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Graphical abstract 

 

 

Highlights 

 Varied ZnONRs were hydrothermally synthesized on SSW sieves of different 

meshes. 

 Synthesizing parameters and SSW diameters affect surface morphologies of 

SSW-supported ZnONRs. 

 Surface morphology and mesh size influence wettability of SSW sieve-supported 

ZnONRs. 

 Surface morphology and wettability decide MB degradation of SSW 

sieve-supported ZnONRs. 

 

ABSTRACT: Methylene blue (MB) was degraded via ultraviolet (UV) irradiation by 

ZnO nanorods (ZnONRs) which were hydrothermally synthesized on stainless steel 

wire (SSW) sieves of different meshes. It was found that besides synthesizing 

parameters, the diameter of a SSW also affected the nucleation density of ZnO seeds 

and the size of diffuse zone of Zn2+ and O2- ions, and thus the surface morphology of 
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the SSW-supported ZnONRs. The surface morphology of SSW-supported ZnONRs, 

together with the mesh size of a SSW sieve, further influenced significantly the 

wettability of the SSW sieve-supported ZnONRs. Of all three groups of SSW 

sieve-supported ZnONRs, those with Gaussian random rough surfaces are most 

hydrophilic, hence the actual contacting surface areas of (001) active crystal planes of 

ZnONRs with MB solution are the largest, the yield of hydroxyl radicals the highest, 

and eventually the photo-catalytic degradation of MB the optimal. 

 

Keywords：  A. Semiconductors; B. Solvothermal; C. Electron microscopy; D. 

Catalytic properties; D. Surface properties 

 

1. Introduction 

Photo-catalytic degradation has been widely used to de-color and clean various 

synthetic organic dyes in wastewater, for instance, MB, methylene orange, rhodamine 

B, azo dye, and methanol, and is essential for the environmental sustainability of 

textile, leather, paint, food, plastic, and cosmetic industries [1]. Of semiconductor 

metal oxides and sulfides including TiO2, ZnO, WO3, CdS, and ZnS, nanostructured 

ZnO is more attractive as a catalyst due to its suitable band gap, considerable 

photo-catalytic efficiency of various polluted effluents, and more important, neutral 

solution in which related catalyzing reaction is conducted [2-4]. In comparison with 

powdery form of this catalyst, ZnONRs synthesized on a certain substrate can not 

only avoid catalyst aggregation, but also benefit adsorption of reactants upon the 
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catalyst and separation of the catalyst from reaction medium, and thus give rise to 

higher photo-catalytic degradation efficiency of a specific organic pollutant [5]. A 

wide variety of substrates on which corresponding catalysts are deposited have been 

used in literatures, such as indium tin oxide glass [6], copper plate [7], silica [8], 

crystal or polyster film [9], polyethylene fiber [10], SSW [11] and nylon [12] sieves 

etc. By contrast with other substrates, a SSW sieve is more frequently employed 

thanks to its extensive surface area, efficient mass and heat transfer, lower pressure 

drop, lightweight, flexibility, and low cost. For instance, Lu used the direct 

electro-deposition method to prepare the arrays of well-aligned single-crystalline ZnO 

nanorods on SSW sieves, and investigated the detailed effects of the electrochemical 

parameters on the orientation, lengths, average diameter, and density of the ZnO 

nanorods and further on the photo-degradation of rhodamine B [13]. Vu 

hydrothermally synthesized ZnONRs on SSW sieves under several different 

conditions, and discussed the effects of the synthesizing parameters on the quantum 

yield, morphologies, lengths, and widths of the ZnO nanorods as well as on the 

photo-degradation of MB solution under UV irradiation [5, 14, 15]. Jung used the 

photochemical deposition method and deposited flower-like CuO nanostructures on 

the as-synthesized ZnO nanorods to obtain heterostructured CuO-ZnO nanorods on 

SSW sieves, then quantitatively characterized the diameters and lengths of the ZnO 

nanorods and qualitatively the CuO-ZnO heterostructures, and further discussed the 

effects of multilayer sieves, dual light source, and pH values of the precursor solution 

on the photo-degradation of azo dye [16]. Marbán hydrothermally synthesized 
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Cu/Co-structured catalysts on SSW sieves, and studied the effects of Cu content and 

calcination temperature on the crystal sizes of the Cu/Co nanostructures and average 

diameters of the pores to improve the spinel yield, the specific surface area, and 

further the methanol decomposition [17]. 

Nevertheless, aforementioned literatures demonstrate apparent disadvantages as 

follows. Firstly, although these SSW-supported nanostructured catalysts often form 

random rough surfaces, their profiles were not extracted from related SEM 

micrographs and the characteristic parameters of the surface morphologies were not 

acquired. Instead, in most cases only SEM-based direct measurement route was 

employed and limited geometrical parameters such as diameter, length, density, and 

orientation of the catalysts were obtained, therefore the surface morphologies of these 

SSW-supported catalysts were merely approximately characterized. Secondly, the 

detailed effect of the surface morphologies on the wettability of aforementioned SSW 

sieve-supported catalysts was not investigated, thus the sizes of air bubbles trapped 

within the screen openings of the catalyst-deposited SSW sieves were not evaluated, 

and the total actual contacting surface area of the catalysts with solution of specific 

organic pollutant were not discussed. These two disadvantages hinder the fine 

regulation of related fabrication processes and further the performance improvement 

of corresponding ZnONR-based photo-reactors. 

In this paper ZnONR-deposited SSW sieves of different meshes were batch 

fabricated. The effects of Zn2+ concentration of the growth solution and diameters of 

the SSWs on the surface morphologies and the wettability of these ZnONR-coated 
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SSW sieves were investigated, and thus the photo-catalytic degradation of MB by the 

ZnONR-based photo-reactors was optimized. 

2. Experimental details 

2.1. Materials and apparatus 

Absolute ethyl alcohol, anhydrous zinc acetate (Kemiou Chemical Reagent 

Factory, China), sodium hydrate (Hedong Red Cliff Chemical Reagent Factory, 

China), zinc nitrate, hexamethylenetetramine, six hydrated zinc nitrate, MB solution 

(Tianjin Fuchen Chemical Reagents Factory, China) are all analytical reagents. 

DI-water (18.25 MΩ·cm) and SSW sieves of meshes 300, 200, and 150 (Outokumpu 

Stainless, USA) were used. 

Electronic balance (FA1004N, Changzhou Xingyun Electronic Equipment Co. 

Ltd., China), water-bath (DK-98-IIA, Tasite, China), drying oven (DZF-6020, 

Shanghai Yiheng Technical Co. Ltd., China), magnetic stirrer (BII-3，Shanghai Sile 

Automation Science & Technology Co. Ltd., China), ultrasonic washer (KQ-100DE, 

Kunshan Ultrasonic Instruments Co. Ltd., China), SEM (SU8010, Hitachi, Japan), 

confocal microscopy (OLS4000, Olympus Corporation, Japan), X-ray diffractometer 

(XRD, TCM4400, PANalytical Holland), Fourier transform infrared (FT-IR) 

spectrometer (TENSOR27, Bruker, Germany), contact angle (CA) meter (OCA20, 

Dataphysics company, Germany), UV analyzer (ZF-20D, Xi’an Yuhui instrument Co. 

Ltd., China), and UV-visible spectrophotometer (UV-3600, Shimadzu Corporation) 

were employed. 

2.2. Hydrothermal synthesis of ZnONRs on 1#-3# SSW sieves 
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As for synthesis of ZnONRs on SSW sieves to photo-degrade different organic 

pollutants, hydrothermal synthesis [18], chemical vapor deposition [19], thermal 

evaporation method [20], and pulse laser deposition [21] are frequently employed. 

Since hydrothermal synthesis not only is cost effective but also delivers ZnONRs of 

high crystallinity, it was employed in this paper. 

SSW sieves of mesh 300, 200, and 150 were cut into several square pieces 

measuring 1×1 cm2 and designated as 1#, 2#, and 3#. These square sieves were 

cleaned in the ultrasonic washer with absolute ethyl alcohol and DI water for 5 min 

respectively, then in the drying oven dried at 120 oC for 10 min. ZnO seed solution of 

Zn2+ concentration 1 mM was prepared with zinc acetate dihydrate 

(Zn(CH3COO)2·2H2O), sodium hydrate (NaOH), and absolute ethyl alcohol. Zinc 

nitrate (Zn(NO3)26H2O), hexamethylenetetramine (C6H12N4) and DI water were used 

to produce growth solution of Zn2+ concentration 25, 50, 75, 100, and 125 mM. A 

square sieve of a specific mesh was immersed into the ZnO seed solution for 1 min, 

and then annealed in the drying oven at 120 oC for 10 min. These immersing and 

annealing processes were repeated twice more. Then the ZnO seed-coated square 

sieve was put into the growth solution of a specific Zn2+ concentration in a beaker. 

The beaker was sealed with a preservative film and placed into the water-bath at 90 oC 

for 2.5 h. Afterwards the sample was taken out and cleaned in the ultrasonic washer 

with DI water for 5 min, and dried in air. 

2.3. Characterization of the ZnONRs on SSW sieves 

Based on SEM micrographs and Image Processing Toolbox of MATLAB 
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software, the profiles of the SSW-supported ZnONRs at front view were extracted. 

According to these extracted profiles, the characteristic parameters were acquired, and 

therefore the surface morphologies of the SSW-supported ZnONRs were 

quantitatively characterized. The characteristic parameters of a random rough surface 

often include roughness Ra (the fluctuations of surface heights around an average 

surface height), skewness Sk (the measure of the symmetry of the height distribution 

about a mean surface level), kurtosis Ku (the measure of the sharpness of the height 

distribution function) and correlation length ζ (the value of the lag length at which the 

auto-correlation function drops to 1/e of its value at zero lag) [22]. 

In addition, the CAs of SSW sieve-supported ZnONRs were acquired with the 

CA meter, and the volume of a DI water droplet was set to be 5 μL. Using CuKα 

radiation (λ=1.5418 Å) and operating at 40 kV and 40 mA, the XRD patterns of the 

ZnONRs were examined at a scanning rate of 8o/min for 2θ ranging from 20o to 80o. 

The FT-IR spectra of the ZnONRs were obtained within the wavelength rang of 

8000-350 cm-1, the main absorption bands were identified, especially that corresponds 

to O–H modes. The transmittances at the absorption bands of O–H modes were 

compared among ZnONRs synthesized at different Zn2+ concentration of the growth 

solution on 1#, 2#, and 3# SSW sieves, and thus the attached hydroxyl radicals were 

qualitatively evaluated. 

2.4. Photo-catalytic degradation of MB with the ZnONRs on SSW sieves 

Aforementioned ZnONR-deposited SSW sieves were put into MB solution of 

concentration 10 mg/L respectively, and then were irradiated by UV light for 2 h in 
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the UV analyzer with light intensity 6.0×103 μW/cm2. The absorbance of the MB 

solution was obtained with the UV-visible spectrophotometer at its maximum 

absorption wavelength 553 nm, and thus the photo-catalytic degradation of MB 

solution by 1#-3# SSW sieve-supported ZnONRs via UV irradiation was quantitatively 

evaluated. 

3. Results and discussion 

3.1. Characterization of ZnONRs on 1#-3# SSW sieves 

3.1.1. 1#-3# SSW sieves 

The red, blue, and green curves in Fig. 1a-c are the extracted profiles of 1#-3# 

SSWs at side view. According to these profiles Ra values of 1#-3# SSWs at side view 

are determined to be 59.8, 65.5, and 69.1 nm. With the con-focal microscopy Ra 

values of the SSWs at front view are acquired to be 80.3, 87.6, and 91.2 nm. 

Apparently, Ra values at front view are quite larger than corresponding ones at side 

view. It indicates that the surface textures of these SSWs are anisotropic, and the 

roughness at front view more greatly affects subsequent hydrothermal synthesis of 

ZnONRs than the one at side view. Moreover, among 1#-3# SSWs Ra values either at 

front or side view change unremarkably. It suggests that the surface textures of 1#-3# 

SSWs are very similar to each other, and thus their effects on subsequent 

hydrothermal synthesis of ZnONRs are quite the same. It concludes that as cylindrical 

substrates 1#-3# SSW sieves meet the geometrical requirements for subsequent 

hydrothermal synthesis of ZnONRs. 

3.1.2. 2# SSW sieve-supported ZnONRs 
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Fig. 2a and the top right inset in Fig. 1b demonstrate that in comparison with the 

bare 2# SSW sieve, the ZnONR-coated one is still uniform. Fig. 2b shows that the 

ZnONRs are evenly distributed upon the surface of the SSW. The gap between the 

ZnONRs film and the surface of the SSW is attributed to the SSW deformation during 

cutting process with a pair of surgical scissors. Fig. 2c and its bottom left inset 

illustrate in detail that the ZnONRs of high spatial frequency are superimposed on the 

cylindrical substrate of low spatial frequency, suggesting that the SSW-supported 

ZnONRs with desirable surface morphology was produced. Fig. 2d exhibits that the 

hexagonal ZnONRs of high quality are evident and well-aligned. 

3.2. Detailed ZnONRs on 1#-3# SSWs 

The columns of SEM micrographs in Fig. 3 illustrate the detailed ZnONRs 

synthesized at different Zn2+ concentration of the growth solution on specific SSW 

sieves. When Zn2+ concentration of the growth solution becomes larger, first the 

diameters of ZnONRs increase (Fig. 3a1-a4; Fig. 3b1-b3; Fig. 3c1-c2), then 

side-by-side coalescences among neighboring ZnONRs start to occur (Figs. 3a5, 3b4, 

3c3), and eventually ZnO nanostructures instead of ZnONRs appear (Figs. 3b5, 

3c4-5). Meanwhile the orientation of ZnONRs is first random, then correlated, and 

finally random to some extent again. In addition, the sizes of the valleys among 

bundles of neighboring ZnONRs steadily decrease. All these suggest that synthesizing 

parameters influence significantly the surface morphologies of SSW-supported 

ZnONRs. 

The rows of SEM micrographs in Fig. 3 show the ZnONRs deposited on 
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different SSWs at specific Zn2+ concentration of the growth solution. Obviously, a 

SSW of larger diameter gives rise to thicker ZnONRs. This is attributed to less density 

of the ZnO seeds and larger size of the diffusion zone of Zn2+ and O2- ions upon the 

surface of the SSW with larger diameter. Also it is worthy to note that even though 

corresponding Zn2+ concentration of the growth solution are different, the ZnONRs 

framed in red dashed squares in the 4th, 3rd, and 2nd rows are quite similar to each 

other. All these indicate again that besides synthesizing parameters, the diameters of 

SSWs also affect dramatically the surface morphologies of related SSW-supported 

ZnONRs. Moreover, the ZnONRs in SEM micrographs above the red dashed squares 

are with sharp tips and quite random orientation whilst those below the red dashed 

squares are with hexagonal tips and more correlated orientation. 

Fig. 4 shows the number densities of ZnO nanorods synthesized at different Zn2+ 

concentration of the growth solution on 1#, 2#, and 3# SSWs. It demonstrates that 

when the value of the synthesizing parameter becomes larger, all the densities of 

ZnONRs on 1#, 2#, and 3# SSWs first decrease sharply, then reach the related knee 

points, and finally increase slightly. This indicates that the growth of related ZnONRs 

on all SSWs was slightly, remarkably, and moderately obstructed by neighboring ones. 

It is attributed to the Zn2+ concentration of the growth solution and the diameters of 

ZnONRs. Moreover, the average densities of ZnONRs on 1#, 2#, and 3# SSWs steadily 

decrease. It suggests that the growth obstruction of ZnONRs by neighboring ones 

(also including the coalescence with neighboring ZnONRs) on 1#, 2#, and 3# SSWs 

gradually diminishes. The curvature radii of the SSWs are ascribed to these different 
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growth obstructions [23]. That is, the larger the curvature radius of an SSW is, the less 

radiating the ZnONRs are from the surface of the cylindrical substrate, and thus the 

more the growth obstruction of ZnONRs by their neighboring ones, and finally the 

less the density of the as-synthesized ZnONRs. It is also worthy noticing that the least 

densities of ZnONRs on 1#, 2#, and 3# SSWs occur at Zn2+ concentration 100, 75, and 

50 mM of the growth solution respectively, coinciding with the ones at which the 

Gaussian random rough surfaces were produced, see part 3.4 of this paper. This 

indicates that the growth obstruction of ZnONRs by neighboring ones is strongest at 

these values of the synthesizing parameter. It is due to the combined effect of the 

specific Zn2+ concentration of the growth solution and related diameter of the SSW 

[23]. 

3.3. XRD and FT-IR spectra of the ZnONRs on 1#-3# SSW sieves 

Fig. 5 illustrates the XRD spectra of the ZnONRs coated on SSW sieves in Fig. 3. 

At lower Zn2+ concentration of the growth solution, all seven peaks of the ZnONRs 

are indexed within 2θ range of 20° to 80°, and their strengths are coarsely the same. 

This indicates that the orientation of the ZnONRs is quite random. When Zn2+ 

concentration of the growth solution increases, the strengths of (002) peaks become 

stronger whilst the others are still weak. It suggests that the ZnONRs gradually 

become well aligned and perpendicular to the cylindrical surfaces of the SSWs. 

Moreover, Fig. 5a also exhibits that in comparison with other peak strengths, the 

(002) one of the ZnONRs synthesized at Zn2+ concentration 100 mM of the growth 

solution is the strongest. This means that the orientation of these ZnONRs on 1# SSW 
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sieve is better aligned, referring to Fig. 3a4. Similarly Fig. 5b and c demonstrates that 

the orientation of the ZnONRs synthesized respectively at Zn2+ concentration 75 and 

50 mM of the growth solution on 2# and 3# SSW sieves is more desirable, see Fig. 3b3 

and c2. As mentioned in Section 3.2, not only synthesizing parameters of ZnONRs but 

also the diameters of SSWs account for these differences of the XRD spectra. 

Fig. 6 illustrates the FT-IR spectra of the ZnONRs in Fig. 3a2-a4, b2-b4, and 

c2-c4. Of all FT-IR spectra, the main absorption bands are at 470–530 cm-1, 

1380–1400 and 1600–1650 cm-1, 2900–3000 cm-1, and 3400–3500cm-1, which 

represent the stretching mode of ZnO, the asymmetric and symmetric C=O stretching 

modes of zinc acetate, C-H mode, and O–H modes respectively. Fig. 6a shows that the 

transmittance at absorption band 3400–3500cm-1 of the ZnONRs in Fig. 3a4 is the 

least. This indicates that the quantity of hydroxyl radicals attached at the end faces of 

the ZnONRs in Fig. 3a4 are the most. Similarly Fig. 6b and c shows that the quantities 

of hydroxyl radicals attached at the top ends of the ZnONRs in Fig. 3b3 and c2 are the 

maximums respectively. This is due to the most numbers of defective sites, that is, the 

oxygen vacancies at the top ends of the ZnONRs [24]. It strongly suggests that the 

larger the diameter of a ZnONR is, the more the defective sites and further the 

hydroxyl radicals at the top end of the ZnONR are. 

3.4. Quantitative characterization of the surface morphologies of ZnONRs on 1#-3#  

SSWs 

The red curve in Fig. 2c is the extracted profile of the 2# SSW-supported 

ZnONRs at front view. With the component of low spatial frequency fitted and 
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subtracted from the extracted profile, the curve of the surface morphology of high 

spatial frequency was derived, the characteristic parameters Ra, ζ, Sk, and Ku were 

determined, and the surface morphology of the 2# SSW-supported ZnONRs at front 

view is quantitatively characterized. Similarly the characteristic parameters of 1# and 

3# SSW-supported ZnONRs at front view were also acquired, referring to Fig. 7. 

Fig. 7a demonstrates that when Zn2+ concentration of the growth solution 

becomes larger, Ra values of 1#-3# SSW-supported ZnONRs all decrease gradually 

whilst ζ values slightly increase. It indicates that the surfaces of SSW-supported 

ZnONRs all gradually get smoother and a little more correlated. Moreover, the blue 

Ra curve is below the green one but approximately over the red one, whilst the blue ζ 

curve is coarsely over the green one but below the red one. It suggests that the 

surfaces of 1# SSW-supported ZnONRs are smoothest and most correlated whilst that 

of 3# ones are roughest and most random. As mentioned in Sections 3.2 and 3.3, 

synthesizing parameters of the ZnONRs and diameters of the SSWs account for these 

different surface morphologies of 1#-3# SSW-supported ZnONRs. 

Fig. 7b exhibits that most Sk values of 1# SSW-supported ZnONRs are positive 

whilst that of 2# and 3# ones negative (the Sk value of a Gaussian random rough 

surface is 0). This suggests that the surfaces of 1# SSW-supported ZnONRs have more 

bumps whilst that of 2# and 3# ones have more pits. Fig. 7b also demonstrates that the 

red Ku curve is approximately larger than 3 whilst both the green and blue curves are 

slightly less than 3 (the Ku value of a Gaussian random rough surface is 3). It 

indicates that the fluctuation of the surface heights of 1# SSW-supported ZnONRs is 
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larger than that of both 2# and 3# ones. As mentioned above, it is ascribed to 

synthesizing parameters of the ZnONRs and diameters of the SSWs. More important, 

as for 1#, 2#, and 3# SSW-supported ZnONRs produced respectively at Zn2+ 

concentration 100, 75, and 50 mM of the growth solution, the Sk values approach to 0 

whilst the Ku values are coarsely equal to 3. This suggests that these SSW-supported 

ZnONRs all have Gaussian random rough surfaces, which is in agreement with the 

conclusions drawn from SEM micrographs in Section 3.2 as well as XRD patterns and 

FT-IR spectra in Section 3.3. 

3.5. Wettability of 1#-3# SSW sieve-supported ZnONRs 

Fig. 8a-c exhibits that when Zn2+ concentration of the growth solution increases, 

the CAs of 1#-3# ZnONR-deposited SSW sieves all decrease first, then reach the 

lowest point, and finally increase. This indicates that 1#-3# SSW sieve-supported 

ZnONRs undergo a similar wettability trend, that is, hydrophobic first, then most 

hydrophilic, and eventually hydrophobic again. It is ascribed to the transition between 

Cassie–Baxter and Wenzel regimes occurring on both ZnONR-deposited SSW sieves 

and SSW-supported ZnONRs, and more importantly, the former transition triggered 

by the latter one. For instance, when Zn2+ concentration of the growth solution 

increases, successively non-Gaussian, Gaussian, and non-Gaussian rough surfaces are 

formed on the SSW-supported ZnONRs. This gives rise to Cassie–Baxter to Wenzel 

regime transition first, and then Wenzel to Cassie–Baxter one. Once an 

aforementioned regime transition occurs on SSW-supported ZnONRs, it triggers 

similar regime transition on the corresponding ZnONR-deposited SSW sieve, which 
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eventually results in hydrophobic to hydrophilic or hydrophobic to hydrophobic 

transition. Fig. 8a-c also shows that the CA curve of 2# SSW sieve-supported ZnONRs 

is leading than that of 1# ones but lagging than that of 3# ones. This is due to the 

combined effects of the surface morphologies of the ZnONR-deposited SSWs and the 

meshes of the related SSW sieves. That is, the transition between Cassie–Baxter and 

Wenzel regimes is modulated by the synthesizing parameter of ZnONRs, the diameter 

of the SSW, and the mesh of the SSW sieve. More obviously, the Zn2+ concentration 

of the growth solution at which the most hydrophilic 1# SSW sieve-supported 

ZnONRs was produced is determined to be 100 mM, whilst that of the 2# and the 3# 

ones are to be 75 and 50 mM. Besides appropriate meshes of the related SSW sieves, 

Gaussian rough surfaces of the 1#-3# SSW-supported ZnONRs account for the knee 

points of these CA curves, referring to Fig. 7b. 

3.6. Different photo-catalytic degradation of MB solution by 1#-3# SSW 

sieve-supported ZnONRs 

Fig. 9a exhibits that the larger the concentration of MB solution, the stronger the 

absorbance. Moreover, the inset illustrates that the former variable is linear with the 

latter one, thus the former variable can be determined with the latter one. The 

photo-degradation mechanism of MB by ZnONRs via UV irradiation is as follows. 

When ZnONR-deposited SSW sieves are immersed into MB solution, which is 

irradiated by UV light with energy of hv equal to or larger than the band gap energy of 

ZnONR, electrons are excited from the valance band into the conduct one, leaving 

same amount of holes behind in the former band [24]. These holes act as powerful 
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oxidants for water molecules and react with hydroxyl groups to produce active 

hydroxyl radicals, whilst the electrons function as good reductants for molecular 

oxygens to generate the superoxides and further through a series of chemical reactions 

to produce additional active hydroxyl radicals. As strong oxidants these hydroxyl 

radicals diffuse into MB solution and effectively mineralize MB, and then the 

photo-degradation of this organic pollutant is complete. 

Fig. 9b exhibits that when Zn2+ concentration of the growth solution goes up, the 

photo-degradation efficiencies of MB solution by 1#-3# ZnONR-deposited SSW 

sieves first increase gradually, then reach the highest points, and finally decrease 

slightly. Apparently, these photo-degradation curves undergo contrary trends to related 

CA curves in Fig. 8a-c. That is, the more hydrophilic a ZnONR-deposited SSW sieve 

is, the higher the photo-degradation efficiency of MB solution. In addition, according 

to the knee points of the photo-degradation curves of 1#-3# ZnONR-deposited SSW 

sieves, related Zn2+ concentration of the growth solution is determined to be 100, 75, 

and 50 mM, which exactly correspond to the ones at which the most hydrophilic SSW 

sieve-supported ZnONRs were produced respectively, referring to Fig. 8a-c. 

As mentioned in Sections 3.4 and 3.5, synthesizing parameters of ZnONRs and 

diameters of 1#-3# SSWs determine the surface morphologies of related 

SSW-supported ZnONRs, which along with the mesh sizes of related SSW sieves 

further decide the wettability of the ZnONR-deposited SSW sieves. The more 

hydrophilic the surface of the ZnONR-deposited SSW sieve is, the larger the 

contacting surface area of the interface between the MB solution and the active crystal 



18 

 

plane (001) of the catalysts is, thus with UV irradiation the larger the throughput of 

active hydroxyl radicals is, and eventually the higher the photo-degradation 

efficiencies of MB solution by these SSW sieve-supported ZnONRs is. As for 1#-3# 

ZnONR-deposited SSW sieves produced at Zn2+ concentration 100, 75, and 50 mM of 

the growth solution, they all have Gaussian rough surfaces, which give rise to the 

largest actual contacting surface areas of active crystal plane (001) of ZnONRs with 

MB solution respectively. Furthermore, the combined effect of the Gaussian rough 

surfaces and related mesh sizes lead to the most hydrophilic ZnONR-deposited SSW 

sieves, which significantly decreases the sizes of air bubbles trapped within the square 

screen openings and once again remarkably increases the actual contacting surface 

areas of active crystal plane (001) of ZnONRs with MB solution. In the end, via UV 

irradiation, the corresponding throughputs of active hydroxyl radicals by related 1#-3# 

ZnONR-deposited SSW sieves are the largest, thus the photo-degradation efficiencies 

of MB solution are the highest respectively. 

4. Conclusions 

With ZnONRs hydrothermally synthesized on SSW sieves of mesh 300, 200, 

150 and Zn2+ concentration of the growth solution regulated, the ZnONR-based 

photo-reactors were batch fabricated. The line edges of the features of interest were 

extracted, and the surface morphologies of the SSW sieve-supported ZnONRs were 

quantitatively characterized. It concluded that not only the synthesizing parameters 

but also the diameters of the SSW affected significantly the nucleation density of ZnO 

seeds and the surface morphology of the SSW-supported ZnONRs. Further the 



19 

 

surface morphology of the SSW-supported ZnONRs together with the mesh size of 

the SSW sieve determined the wettability of the SSW sieve-supported ZnONRs and 

the total contacting surface area of (001) active crystal planes of ZnONRs with MB 

solution. Of all 1#-3# SSW sieve-supported ZnONRs, those produced at Zn2+ 

concentration 100, 75, and 50 mM of the growth solution all have Gaussian random 

rough surfaces and are most hydrophilic. Hence the actual contacting surface area of 

(001) active crystal planes of ZnONRs is the largest, the yield of hydroxyl radicals the 

highest, and thus the photo-catalytic degradation of MB the optimal. In addition, the 

characteristic parameters Sk and Ku affected more significantly the wettability and the 

photo-degradation efficiency of the SSW sieve-supported ZnONRs than Ra and ζ. The 

results can benefit the batch fabrication and the performance improvement of these 

ZnONR-based photo-reactors. 
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Figure captions 

Fig. 1. The SSWs of 1#-3# sieves (top right insets) with mesh 300 (a), 200 (b), and 150 

(c) respectively. 
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Fig. 2. A ZnONR-deposited SSW sieve of mesh 200 (a), the SSW-supported ZnONRs 

at front view (b), the partial SSW-supported ZnONRs at front and side view (c 

and the bottom left inset), and the detailed ZnONRs on the SSW (d). The 

ZnONRs were synthesized with Zn2+ concentration of the seed solution and 

the growth solution, the growth duration, and the growth temperature as 1 mM, 

75 mM, 2.5 h, and 90oC respectively. 
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Fig. 3. Detailed ZnONRs synthesized at Zn2+ concentration 25 (a1, b1, c1), 50 (a2, b2, 

c2), 75 (a3, b3, c3), 100 (a4, b4, c4), and 125 (a5, b5, c5) mM of the growth 

solution on 1# (a1-5), 2# (b1-5), 3# (c1-5) SSW sieves, whilst Zn2+ 

concentration of the seed solution, the growth duration and the growth 

temperature were 1 mM, 2.5 h, and 90oC. 
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Fig. 4. Densities of ZnONRs synthesized at different Zn2+ concentration of the growth 

solution on 1#, 2#, and 3# SSW sieves (ZnONRs are the same as that shown in 

Fig. 3 in the revised manuscript). Dashed lines represent for the density 

averages of ZnONRs on 1#, 2#, and 3# SSW sieves. 
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Fig. 5. XRD patterns of the ZnONRs on 1# (a), 2# (b), and 3# (c) SSW sieves. 
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Fig. 6. FT-IR patterns of the ZnONRs synthesized at Zn2+ concentration 50, 75, and 

100 mM of the growth solution on 1# (a), 2# (b), and 3# (c) SSW sieves. 
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Fig. 7. Effects of Zn2+ concentration of the growth solution on the surface 

morphologies of 1#-3# SSW-supported ZnONRs. (a) Ra and ζ. (b) Sk and Ku. 
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Fig. 8. Effects of Zn2+ concentration of the growth solution on the CAs of 1# (a), 2# (b), 

and 3# (c) SSW sieve-supported ZnONRs. 
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Fig. 9. The relationship between the concentration and the absorbance of MB solution 

(a), and different photo-degradation of MB by 1#-3# SSW sieve-supported 

ZnONRs synthesized at different Zn2+ concentration of the growth solution 

respectively (b). 

 

 


