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Short Title: Sensorimotor oscillations during fatigue 

 
ABSTRACT 

Aim: While physical fatigue is known to arise in part from supraspinal mechanisms within the 

brain exactly how brain activity is modulated during fatigue is not well understood. Therefore, 

this study examined how typical neural oscillatory responses to voluntary muscle contractions 

were affected by fatigue.  

Methods: Eleven healthy adults (age 27±4 years) completed two experimental sessions in a 

randomised crossover design. Both sessions first assessed baseline maximal voluntary isometric 

wrist-flexion force (MVFb). Participants then performed an identical series of fourteen test 

contractions (2 × 100%MVFb, 10 × 40%MVFb, 2 × 100%MVFb) both before and after one of 

two interventions: forty 12-s contractions at 55%MVFb (fatigue intervention) or 5%MVFb 

(control intervention). Magnetoencephalography (MEG) was used to characterise both the 

movement-related mu and beta decrease (MRMD and MRBD) and the post-movement beta 

rebound (PMBR) within the contralateral sensorimotor cortex during the 40%MVFb test 

contractions, while the 100%MVFb test contractions were used to monitor physical fatigue.   

Results: The fatigue intervention induced a substantial physical fatigue that endured throughout 

the post-intervention measurements (28.9-29.5% decrease in MVF, P<0.001). Fatigue had a 

significant effect on both PMBR (ANOVA, session × time-point interaction: P=0.018) and 

MRBD (P=0.021): the magnitude of PMBR increased following the fatigue but not the control 

interventions, whereas MRBD was decreased post-control but not post-fatigue. Mu oscillations 

were unchanged throughout both sessions.  

Conclusion: Physical fatigue resulted in an increased PMBR, and offset attenuations in MRBD 

associated with task habituation.  
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Keywords: magnetoencephalography; MEG; motor; sensory; mu; beta; event-related 

desynchronization; event-related synchronization 

 

INTRODUCTION 

Physical fatigue can be defined as a reversible decline in the force generating capacity of the 

neuromuscular system. During physical activity, fatigue arises not only from peripheral 

processes within the active skeletal muscle(s) but also from supraspinal mechanisms within the 

brain (Gandevia 2001). In fact, studies utilising transcranial magnetic stimulation (TMS) have 

demonstrated supraspinal fatigue (a component of central fatigue relating to a progressively 

suboptimal output from the motor cortex) can account for as much as 66% of the exhibited 

physical fatigue during a prolonged low-intensity muscle contraction (Smith et al. 2007), and as 

much as 30% during a 2-min maximal contraction (Taylor et al. 2006). Overall, fatigue has 

clear implications to physical performance, and is experienced as a chronic activity-limiting 

symptom that adversely affects the quality of life in many physical, neurological and psychiatric 

disorders. However, exactly how brain activity is modulated during physical fatigue is not well 

understood.  

Previous attempts at neuroimaging during physical fatigue have largely relied upon functional 

magnetic resonance imaging (fMRI). Here, an increase in sensorimotor neural activity is 

inferred from increases in the blood-oxygen-level dependent (BOLD) fMRI signal, which have 

been found to accompany fatigue onset during the performance of both maximal (Liu et al. 

2002; Steens et al. 2012) and submaximal isometric contractions (Liu et al. 2003; van Duinen et 

al. 2007; Benwell et al. 2007). However, the haemodynamically derived fMRI signal is both 

physiologically and temporally remote from the electrical activity that is of primary interest as 

the method of communication within the brain. Dendritic currents, synchronised across 

neuronal assemblies, manifests as local oscillations, which have been shown to play an 
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important role in co-ordinating brain function (Donner & Siegel 2011). This rhythmic 

oscillatory activity can be non-invasively assessed using electroencephalography (EEG) and 

magnetoencephalography (MEG), with the latter offering greater spatial resolution and 

sensitivity due, in part, to the fact that magnetic fields are not distorted by the biological tissues 

between the cortex and sensors (Cheyne 2013).  

In the sensorimotor system, motor action has been linked with robust changes in neural 

oscillations in the mu (~8-15 Hz) and beta (~15-30 Hz) bands. During the preparation and 

performance of unilateral movements, decreases in both mu and beta amplitude are observed, 

with the largest effect occurring local to the contralateral primary sensorimotor cortex (Jasper & 

Penfield 1949; Salmelin & Hari 1994; Pfurtscheller et al. 2003). These responses are known as 

the movement-related mu/beta decrease (MRMD/MRBD), or event-related desynchronisation. 

Following movement cessation, beta oscillations exhibit a period of elevated amplitude, known 

as the post-movement beta rebound (PMBR) (Pfurtscheller et al. 1996; Jurkiewicz et al. 2006). 

These responses have been measured widely, and recent work suggests that they may have great 

potential to inform important biomarkers for disease. For example, PMBR is greater in healthy 

controls than patients with schizophrenia, and the magnitude of PMBR in patients correlates 

with persistent symptoms of disease (Robson et al. 2016). In individuals with Parkinson’s 

disease, where movements are limited and poorly controlled, resting beta oscillations are 

increased and the relative magnitude of MRBD and PMBR are reduced in amplitude compared 

with healthy controls (Heinrichs-Graham et al. 2014; Pollok et al. 2012). Additionally, these 

responses may have further clinical utility by informing brain computer interfaces (Pfurtscheller 

& Solis-Escalante 2009).  

Despite their robust nature and high potential value these movement-related oscillatory 

responses remain poorly understood, and whether they are modulated by physical fatigue is 

largely unknown. Knowledge of the interactions between sensorimotor oscillatory activity and 

physical fatigue may help to inform our understanding of the nature of fatigue. Moreover, these 
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interactions may have important implications for researchers who measure and interpret these 

oscillatory responses in a wider context.  

One preliminary study measured sensorimotor oscillations during submaximal contractions 

performed in a state of physical fatigue and reported an elimination of MRBD (Tecchio et al. 

2006).  This might indicate a strong influence of fatigue on the typically robust movement-

related oscillatory dynamics described above, importantly however, no control session was 

conducted making it impossible to isolate fatigue from time/habituation effects. Therefore, the 

purpose of the current study was to determine the influence of physical fatigue on movement-

related oscillatory dynamics within the sensorimotor cortex, using a crossover (fatigue and 

control) design to isolate the effects of fatigue. Our previous work (Fry et al. 2016) has shown 

MRBD magnitude to be independent of changes in contraction kinetics, while PMBR was 

augmented following greater sensorimotor activity. By extension, we hypothesise that MRMD 

and MRBD will be unaffected by the development of physical fatigue, whereas the PMBR 

following submaximal contractions may be increased. 

 

MATERIALS AND METHODS 

Participants 

Fourteen healthy adults with no known history of neurological or musculoskeletal disorders 

volunteered their participation. Three participants found the fatigue protocol (described below) 

particularly challenging, such that they were unable to maintain the post-intervention test 

contractions for the prescribed time, and were omitted from subsequent analyses. This left a 

total of eleven participants (7 males, 2 left handed, age 27 ± 4 years [mean ± standard 

deviation]). The experimental procedures were approved by the Loughborough University 

Ethical Advisory Committee, and each participant provided written informed consent prior to 
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their involvement. All experimental measurements were carried out in the MEG facility at the 

Sir Peter Mansfield Imaging Centre, University of Nottingham, UK. 

 

Experimental protocol 

An overview of the experimental procedure is given in Fig. 1. Participants were seated upright 

in the MEG system with their right forearm and hand positioned in a custom built isometric 

wrist-flexion dynamometer that was secured to the armrest of the MEG system (Fig. 1a,b). The 

dynamometer held the participant’s arm in a neutral position of pronation/supination, 

radial/ulnar deviation and wrist flexion/extension. Waist and right forearm straps were lightly 

applied to maintain a consistent posture, but without risk of restricting blood flow. Participants 

were instructed to exert wrist-flexion force against a cylindrical handle that was attached in 

series to a strain gauge. The handle was sewn onto a mitt that participants wore throughout the 

experimental sessions to ensure a consistent position of the handle relative to the hand (and 

therefore a constant lever length). Participants were also instructed to refrain from any 

movements other than the prescribed wrist-flexion (e.g. gripping). 

Participants were well familiarised with the motor tasks and MEG environment prior to their 

participation in two experimental sessions. A randomised crossover design was adopted with 

sessions completed approximately 7 days apart and at a consistent time of day. Participants 

were instructed to abstain from strenuous or atypical exercise for 36 hours prior to each 

experimental session, and to avoid the intake of nutritional stimulants (e.g. caffeine) within two 

hours of the session.  

Each experimental session started with a short warm up of submaximal isometric wrist-flexions. 

Participants then completed four maximal voluntary contractions, with 30 s rest between 

contractions, from which a baseline value of maximal voluntary force (MVFb) was established. 

Participants were instructed to exert a maximum effort of wrist-flexion force continuously for 3 
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s, with visual biofeedback and verbal encouragement provided. The peak force (200 ms epoch) 

during these contractions was used as the measure of MVFb from which all subsequent force 

outputs were prescribed. A 5-min rest was then provided before commencing the pre-

intervention test contractions. 

Pre- and post-intervention test contractions both involved an identical series of fourteen 

prescribed wrist-flexion contractions: two maximal voluntary contractions (MVFstart), ten 

contractions at 40%MVFb, and a further two maximal contractions (MVFend) (Fig. 1d). The 

40%MVFb contractions were 6 s duration, and performed every 30 s, in order to measure 

oscillatory activity with MEG both during (MRMD & MRBD) and post contraction (PMBR). 

These MEG recordings provided the primary outcome measures to test the neuronal responses 

before and after the fatigue/control interventions. Submaximal contractions were used so that 

participants were able to repeat the contractions enough times to collect a sufficient quantity of 

MEG data, and also to ensure that the same motor task (with respect to force output) could be 

replicated even during a state of physical fatigue. The maximal voluntary contractions were 

used to determine MVF at two time-points pre- and post-intervention, allowing monitoring of 

each participant’s fatigue throughout each experimental session. These maximal contractions 

were 3 s duration, and performed every 30 s. Participants had received prior instructions to 

perform a maximal effort of wrist-flexion for this entire duration.  

Both interventions comprised a series of 40 contractions; each of 12 s duration, performed every 

30 s, and at a constant-force of either 5%MVFb (control intervention) or 55%MVFb (fatigue 

intervention). An additional 90 s of rest was provided both before and after the intervention. 

The fatigue intervention was designed to induce physical fatigue, whereas the control 

intervention was designed to involve the same number and duration of contractions as the 

fatigue intervention, but without posing a physical challenge. As fatigue developed during the 

fatigue intervention, participants attempted to maintain the 55%MVFb force output for as much 

of the 12 s as they could, and maintained a maximal effort of force output thereafter. The 
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specific force level for the fatigue intervention (55%MVFb) was selected following 

comprehensive pilot testing, which found this protocol to be practicable for most participants, 

while also being fatiguing to all those who attempted it. 

Force prescription and feedback was facilitated by participants viewing a visual display 

throughout the experimental procedures. They were presented with a temporal profile of target 

force output prior to each of the prescribed contractions and attempted to match their 

contraction force to the target profiles as closely as possible. Real-time (measured) contraction 

force was overlaid on the target profile and this provided feedback (see Fig. 1c). The target 

force profile for each contraction included a preparatory period of 2-8 s at 0%MVFb (time 

dependent on forthcoming contraction duration), a linear ramp of 1 s duration, and a constant-

force (plateau) phase at the prescribed force output (times detailed above). Each profile 

disappeared to leave a blank screen immediately following each contraction (constant-force 

phase). Participants received prior instructions to cease the contraction as soon as the target 

force profile had disappeared from the screen.  

 

Data Collection 

MEG data were collected during the 40%MVFb test contractions and intervening rest periods. 

MEG data were sampled at 600 Hz using a 275 channel CTF MEG system (MISL, Coquitlam, 

Canada) operating in third order synthetic gradiometer configuration. Three localisation coils 

were attached to the head as fiducial markers (nasion, left preauricular and right preauricular) 

prior to the recording. Energising these coils throughout data acquisition enabled continuous 

localisation of the fiducial markers relative to the MEG sensor geometry. This also allowed us 

to monitor if the participants’ head position had shifted during the intervention, and to make 

readjustments prior to the post-intervention test contractions. In order to coregister individual 

brain anatomy to the MEG sensor array, each participant's head shape was digitised (Polhemus 
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IsoTrack, Colchester, VT, USA) relative to the fiducial markers prior to the MEG recording. 

Separately, volumetric anatomical MR images were acquired for each participant using a 3 T 

MR system (Phillips Achieva, Best, Netherlands) running an MPRAGE sequence (1-mm
3
 

resolution). Each participant’s head surface was extracted from the MR image and coregistered 

(via surface matching) to their digitised head shape. This allowed complete coregistration of the 

MEG sensor array to the brain anatomy, facilitating subsequent forward and inverse 

calculations.  

Force data were measured using a calibrated S-beam strain gauge (0-500 N linear range; Force 

Logic, Swallowfield, UK) housed in the isometric wrist-flexion dynamometer. Force data were 

sampled at 2000 Hz by a PC running Spike 2 software (CED, Cambridge, UK), via an external 

A/D converter (Micro 1401, CED, Cambridge, UK). For each individual contraction, markers 

were inserted within the MEG and force recordings to time-synchronise the two data sources. 

 

Data Analyses 

Mean force output and steadiness (standard deviation of the contraction force within each 

40%MVFb contraction) were determined for each individual contraction. Averages of these 

mean and steadiness values were calculated first within each individual, and subsequently 

averaged across participants. The first and last 0.5 s of each contraction (constant-force phase) 

were excluded from all analyses to ensure force output was at the prescribed level throughout 

the analysed time-window (see Fig. 1e). 

Initially, MEG data were visually inspected in order to exclude common sources of interference, 

including the magnetomyogram, magnetooculogram and magnetocardiogram, which are easily 

identified from their well characterised MEG signatures. Following this pre-processing, MEG 

data were analysed using synthetic aperture magnetometry (SAM) (Vrba & Robinson 2001), a 

beamforming variant used to localise neural oscillatory amplitude changes. Firstly, pre- and 
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post-intervention measurements were concatenated so that source localisation produced a single 

location of interest (LOI) for each experimental session. This approach ensured the region of the 

cortex analysed was consistent pre- and post-intervention, and any observed changes in 

oscillatory amplitudes were due to the intervention and not an inconsistency in LOI. 

Subsequently, data were filtered to the mu (8-15 Hz) and beta (15-30 Hz) bands. These exact 

frequency bands were iteratively determined by generating time-frequency spectra and 

evaluating the banded oscillatory responses. Importantly, the 15 Hz boundary was chosen to 

optimally dissociate the mu and beta responses. Oscillatory amplitude was then contrasted 

between active and control time windows in order to delineate the spatial signatures of mu and 

beta amplitude changes. Individual LOIs were sought for the MRMD, MRBD and PMBR in 

order to construct beamformers that were optimal for quantifying each response, and because 

the peak location of these phenomena may differ significantly (Fry et al. 2016). To localise 

MRMD and MRBD an active window between 0.5 and 5.5 s of the 40%MVFb test contractions 

was used. To localise PMBR an active window commencing 0.25 s after contraction offset and 

lasting 5 s was used; where contraction offset was defined as the time at which contraction force 

fell below 2%MVFb when returning to rest (Fig. 1e). In all cases, the control window 

commenced 20 s after the prescribed contraction onset and lasted for 5 s. The forward model 

was based upon a multiple local sphere head model and the forward calculation by Sarvas 

(Sarvas 1987; Huang et al. 1999). Pseudo-t-statistical images (5-mm
3
 isotropic resolution) were 

generated showing regions of oscillatory amplitude exhibiting significant (P  0.05) change in 

the mu and beta bands. Spatial peaks occurring within sensorimotor regions were identified 

(where present) and used as LOIs for subsequent analysis.  

Following identification of LOIs using SAM, time frequency spectrograms were generated for 

each individual participant in order to measure oscillatory dynamics both pre- and post-

intervention, in both sessions. Here, another SAM beamformer was applied, this time with 

weighting parameters determined for each LOI using a covariance window spanning the 1-150 
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Hz frequency range, and a time window encompassing the ten 40%MVFb test contractions and 

their inter-contraction rest periods. The derived beamformer weights for each location were 

multiplied by the MEG data (filtered 1-150 Hz) to create a ‘virtual sensor’ time-series of the 

electrical activity at that LOI. Virtual sensor time-series were filtered into 31 overlapping 

frequency bands, and a Hilbert transform was used to generate the amplitude envelope of 

oscillations within each band. For each intervention (fatigue and control), these envelope time-

courses were then averaged across the ten 40%MVFb test contractions measured pre- and post-

intervention, separately. Averaged envelopes were baseline corrected by subtracting the 

baseline activity (average signal from 20-25 s window relative to contraction onset) from the 

whole 25-s trial, for each envelope separately. Baseline corrected envelopes in the overlapping 

frequency bands were then concatenated in the frequency dimension to generate a single time 

frequency spectrum (TFS) per participant, for each LOI identified. TFSs were subsequently 

averaged over all participants leaving a single TFS from the spatial maxima of the MRMD, 

MRBD and PMBR.  

To assess the effect of fatigue on oscillatory activity, mean values of MRMD, MRBD and 

PMBR were extracted from the TFS data for each participant. MRMD and MRBD were 

calculated as the integral of the amplitude of the signal in the 8-15/15-30 Hz frequency bands 

across the same active time windows as those used to identify LOIs (0.5-5.5 s relative to 

contraction onset), and were divided by the duration (5 s) of these windows. Thus, MRMD and 

MRBD represent the mean mu/beta amplitude decrease from baseline during the 40%MVFb test 

contractions. For PMBR, the total integral of the beta amplitude was calculated between 0-10 s 

following contraction offset, which allowed for this protracted response to reach baseline. These 

results were separately generated from the individual LOIs of each response in each participant. 

This analysis yielded a single value (absolute difference from baseline) of MRMD, MRBD and 

PMBR for each participant, both pre- and post-intervention in both the fatigue and control 

sessions (i.e. four values per participant). These values were then averaged across participants to 
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determine group means and standard deviations. In addition, MRMD, MRBD and PMBR were 

also calculated as percentage changes from baseline amplitude to investigate whether any 

changes in these oscillatory responses can be explained purely by changes in baseline activity.  

Individual responses were confirmed as local to the contralateral sensorimotor cortex in 

individual brain space following SAM beamforming, however, to characterise the group mean 

spatial location of MRMD, MRBD and PMBR, individual brain images were normalised to an 

anatomical standard (Montreal Neurological Institute (MNI) brain) using FLIRT in FSL. The 

MNI coordinates for each peak (MRMD, MRBD and PMBR) in each participant were then 

measured, before averaging across participants to create MNI co-ordinates of the group means. 

The most likely cortical locations of the mean coordinates were then determined using the 

Oxford-Harvard brain atlas. 

Two-way repeated measures ANOVAs were used to compare both force output and neural 

oscillations between experimental sessions (control vs. fatigue session) and across measurement 

time-points (e.g. pre- vs. post-intervention for neural oscillations, or 4 time-points [start and end 

of test contractions both pre- and post-intervention] for MVF). In the event of a significant 

session × time-point interaction effect, post-hoc paired t-tests/ one-way repeated measures 

ANOVAs (with Bonferroni corrections) were performed as appropriate to elucidate the cause of 

these effects. Effect sizes (Cohen’s dz [as per Lakens (2013)]) were also calculated using the 

delta scores (post – pre) for the control and fatigue sessions where a significant interaction 

effect was identified in the analyses of MRMD, MRBD and PMBR. Finally, a paired t-test was 

also used to compare the average contraction force between the first and last five repetitions of 

the fatigue intervention. A P-value below 0.05 was considered statistically significant. Data are 

expressed as group means ± standard error of the mean (SEM) unless otherwise stated. 
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RESULTS 

Force measurements 

Eleven participants were able to accurately perform the prescribed 40%MVFb test contractions 

throughout both experimental sessions (Table 1). Neither intervention had any influence on 

either the mean force output (ANOVA; session, time-point and session × time-point interaction 

effects: all P≥0.269) or the steadiness of force output (all P≥0.096) during the 40%MVFb 

contractions. Thus, the motor task during which oscillatory neuronal activity was assessed was 

kinetically equivalent before and after both interventions. 

Wrist-flexion MVFb was similar for the fatigue and control sessions (mean ± standard deviation: 

282.8 ± 82.6 N and 278.1 ± 74.4 N, respectively). During the fatigue intervention, maintaining 

55%MVFb for 12 s became supra-maximal for all participants. Overall, the mean force was 

23.0% lower in the last five contractions compared to the first five (of forty) (53.7 ± 0.5 vs. 41.3 

± 2.2%MVFb; t-test, P<0.001), demonstrating the occurrence of fatigue during this intervention. 

Conversely, the 5%MVFb contractions in the control intervention were performed without any 

difficulty or sensations of fatigue. 

The efficacy of the fatigue intervention was clearly demonstrated by the MVF measurements 

(ANOVA; session × time-point interaction effect: P<0.001; Fig. 2). Both MVFpost-start and 

MVFpost-end (see Fig. 1d) were markedly attenuated from their respective pre-intervention values 

(MVFpre-start and MVFpre-end) in the fatigue session (-29.5 ± 3.0% and -28.9 ± 2.4%, ANOVA: 

P<0.001 following Bonferroni correction) but not the control session (P≥0.511). Additionally, 

paired t-tests confirmed that MVF differed between the two experimental sessions in both post-

intervention measurements (P<0.001), but not pre-intervention (P≥0.531). No significant 

differences were observed between MVFstart and MVFend either pre- or post-intervention in 

either session (P≥0.063), indicating that the 40%MVFb test contractions did not have a 

significant fatiguing effect in themselves.  
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MEG measurements 

The primary results for the mu band analyses are shown in Fig. 3 A clear MRMD, local to the 

contralateral sensorimotor cortex, was observed in 9 of the 11 participants. Fig. 3a illustrates the 

locations of peak MRMD for these 9 participants, plotted in MNI space. Fig. 3b shows the 

magnitude of the baseline (resting) mu amplitude at the location of MRMD, averaged across 

participants, both pre- and post-intervention in both sessions. Statistical analysis revealed that 

resting mu amplitude was similar both pre- and post-intervention in both experimental sessions 

(ANOVA; session, time-point and session × time-point interaction effects: all P≥0.092; Fig. 3b). 

Fig. 3c shows the time-frequency spectrograms extracted from the locations of MRMD, and 

averaged across participants. In each TFS, blue represents a decrease in oscillatory amplitude 

with respect to baseline whereas yellow reflects an increase. A clear decrease in mu oscillations 

(the MRMD) occurring prior to and throughout the 40%MVFb contractions is seen in each TFS. 

Fig. 3d shows the average magnitude of MRMD. MRMD was similar throughout both 

experimental sessions (ANOVA; session, time-point and session × time-point interaction 

effects: all P≥0.325; Fig. 3d), suggesting that there was no consistent effect of physical fatigue 

on mu band oscillatory dynamics.  

The primary results for the beta band analyses are shown in Fig. 4 and 5. The layouts are 

equivalent to that of Fig. 3 (described above). A clear MRBD and PMBR, local to the 

contralateral sensorimotor cortex, was observed in 10 and 9 of the 11 participants, respectively. 

The locations of peak MRBD and PMBR for all participants are shown in Figs. 4a and 5a. 

Resting beta activity at the location of MRBD decreased between pre- and post-intervention 

(ANOVA, time-point effect: P=0.014; Fig. 4b), however these changes were similar in both 

sessions (session and session × time-point interaction effects: both P≥0.278). Resting beta 

amplitude at the location of PMBR also decreased following both interventions, and with no 

difference between experimental sessions (ANOVA, time-point effect: P=0.031; session and 

session × time-point interaction effects: both P≥0.138; Fig. 5b). As expected there was a 
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decrease in beta amplitude immediately prior to and throughout the 40%MVFb contractions, and 

a beta rebound following contraction offset was evident during both experimental sessions (Fig. 

4c and 5c). MRBD demonstrated a different response to the two interventions (ANOVA, 

session × time-point interaction: P=0.021; effect size: dz = 0.89; Fig. 4d); decreasing in 

magnitude from pre- to post-intervention in the control session (i.e. a smaller decrease in beta 

amplitude is seen post-control intervention; t-test: P=0.006), but not the fatigue session 

(P=0.470). Conversely, the magnitude of PMBR was affected by physical fatigue (ANOVA; 

session × time-point interaction: P=0.018; effect size: dz = 0.99; Fig. 5d); demonstrating an 

increase following the fatigue intervention (i.e. a larger PMBR post-fatigue intervention; t-test: 

P<0.001), but not the control intervention (P=0.623).  

The mean MNI coordinates of MRMD, MRBD and PMBR are displayed in Table 2, alongside 

the most likely cortical locations of these coordinates according to the Oxford-Harvard brain 

atlas. These results show the spatial peaks of MRMD and MRBD were located postcentrally, 

whereas PMBR arose precentrally. 

Overall, whether MRMD, MRBD and PMBR were expressed in absolute terms (presented 

above), or as a percentage change relative to resting (baseline) oscillatory amplitude, the effects 

of physical fatigue on these oscillatory responses were extremely similar. Relative MRBD 

showed a session × time-point interaction, with a substantial decrease after the control 

intervention and no change following the fatigue intervention (Table 3). This was despite the 

decrease in resting beta amplitude observed in both sessions. In addition, relative PMBR also 

demonstrated a tendency for a session × time-point interaction for relative PMBR, with a 

greater rebound observed post-fatigue but not post-control. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved. 

DISCUSSION 

Physical fatigue arises not only from peripheral processes within the muscles but also from 

supraspinal mechanisms within the cortex. However, exactly how electrophysiological brain 

activity is modulated during fatigue is not well understood. This study used MEG to provide a 

direct measure of neural activity during voluntary muscle contractions performed in a state of 

physical fatigue. The primary findings were that MRBD was maintained following the fatigue 

inducing intervention, in contrast a reduction in MRBD was found after the control intervention, 

and PMBR magnitude was found to increase following the fatigue but not the control 

intervention. MRMD was unchanged following either intervention.  

From the force recordings it was clear that the fatigue intervention induced substantial physical 

fatigue (~30% reduction in MVF) that endured throughout the post-intervention measurements; 

and was in clear contrast to the control session. Moreover, despite the exhibited fatigue, eleven 

of the fourteen initial participants were able to accurately perform all of the prescribed 

40%MVFb contractions, which were used to assess movement-related oscillatory dynamics. 

These contractions were kinetically equivalent (force and steadiness) before and after both 

interventions, demonstrating performance of a consistent task despite fatigue.  

The MRBD was consistent throughout the fatigue session, whereas an attenuation was observed 

following the control intervention. Our observation that MRBD was maintained following the 

fatigue intervention is in contrast to one previous study that reported an elimination of MRBD 

during submaximal contractions of the extensor communis digitorum performed after a 

prolonged maximal voluntary contraction of the same muscle (Tecchio et al. 2006). However, 

this study lacked both a control session and an objective measure of physical fatigue. In the 

current investigation, the presence of fatigue throughout the post-intervention measurements 

was clearly demonstrated by the ~30% decrease in MVF, which was not the case for the control 

session. Furthermore, these authors (Tecchio et al. 2006) found agonist electromyography 
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amplitude during the submaximal contractions to be unaffected by the intervention, in contrast 

to the widely documented increase in electromyography amplitude that occurs with fatigue 

(Bigland-Ritchie et al. 1986; Dorfman et al. 1990).  

In general, high amplitude beta oscillations are widely believed to reflect cortical inhibition 

(Cassim et al. 2001; Gaetz et al. 2011). For example, blocking reuptake of the inhibitory 

neurotransmitter gamma aminobutyric acid (GABA) via administration of Tiagabine increases 

both baseline beta amplitude and MRBD (Muthukumaraswamy et al. 2013). Administration of 

diazepam (a GABA-A receptor modulator) has also indicated MRBD to be a GABA-A 

mediated process (Hall et al. 2011). Thus, the MRBD likely reflects a removal of inhibition 

during movement planning and execution, enabling a greater flexibility for local encoding 

processes within cellular assemblies (Donner & Siegel 2011; Brookes et al. 2015).  

Furthermore, a task habituation effect of attenuated MRBD has been found to occur during the 

early phases of task repetition (Kranczioch et al. 2008; Studer et al. 2010; Pollok et al. 2014) 

and may be a neurophysiological marker of early cortical reorganisation with task habituation 

(Pollok et al. 2014). Therefore, the decrease in MRBD between pre- and post-intervention in the 

control session of the current study adds to the weight of evidence that task habituation 

attenuates MRBD and may reflect a reduction in the number of sensorimotor neural populations 

recruited to perform a given task following habituation (Mancini et al. 2009). The current study 

also extends previous work by showing that this habituation effect of attenuated MRBD was 

counteracted by the induction of physical fatigue. Fatigue is known to induce an extensive range 

of neurophysiological adaptations (see Gandevia 2001) including an increased corticospinal 

output to maintain a consistent force output, and also induces extensive group III and IV 

afferent feedback in response to metabolite accumulation (Taylor & Gandevia 2008). These 

adaptations may have meant that, from a cortical perspective at least, the task of performing the 

prescribed 40%MVFb contractions remained unfamiliarised (i.e. participants effectively 

remained non-habituated).   
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To the authors’ knowledge, this was the first study to investigate the effect of physical fatigue 

on PMBR. The results demonstrated that PMBR was augmented following the fatigue 

intervention but not the control intervention. The increase in beta amplitude following 

movement cessation is believed to reflect an active inhibition of the sensorimotor networks 

recruited during the preparation and execution phases of motor actions (Alegre et al. 2008; 

Solis-Escalante et al. 2012). Moreover, there is growing evidence to suggest that beta 

modulations, and PMBR in particular, are related to GABAergic inhibition. Specifically, the 

magnitude of PMBR has been shown to correlate with individuals’ GABA levels, measured 

using magnetic resonance spectroscopy (Gaetz et al. 2011). Although administration of a 

GABAA receptor modulator indicated PMBR was a non-GABAA mediated process (Hall et al. 

2011). Therefore, a greater PMBR during fatigue might reflect a stronger GABAB-driven 

inhibition of sensorimotor networks that were more highly activated/excited during contraction; 

potentially due to increases in corticospinal output or somatosensory processing (either directly 

or indirectly). For example, the magnitude of the PMBR may be positively related to the 

number of motor units recruited during voluntary contractions (Pfurtscheller et al. 1998; Fry et 

al. 2016), which is known to increase with the development of fatigue (Bigland-Ritchie et al. 

1986). Alternatively, Cassim et al. (2001) proposed that movement-related somatosensory 

processing may be fundamental to the engenderment of the PMBR, having observed a PMBR to 

be present following passive finger movements but not active movements performed under 

ischaemic deafferentation. Therefore, increased activity of fatigue sensitive afferents may also 

have contributed to the larger PMBR observed following the development of physical fatigue. 

That PMBR may be modulated by fatigue has wide implications for the measurement and 

interpretation of this response. Recent work has demonstrated that PMBR has the potential to be 

used as a biomarker for pathology, with examples including Parkinson’s disease (Pollok et al. 

2012; Heinrichs-Graham et al. 2014; Hall et al. 2014) and schizophrenia (Robson et al. 2016). 

Judicious design of study protocols is therefore essential to ensure the PMBR is not affected by 
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the experimental procedures, particularly when investigating disorders in which susceptibility to 

fatigue represents a common symptom.  

Resting beta amplitude at the locations of both MRBD and PMBR demonstrated similar 

decreases following both interventions. De Pauw et al. (2013) noted a decreased resting beta 

activity across the whole brain after a prolonged intensive cycling performance in the heat; 

designed to induce supraspinal fatigue. Additionally, Jagannath & Balasubramanian (2014) 

found widespread decreases in beta amplitude following a monotonous 60-min simulated 

driving task, which was designed to induce mental fatigue. In the present study, the decrease in 

resting beta amplitude following the interventions was not specific to the fatigue session; 

however, other fatigue modalities, such as mental fatigue arising from the prolonged periods of 

concentration and task repetition, might have contributed to this beta decrease. While this 

reduction in baseline beta activity may contributed to the observed changes in MRBD and 

PMBR, these changes cannot completely explain the attenuated MRBD following the control 

intervention and increased PMBR following the fatigue intervention (see Table 3). 

Fatigue had no effect on either resting mu amplitude or MRMD, which were both unchanged 

following both interventions. This indicated that mu activity within the sensorimotor cortex was 

not affected by either the induction of physical fatigue, or the prolonged period of task 

adherence involved in both experimental sessions.  

In conclusion, this study revealed two novel findings regarding the effects of physical fatigue on 

movement-related sensorimotor oscillatory dynamics. Firstly, physical fatigue offsets the 

attenuation in MRBD observed with repetition of a motor task in a non-fatiguing control 

session. Secondly, PMBR increased when submaximal contractions were performed in a state of 

physical fatigue; which supports an emerging theory that PMBR is sensitive to increases in 

corticospinal output and changes in sensory input, both of which would be expected to occur 

with physical fatigue.  
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Table 1. Actual wrist flexion force during the test contractions at a target force of 40%MVFb. 

‘Pre’/‘Post’: pre-/post-intervention. Steadiness: within participant standard deviation. Data are 

group means ± SEM (n=11). 

 

Control Session Fatigue Session 

Pre Post Pre Post 

Force (%MVFb) 40.00 ± 0.17 40.05 ± 0.15 39.87 ± 0.15 39.80 ± 0.18 

Steadiness (%MVFb) 0.95 ± 0.06 0.99 ± 0.08 1.01 ± 0.08 1.12 ± 0.10 

 

Table 2. Average MNI coordinates and the most likely cortical locations (according to the 

Oxford-Harvard brain atlas) of MRMD, MRBD and PMBR. Data are group means ± SEM 

(beta, n=10; mu and PMBR, n=9). 

 MNI coordinates 

Cortical Location 

 x y z 

MRMD -41.9±1.7 -30.6±2.0 54.0±1.4 postcentral gyrus 

MRBD -37.7±0.8 -24.2±1.8 53.7±1.3 postcentral gyrus 

PMBR -33.4±1.8 -21.8±2.1 58.1±1.8 precentral gyrus 
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Table 3. MRMD, MRBD and PMBR expressed as a percentage change relative to resting 

(baseline) amplitude. ‘Pre’/‘Post’: pre-/post-intervention.  

Relative Amplitude 

Loss/Increase  

(% resting amplitude) 

 

 Control Session  Fatigue Session 

Session × time-

point 

interaction 

(P value) 

Pre Post Pre Post 

MRMD -32.2 ± 1.4 -28.7 ± 1.2 -30.4 ± 1.7 -33.2 ± 1.7 0.215 

MRBD -41.1 ± 1.0 -31.9 ± 1.1 -34.9 ± 0.9 -36.4 ± 0.9 0.005 

PMBR  21.8 ± 2.0  23.4 ± 2.1  24.1 ± 2.4  36.3 ± 3.0 0.095 

 

Figure 1. Experiment overview: (a) A participant seated within the MEG scanner. (b) A forearm 

positioned within the isometric wrist-flexion dynamometer (white arrow denotes direction of 

isometric force application). (c) An example of a target force profile with the real-time visual 

feedback of the performed contraction force overlaid. (d) A schematic of the experimental 

protocol. The intervention involved 40 contractions at either 5%MVFb (control intervention) or 

55%MVFb (fatigue intervention; illustrated in the schematic). The same 14 test contractions 

were repeated pre- and post-intervention. (e) The data measurement periods (blue annotations) 

during and after the 40%MVFb test contractions. 

 

Figure 2. Maximum voluntary force (as an index of physical fatigue) at four time-points 

throughout the experimental sessions. ‡ = significant difference between sessions (P<0.001 

following Bonferroni corrections). Data are group means ± SEM (n=11). 
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Figure 3. (a) Locations of peak MRMD during the 40%MVFb test contractions for each 

individual participant (blue dots). (b) Absolute mu amplitude at location of peak MRMD during 

baseline period (20-25 s following contraction onset). (c) Time-frequency spectrograms 

extracted from locations of peak MRMD, showing task-related change from baseline oscillatory 

amplitude. (d) Average MRMD (1.5-6.5 s following contraction onset). Data are group means ± 

SEM (n=9). 

 

Figure 4. (a) Locations of peak MRBD during the 40%MVFb test contractions for each 

individual participant (blue dots). (b) Absolute beta amplitude at location of peak MRBD during 

baseline period (20-25 s following contraction onset). (c) Time-frequency spectrograms 

extracted from locations of peak MRBD, showing task-related change from baseline oscillatory 

amplitude. (d) Average MRBD (1.5-6.5 s following contraction onset). * = Significant session × 

time-point interaction (P<0.05). Data are group means ± SEM (n=10). 

 

Figure 5. (a) Locations of peak PMBR following the 40%MVFb test contractions for each 

individual participant (blue dots). (b) Absolute beta amplitude at location of peak PMBR during 

baseline period (20-25 s following contraction onset). (c) Time-frequency spectrograms 

extracted from locations of peak PMBR, showing task-related change from baseline oscillatory 

amplitude. (d) Total PMBR amplitude (0-10 s following contraction offset). * = Significant 

session × time-point interaction (P<0.05). Data are group means ± SEM (n=9). 
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