or mycobacteria.

The text is well written and clear, the methods are exhaustive, presentation of the results clear while the
discussion is quite long. I would suggest the author to shorten the discussion in order to focus on the main
message of the paper.

Major comments that must be addressed before indexation of the manuscript:
Figure 1 describe the acquisition of the NPC phenotype by macrophages infected by
mycobacteria. Infection with different Multiplicity of Infection and different time points should be
included and the results compared with positive control of NPC cells as this phenotype is not well
known by the scientific community working on mycobacteria and that will read with interest this
article. The authors should clarify at least in the text why the experiments are performed at different
time point between the data presented in Figure 1.
 
Quantifications should be included in Figure 1G and L, Figure 2B to F and I-J, Figure 3B.
 
Only single cells are shown to illustrate the foamy phenotype, authors should show lower scale
pictures illustrating larger fields of the experiments instead of a single cell.
 
My main concern is the way mycobacteria clearance is measured. Fluorescent microscopy do not
allow to conclude on bacteria clearance. Colony forming unit assay should be used after infection
to concluded on bacteria clearance or the text should be changed accordingly as the difference in
number of bacteria in cells can reflect differences in bacteria binding and phagocytosis by
macrophages or a slower growth rate.
 

Similarly in Figure 4, bacterial content is measured by flow cytometry using 2 different MOI. The
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Similarly in Figure 4, bacterial content is measured by flow cytometry using 2 different MOI. The
authors should justify why they used 2 different MOI (10 and 100) in Figure 4B and MPOI 12.5 in
Figure 2C. They should also show the SSC/FSC dot plots and the gating strategy they used to
obtain the histogram shown in B. As they used high MOI such as 100, they should also provide
evidence on how they evaluate macrophage cell death in their experiments. Using the histogram,
data should be calculated as % of infected cells instead of MFI of the global fluorescence.
 
Data obtained by flow cytometry illustrate the fluorescence content of infected macrophages. The
authors claim that drugs induce mycobacteria clearance. Difference in fluorescence may reflect a
bacteriostatic effect of the drugs on mycobacteria growth. CFU experiments should be done to
conclude on bacteria clearance or the text should be modified accordingly to avoid
over-interpretation of the experiments.

Minor points:
Scale bars must be included in the pictures when missing (Figure 1B, Figure 2B-D-J, Figure 3E,
Figure 4G).
 
Authors should show level of grey pictures and merge as red and blue colours are not visible on
the black background.
 
Figure 4G, time point should be included, Figure 4H, illustration of mycobacteria content in
zebrafish should be included.
 
Figure 4E should be shown in 4B with the corresponding absolute values instead of the
normalization of the control to 1.
 
Figure 3E, in the legend, “peritoneal macrophages” is indicated while “bone-marrow derived
macrophages” is written in the text. Please clarify.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

 No competing interests were disclosed.Competing Interests:

 16 December 2016Referee Report
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 Maximiliano Gabriel Gutierrez
Host-pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, UK

This work investigated the link between Niemann-Pick Disease Type C (NPC) and mycobacteria. The
results have important implications that link rare lysosomal storage disorders and tuberculosis.
 
Experiments are very detailed, well executed and conclusions justified. Unfortunately, the authors only
speculate that mycobacterial lipids can potentially inhibit NPC1 because it seems technically difficult to
test. This hypothesis is definitely of interest.
 
Minor suggestions for improvement in general are:

Larger images are needed in general, they are too small and it is very difficult to observe what the
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Larger images are needed in general, they are too small and it is very difficult to observe what the
authors are describing. Scale bars are missing in many panels.
 
Filipin staining and blue colour is very difficult to see. I would change it to other colour or even to a
LUT.
 
Some of the experiments where representative images are shown would benefit of quantitative
analysis in biological replicates (e.g. Fig 2B).
 
Throughout the manuscript, the authors should be careful with the description of “persistent”
intracellular mycobacteria, only intracellular mycobacteria would be appropriate. It is not clear if in
these experiments, the mycobacteria tested are able to persist.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 15 December 2016Referee Report

doi:10.21956/wellcomeopenres.10812.r17846

 Andrew P. Lieberman
Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA

Fineran et al. test the interesting and innovative hypothesis that pathogenic mycobacteria inhibit NPC1
function to disrupt phagosome-lysosome fusion and facilitate intracellular persistence. In support of this
idea, the authors show that infection with pathogenic mycobacteria or treatment with their cell wall lipids
results in a number of cellular phenotypes that also occur as a result of NPC1 deficiency. These include
disrupted intracellular trafficking of lipids including GM1, sphinogomyelin and LacCer, increased filipin
staining, and decreased GPN-releasable lysosomal Ca2+. Additional data show that NPC1 gene dosage
affects the occurrence of these phenotypes. While the aggregate evidence supports the occurrence of
similar cellular phenotypes in NPC disease and following mycobacterial infection, the authors do not show
direct functional inhibition of NPC1 protein, as suggested at several points in the manuscript including the
abstract, Fig 3 title and discussion. In fact, they comment in the discussion that they are not able to show
direct interaction of myobacterial lipids/glycomycolates with NPC1, raising the possibility of other cellular
targets. Indeed, it is well known that defects in unrelated genes (for example, SMPD1) can cause many of
these same cellular phenotypes. Therefore, greater caution in interpreting the target that triggers the
demonstrated effects is warranted.
 
The observation that curcumin promotes mycobacterial clearance is of interest. Curcumin is a natural
product with multiple suggested intracellular targets. If it is acting on ER Ca2+ stores by inhibiting SERCA
channels to trigger this effect, then complementary experiments using more specific small molecules
and/or genetic approaches would strengthen this conclusion.
 
It would be helpful to include Npc1 deficient macrophages as a comparison in a few experiments in Fig 1
so as to inform the reader the extent to which changes following mycobacterial infection are quantitatively
similar.
 
Much of the data in Fig 2 are representative images. Quantification from replicate experiments would be
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Much of the data in Fig 2 are representative images. Quantification from replicate experiments would be
helpful. Similarly, quantification should be included in Fig 3B.
 
Several figures are missing scale bars (1B, 2B, 2D, 4G).
 
It’s difficult to appreciate the cellular structures that are stained by filipin after mycobacterial infection.
Co-staining with a marker of late endosomes/lysosomes would be helpful.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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 Yiannis Ioannou
Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA

This is an excellent report and the authors have provided convincing evidence for their conclusions.
The abstract is well written and appropriate.  Perhaps the title, based on the strength of the evidence
provided, should be slightly more specific and instead of “…inhibiting the Niemann-Pick C disease cellular
pathway” should read, “…inhibiting the Niemann-Pick C1 Protein”.
 
The studies are well designed with extensive, appropriate controls and statistical analysis of the results. 
The methods are “cutting edge” and the conclusions appropriate for the data presented. All experiments
are properly documented in the extensive methods section providing all necessary information for others
to replicate these results.
 
In summary, this is an excellent move forward in our understanding of how infectious organisms hijack the
cellular machinery, in this case the LE/lys/NPC compartment and manipulate it for their own survival. 
Excellent!

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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