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Abstract 7 

Adsorption cooling and Organic Rankine Cycle (ORC) systems are promising technologies that can 8 
be used to exploit the abundant amount of low grade heat sources such as solar energy, geothermal 9 
energy and waste heat from industrial processes. In this study, a two bed adsorption cooling cycle has 10 
been integrated with an ORC to simultaneously generate cooling and power utilising AQSOA-ZO2 11 
(SAPO-34)/water and silica-gel/water as adsorption working pairs and R245fa, R365mfc and R141b 12 
as ORC working fluids. Four different scenarios of integrated adsorption-ORC system have been 13 
investigated, where in the first three scenarios, adsorption system is set up as a topping system, while 14 
ORC is set up as a bottoming system. The first one utilized the waste heat of adsorption to power the 15 
ORC system with no additional heat and named as Adsorption Heat Recovery Scenario (AHRS). In 16 
the second scenario the adsorption return heating fluid is used to power the ORC system (Return 17 
Adsorption Heating Fluid Scenario RAHFS). In the third scenario (Heat Exchanger Scenario HES), 18 
the cooling and heating sources leaving the adsorption system enter a heat exchanger, where 19 
additional heat can be added to the cooling fluid in order to power the ORC system. In the fourth 20 
scenario (Return ORC Heating Fluid Scenario RORCHFS), the ORC is considered to be as a topping 21 
system, while the adsorption system considered as bottoming system and the return ORC heating fluid 22 
can be used to power the adsorption cycle. Results show that when using AHRS, the integrated 23 
adsorption -ORC system can achieved system efficiency of 70% using silica-gel/water and R141b and 24 
60% using SAPO-34/water and R141b. In addition, the maximum Specific Power (SP) and Specific 25 
Cooling Power (SCP) can be achieved utilising SAPO-34 and R141b with values of 208 W/kgads and 26 
616 W/kgads respectively. This work highlights the potential of using integrated adsorption cooling 27 
system and ORC to generate cooling and power simultaneously. 28 

Keywords Adsorption, ORC, Cooling and power generation, AQSOA-Z02 (SAPO-34), Silica-gel 29 

 30 
Nomenclature 
Symbols ρ density kg/m3 

A adsorption potential, J/mole 𝜑𝜑 flag 
Ar area, m2     Subscript 
𝑐𝑐𝑝𝑝 specific heat capacity, J/kg.K ads,a adsorbent  
ko empirical constant in Eq. (6), 1/s ads adsorption 

   Ea activation energy, J/kg bed adsorbent bed 
   H enthalpy,  J/kg chill chilled water 
 Hfg evaporation latent heat J/kg des desorption 
M mass, kg  eff effective 
�̇�𝑚 mass flow rate, kg/s evap evaporator 
P pressure, Pa  f liquid 

Qst isosteric heat of adsorption, J/kg g gas 
R gas constant, J/kg.K i adsorption/desorption 
Rp adsorbent practice radius, m  in inlet 
U overall heat transfer coff., W/m2K j cooling / heating  source 
W power generated W o outlet 
SP      specific power generated W/kgads  ref refrigerant  

SCP specific cooling power W/kgads r ratio 
t time, s s saturation 
T temperature, K cond condenser 
x adsorption uptake, kg/kgads w water 

xeq equilibrium uptake, kg/kgads   
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1. Introduction 31 

As population has grown significantly during last century, millions of people who live in developing 32 

countries still lack to access to secure electricity grids and the problem becomes worse in hot 33 

countries where a large amount of power is needed for air conditioning. In addition, using 34 

conventional fossil fuels has a negative impact on the environment issue such as global warming and 35 

the climate change which pushed more research towards a real change in the energy policy [1]. 36 

Organic Rankine cycle (ORC) used in a range of applications, including industrial waste heat 37 

recovery [2], solar thermal [3], biomass power plants [4], and geothermal [5]. Table (1) demonstrates 38 

a number literature using ORC with a range of working fluids and heat source temperatures. 39 

Table 1: Organic Rankine cycle (ORC).  
Author Working fluid Evap. Temp. oC ORC type Results 
Le et al  
[6]              

R134a, R152a R32, 
R744, R1270, R290, 
R1234yf, R1234ze(E) 

150 Supercritical 
 (basic and 
regenerative) 

Max efficiency of 13.1% using 
R152a 

Pei et al 
[7]              

R-123 120 Regenerative Max efficiency of 8.6%, 9.2% 
higher than basic efficiency 

Mago et al  
[8]        

R113, R245ca, R123, 
and isobutane 

100-210 Regenerative Higher first and second 
efficiencies than basic efficiency  
and lower irreversibility  

Aljundi   
[9]               

12 refrigerants 50–140 Basic with heat 
exchanger 

Max efficiency of 13.36% using 
neo-Pentane  

Tchanche 
et al   
[10] 

20 refrigerants 60–100 Solar with heat 
storage 

R134a appears as the most 
suitable for small scale solar 
applications 

Roy et al  
[11]            

R12, HCFC-123, HFC-
134a, R717 

277 (heat 
source) 

non-
regenerative  

R-123 produces the maximum 
efficiencies and output with 
minimum irreversibility 

Absorption and adsorption cooling systems utilising low grade heat sources have the advantage of 40 

being environmentally friendly. A number of researchers investigated the absorption cooling 41 

technology experimentally [12] and numerically [13], while many researchers investigated means of 42 

improving the adsorption cooling technology including different adsorption system configurations 43 

[14][15][16], various working pairs [17][18] through modelling[19][20] and experimental work [21].  44 

However, ORC systems are capable to utilize a range of low grade heat sources and generate 45 

electricity, it shows relatively low efficiency compared to similar low grade heat utilization 46 

technologies like adsorption. In addition, air conditioning usually consumes a large amount of 47 
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electricity especially in hot countries, so it would be more practical to convert the low grade heat into 48 

cooling and electricity directly and simultaneously to enhance the overall system efficiency and 49 

reduce the energy conversion losses. Table (2) demonstrate a number of literature that use a range of 50 

technologies to generate cooling and power at the same time. 51 

Table 2: Technologies used for cooling and power generation. 
Absorption technology  
Author Working pair/fluid Source temp. oC System performance 
Vijayaraghavan, and 
Goswami                 [22] 

Ammonia/water 87-207 Cycle efficiency increased by 25%. 
 

Hasan et al              [23] Ammonia/water 57-197 Maximum second law efficiency of 65.8%  
Liu and Zhang         [24] Ammonia/water 450 18.2% reduction in energy consumption. 
Zheng et al              [25] Ammonia/water 350 Thermal and exergy efficiency of 24.2% and 

37.3%. 
Zhang and Lior       [26] Ammonia/water 450 Thermal and exergy efficiencies of 27.7%, 

and 55.7%. 
Adsorption technology 
Author Working pair/fluid Source temp. oC System performance 
Lu et al                     [27] 12 different salts 

/ammonia 
100-200 40%-60% increase in exergy efficiency 

compared with Goswami cycle. 
Jiang et al                [28] 5 different 

salts/ammonia 
100-400 Thermal efficiency of 15.8%, COP of 0.691 

and exergy efficiency of 82%. 
Wang et al              [29] PbCl2/ ammonia 

BaCl2/ ammonia 
CaCl2/ ammonia 

100-400 Exergy efficiency improved by 40-60%  

Bao et al                  [30] MnCl2/ammonia 150-210 0.57 COP and 62% exergy efficiency                 
Bao et al                  [31] CaCl2/ammonia 120-130 490 W of power and 5.4 oC of chilled water              
Jiang et al                [32] MnCl2-CaCl2-NH3 130 300 W of power and 2 kW of cooling and 

efficiency increases from 31.6% to 37.6%.  
Lu et al                     [33] 12 different 

salts/ammonia 
100-300 COP increased by 38%, electricity efficiency 

improved from 8% to 12% and second law 
efficiency reached 41%.  

AL-Mousawi et al   [34]  MIL101Cr/water 70-90 Cycle efficiency increased from 47% to 50% 
AL-Mousawi et al   [35] AQSOA-Z02/water 

MIL101Cr/water 
Aluminium- 
Fumarate/water 
silica-gel/water 

80-160 Small-scale radial inflow turbine of 82% 
efficiency was designed and modelled using 
SAPO-34 and total system efficiency of 69% 
can be achieved. 

AL-Mousawi et al   [36] AQSOA-Z02/water 
MIL101Cr/water 
silica-gel/water 

80-160 SP of 73 W/kgads, and SCP of 681 W/kgads 
using AQSOA-Z02 and maximum system 
efficiency of 67% can be achieved. 

Adsorption technology and ORC 
Author Working pair/fluid Source temp. oC System performance 
Jiang et al                [37] CaCl2/BaCl2  and  

R245fa  
< 100  Energy and exergy efficiencies were 10.1%-

13.1% and 18.5%-20.3  
Wang et al               [38]  silica-gel/water and 

R600  
78 -98 
 

1 kW of electricity and 6.3 kW of 
refrigeration from 15 kW of heat 

A number of researchers [22-26] have investigated the production of cooling and power using 52 

absorption technology, however this technology has a number of negatives like large size, and toxicity 53 
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of ammonia. Production of cooling and power using adsorption technology was investigated by a 54 

number of researchers [27-36], via incorporating an expander in such system, however, this 55 

configuration may have a limited amount of power generation due to the relatively low refrigerant 56 

mass flow rate passing through the expander (coming from the desorber) especially when small 57 

amount of adsorbent is used.  58 

Adsorption is an exothermic process and cooling source is needed during this process to 59 

sustain the cooling in the evaporator and during this process heat is rejected in the bed that 60 

undertaking the adsorption process. Heat recovery is one of the best proposed ways to benefit 61 

from the internal thermal energy of the adsorption cooling system itself, and improving the 62 

overall system's performance. In this point, researchers have put forward some effective 63 

means that promotes a useful use of the internal heat of the system. Wang et al. [39] 64 

experimentally studied the effect of passive heat recovery on the coefficient of performance 65 

and results show that the COPs of a two-bed chiller and a four-bed chiller have improved by 66 

as much as 38% and 25%, respectively, without any effect on their cooling capacities. Pan et 67 

al. [40] studied and compared the theoretical analysis of three heat recovery methods used in 68 

adsorption refrigeration system and results show that serial and passive heat recoveries (part 69 

type) are more optimal than circular heat recovery (complete type) when manufacture and 70 

cost are considered. Leong et al. [41] studied numerically the effect of using combined heat 71 

and mass recovery in adsorption cooling cycle and results show that the proposed cycle can 72 

increase the coefficient of performance (COP) of an adsorption cooling system by more than 73 

47% compared to the single bed system. However, all the previous work does not cover the 74 

use of rejected heat from adsorption process to power another cycle like Organic Rankine 75 

cycle, while, some researchers [37][38] used the heat source leaving the ORC system to 76 

power the adsorption system, but again nobody used the cooling source (with heat recovery) 77 

that leaving the adsorption as a heat source for an ORC system and not all the possible 78 
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scenarios of integrating the adsorption system with ORC to generate cooling and power 79 

simultaneously were investigated, so there is still a clear gap of using adsorption cycle as a 80 

topping system, while ORC as a bottoming system, where ORC can be totally or partially 81 

powered using the heat recovered from the adsorption system which helps to enhance the 82 

overall system efficiency.  83 

In this paper a two bed cooling adsorption system has been integrated with an ORC using four 84 

different scenarios to investigate the feasibility of generating cooling and power simultaneously 85 

utilising low grade heat sources. The system comprises of two adsorption beds, two condensers and 86 

two evaporators and an expander (turbine) using AQSOA-Z02 (SAPO-34)/water and silica-gel/water 87 

as adsorption pairs and R245fa, R365mfc and R141b as ORC working fluids.  88 

1. Integrated ORC-adsorption system 89 

Figure (1a) shows  a schematic diagram of a basic two-bed adsorption cooling system which consists 90 

of  desorber, adsorber, condenser and evaporator As the adsorption is an exothermic process a cooling 91 

source is used to extract heat from the adsorber and sustain cooling through adsorption process which 92 

helps to desorb the refrigerant from the evaporator and generate the cooling effect. Desorption is an 93 

endothermic process, and a heat source (low grade heat source) is used to sustain heating during this 94 

process which helps to discharge the refrigerant (water vapour) from the hot bed. Then, the hot 95 

refrigerant will be cooled in the condenser to feed the evaporator with the refrigerant liquid and keep 96 

continuous cooling through the system. Figure (1b) shows the adsorption basic cycle on a P-T 97 

diagram; process 1-2 is an adsorbent isosteric heating where a low grade heat source is used and this 98 

heating is still continuous during the process 2-3’ while the valve 4 is opened, meanwhile a cold 99 

source is used during the process 3’-4’ and this cooling is still continuous during the process 4’-1 100 

while the valve 2 is opened. 101 
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 102 

 103 
Figure 1: shows a basic two-bed adsorption cooling (a) schematic diagram (b) P-T diagram. 104 
 105 

The basic Organic Rankine cycle (ORC) as shown in Figure (2) can be powered by a low grade heat 106 

sources such as solar energy or waste heat and it has four main processes. During process 1-2 the 107 

refrigerant liquid will be pumped to the evaporator pressure, while through process 2-3 heat is added 108 

to the evaporator from an external source (low grade heat source). During, 3-4 the refrigerant expands 109 

through an expander (turbine) where the mechanical power can be produced and finally, through 4-1 110 

the refrigerant is cooled in the condenser. 111 

 112 

Figure 2: Basic ORC cycle (a) schematic diagram (b) P-h diagram. 113 
 114 
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The main purpose of this study is to investigate the feasibility of producing cooling and power 115 

simultaneously by modifying the two-bed adsorption system to be integrated with an ORC system and 116 

improve the heat utilization efficiency. This study can be carried out using four proposal scenarios as 117 

listed below. 118 

a) Adsorption Heat Recovery Scenario (AHRS): in this scenario, the two bed adsorption 119 

cooling system is powered using an external low grade heat source such as solar energy or 120 

geothermal energy to sustain the desorption process in the hot bed. While, during the 121 

adsorption process (in the cold bed) adsorption material needs to be cooled using an 122 

external cooling source to release the heat of adsorption and sustain the adsorption 123 

process and as a result it sustains the cooling effect in the evaporator which is one of the 124 

main outputs of the integrated system. In this scenario, the heat of adsorption can be 125 

recovered by the cooling source fluid and as the cooling source inlet temperature is 126 

relatively high (but still enough to cool the bed under adsorption process), the cooling 127 

source leaving the bed can be used to power an Organic Rankine cycle and generate 128 

electricity without using additional heat. Figure (3) shows the two bed adsorption system 129 

integrated with an ORC system to generate cooling and power simultaneously, where the 130 

adsorption cooling system is used as topping  system and the ORC is used as bottoming 131 

system and during this scenario all valves are closed except V6 and V7 as listed in table 132 

(3). 133 

b) Return Adsorption Heating Fluid Scenario (RAHFS): in this scenario, the cooling system 134 

is powered using an external low grade heat source such as solar energy or geothermal 135 

energy to sustain desorption process in the hot bed, while a cooling source is used to 136 

sustain the adsorption process. The adsorption cooling system is used as topping system 137 

and ORC is used as bottoming system and in this case ORC system is powered using the 138 

same low grade heat source line leaving the hot bed in the adsorption cooling system 139 

(topping system), so additional heat can consumed by the ORC system and more 140 

electricity is expected to be generated using this scenario and this is due to using 141 
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relatively high driving temperature to power the ORC system. Figure (3) shows the two 142 

bed adsorption system integrated with an ORC system to generate cooling and power 143 

simultaneously, where the ORC (bottoming system) is powered using the hot line (water 144 

or pressurized water depends on the heat source temperature) leaving the adsorption 145 

system (topping system) and during this scenario all valves are closed except V5 and V8 146 

as shown in table (3).   147 

c) Heat Exchanger Scenario (HES): in this scenario, the adsorption cooling system is 148 

powered by an external low grade heat source to drive the hot bed during desorption 149 

process, while a cooling source is used in the cold bed. This scenario is similar to AHRS, 150 

where again the cooling source line recovers the heat of adsorption from the cold bed 151 

during adsorption process. This recovered heat can be partially used to power an Organic 152 

Rankine cycle and generate electricity, where additional heat from the external heat 153 

source is added in this scenario (by using additional heat exchanger) to enhance the 154 

efficiency of the ORC system. Figure (3) shows that the hot line (water or pressurized 155 

water) and the cold line leaving the adsorption system enter a heat exchanger to add 156 

additional amount of heat from the hot line to the leaving cold line, so this heat (the 157 

recovered heat and the additional heat) is used to power the ORC system and in this 158 

scenario, all valves are open except V8 as shown in table (3). 159 

d) Return ORC Heating Fluid Scenario (RORCHFS): in this scenario, the ORC system is 160 

used as the topping system while the adsorption cooling system is used as the bottoming 161 

system and an external low grade heat source is used to power the ORC system. The 162 

heating fluid leaving the ORC system is used directly to power the two bed adsorption 163 

system and as results, the integrated system (of adsorption system and ORC system) can 164 

generate cooling and power at the same time. Figure (4) shows the integration of ORC 165 

and adsorption cooling system using this scenario.  166 

 167 
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             Table 3:  Scenarios AHRS, RAHFS and HES valves situation. 168 
Scenario V5 V6 V7 V8 V9 

AHRS C O O C C 
RAHFS O C C O C 

HES O O O C O 
 169 

 170 

Figure 3: Schematic diagram of an adsorption –ORC integrated system scenarios 1, 2 and 3. 171 

 172 

Figure 4: Schematic diagram of an adsorption –ORC integrated system scenarios 4. 173 

 174 
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 175 

2. Adsorbent materials properties 176 

In this study AQSOA-Z02 (SAPO-34) is used and compared to silica-gel and this material is 177 

considered to be an advanced (synthetic zeolite) with a unique adsorbent performance that has been 178 

developed by MITSUBISHI PLASTIC Company using inorganic material design technology. Figure 179 

(5a) shows scanning electron microscope SEM image of AQSOA-Z02 which has solid regular cubic 180 

or brick shape with a uniform particle and it has smaller particle size compared to silica-gel. Figure 181 

(5b) shows the AQSOA-Z02 structure where, it has pore size of 0.38 nm compared to the water 182 

molecule size of 0.3 nm.  183 

 184 

  Figure 5: (a) SEM image for AQSOA Z02, and (b)CHA structure for AQSOA Z02 [42]. 185 

Figure (6) shows the measured isotherms of AQSOA-Z02 (SAPO-34)/water (experimental data from 186 

a DVS analyser) at three temperatures (25 °C, 35 oC and 45 oC) and the corresponding curve fitting 187 

lines [36]. In this figure, the experimental data is fitted to the equation that developed by Sun and 188 

Chakraborty [43] (equation 1) and a good agreement is obtained between the experimental data 189 

(dotted lines) and the predicted data (continuous lines) at all temperatures (25 °C, 35 oC and 45 oC) 190 

with maximum deviation of about ±12%. The constants obtained from this fitting are listed in table 191 

(4), while the equation is given by: 192 

𝑥𝑥𝑒𝑒𝑒𝑒 = 𝑥𝑥𝑜𝑜 �
𝑘𝑘( 𝑝𝑝𝑝𝑝𝑠𝑠

)𝑛𝑛

1+(𝐾𝐾−1)( 𝑝𝑝𝑝𝑝𝑠𝑠
)𝑛𝑛
�                                                                                                                       (1)  193 

𝑘𝑘 = 𝛼𝛼𝛼𝛼𝑥𝑥𝛼𝛼 �𝑛𝑛(𝑄𝑄𝑠𝑠𝑠𝑠 − ℎ𝑓𝑓𝑓𝑓)/𝑅𝑅𝑇𝑇�                                                                                                           (2) 194 

a b
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Table 4: Constants used in Equations (1) and (2) [36]. 195 
Property Value Unit 

xo 0.285 kg/kgads 
𝜶𝜶 1032 - 
n 3.18 - 

Qst 3420 kJ/kg 

 196 

 197 

Figure 6: Isotherms fitting of experimental and predicted uptake of AQSOA Z02 (SPO-34)/water[36]. 198 

The modified Freundlich equation is used to present the adsorption isotherms of silica-gel/water 199 

[44][45][46] as: 200 

𝑥𝑥𝑒𝑒𝑒𝑒 = 𝐴𝐴(𝑇𝑇𝑠𝑠) � 𝑝𝑝
𝑝𝑝𝑠𝑠
�
𝐵𝐵(𝑇𝑇𝑠𝑠)

                                                                                                               (3) 201 

Where  202 

𝐴𝐴(𝑇𝑇𝑠𝑠) = 𝐴𝐴𝑜𝑜 + 𝐴𝐴1𝑇𝑇𝑠𝑠 + 𝐴𝐴2𝑇𝑇𝑠𝑠2 + 𝐴𝐴3𝑇𝑇𝑠𝑠3                                                                                      (4) 203 

𝐵𝐵(𝑇𝑇𝑠𝑠) = 𝐵𝐵𝑜𝑜 + 𝐵𝐵1𝑇𝑇𝑠𝑠 + 𝐵𝐵2𝑇𝑇𝑠𝑠2 + 𝐵𝐵3𝑇𝑇𝑠𝑠3                                                                                      (5) 204 

The constants of equations (4) and (5) are obtained from [46][47]. Adsorption and desorption is a time 205 

dependant process and are assumed to be controlled by macroscopic diffusion and the linear driving 206 

force (LDF) equation is used to define the adsorption/desorption rate as [44][45][48] 207 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

= 𝑘𝑘𝑜𝑜𝛼𝛼𝑥𝑥𝛼𝛼(−𝐸𝐸𝑎𝑎/𝑅𝑅𝑇𝑇)(𝑥𝑥𝑒𝑒𝑒𝑒 − 𝑥𝑥)                                                                                                          (6)    208 
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For AQSOA-Z02 (SAPO-34)/water, the kinetics constants of equation (6) are obtained from [49], 209 

while for silica-gel/water the values of kinetics constants used in equation (6) are : ko= 1.3183 E+05 210 

1/s and Ea= 42000 J/mole [44][45].  211 

3. Integrated system energy balance 212 

The lumped model technique is used to describe the energy balance equations in the two adsorbent                                                                                                                                                                    213 

beds used in this study, where the adsorbent, the refrigerant and the bed materials are assumed to be at 214 

the same temperature at all time of the cycle[48][50][51].   215 

�Mcpeff
bed� dT

bed

dt
+ �𝑀𝑀𝑎𝑎𝑥𝑥𝑖𝑖𝑏𝑏𝑒𝑒𝑑𝑑𝑐𝑐𝑝𝑝�

𝑑𝑑𝑇𝑇𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑑𝑑𝑠𝑠
= 𝜑𝜑𝑀𝑀𝑎𝑎 �

𝑑𝑑𝑑𝑑𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑑𝑑𝑠𝑠
� (𝑄𝑄𝑠𝑠𝑠𝑠) − ��̇�𝑚𝑐𝑐𝑝𝑝�𝑗𝑗�𝑇𝑇𝑗𝑗,𝑜𝑜 − 𝑇𝑇𝑗𝑗,𝑖𝑖𝑖𝑖�                          (7)                      216 

Flag 𝜑𝜑 equals to 0 at switching time and equals to 1 at adsorption/desorption process. The first term 217 

on the left side of the equation (7) shows the internal energy change in heat exchanger material, 218 

including the fins and the tubes, while the second term represents the change in internal energy of the 219 

refrigerant (water). The first term on the right side of equation (7) represents the heat 220 

generated/rejected during the adsorption/desorption process respectively. The last term describes heat 221 

added/rejected to the coolant during the adsorption/desorption process and the bed outlet temperature 222 

is given by: [48][50]  223 

Tj,o = 𝑇𝑇𝑖𝑖𝑏𝑏𝑒𝑒𝑑𝑑 + �Tj,in − 𝑇𝑇𝑖𝑖𝑏𝑏𝑒𝑒𝑑𝑑�exp �−(𝑈𝑈𝐴𝐴𝑟𝑟)𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

(�̇�𝑚𝑐𝑐𝑝𝑝)𝑗𝑗
�                                                                                        (8)                                                                                     224 

The energy balance equations for the condenser can be expressed by [51][52] 225 

�Mcpeff
cond� dT

cond

dt
= φ𝐻𝐻𝑓𝑓𝑓𝑓Ma

dxdes
bed

dt
− (ṁcp)cond�Tw,o − Tw,i� − �cp�𝑤𝑤(𝑇𝑇𝑏𝑏𝑒𝑒𝑑𝑑−Tcond)Ma

dxdes
bed

dt
                      (9)        226 

The condenser outlet temperature is given by [51][52] 227 

Tw,o = Tcond + �Tw,in − Tcond�exp �−(U𝐴𝐴𝑟𝑟)cond

(ṁcp)cond
�                                                                              (10)                                                                         228 

The energy balance in the evaporator is expressed as [51][52]  229 
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�Mcpeff
evap� dT

evap

dt
= φHfgMa

dxads
bed

dt
− (ṁcp)evap�Tchill,o − Tchill,i� − (cp)w(Tcond − Tevap)Ma

dxdes
bed

dt
    (11)       230 

The outlet temperature of the chilled water can be written as [45][52][51]  231 

Tchill,o = Tevap + �Tchill,in − Tevap�exp �−(U𝐴𝐴𝑟𝑟)evap

(ṁcp)evap
�                                                                        (12)                                                                       232 

The mass balance of liquid refrigerant in the adsorption evaporator is given as [45][48][50][51]  233 

dMref
dt

= −Ma �
dxdes

bed

dt
+ dxads

bed

dt
�                                                                                                               (13)      234 

Heat added to the ORC evaporator (𝑄𝑄𝑖𝑖𝑖𝑖) and heat rejected in the ORC condenser (𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠) can be 235 
written as [53][54][55] : 236 

𝑄𝑄𝑖𝑖𝑖𝑖 = �̇�𝑚𝑒𝑒,𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑝𝑝(𝑇𝑇𝑒𝑒,𝑖𝑖−𝑇𝑇𝑒𝑒,𝑜𝑜)                                                                                                                   (14) 237 

𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠 = �̇�𝑚𝑐𝑐,𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑝𝑝(𝑇𝑇𝑐𝑐,𝑖𝑖−𝑇𝑇𝑐𝑐,𝑜𝑜)                                                                                                                 (15) 238 

In equation (14), �̇�𝑚𝑒𝑒,𝑜𝑜𝑜𝑜𝑐𝑐  is the mass flow rate of heating fluid (water or pressurized water) passing 239 

through the ORC evaporator which equals to the bed cooling fluid (water) mass flow in AHRS and 240 

HES, the bed heating fluid mass flow in RAHFS and to the main heat source mass flow in 241 

RORCHFS. Te,i is the inlet temperature of ORC evaporator which equals to cooling fluid leaving the 242 

hot bed in AHRS, the heating fluid leaving the hot bed in RAHFS, the cooling fluid leaving the cold 243 

bed and the heat exchanger in HES and the main heat source temperature in RORCHFS, while Te,o is 244 

temperature of the fluid leaving the ORC evaporator. In equation (15), �̇�𝑚𝑐𝑐,𝑜𝑜𝑜𝑜𝑐𝑐 is the mass flow rate of 245 

the cooling fluid (water) using to cool the ORC condenser which is constant during this study as 246 

shown in table (5), while Tc,i and Tc,o are the inlet and the outlet cooling fluid temperatures of the ORC 247 

condenser and as shown in figures (2-4) the isentropic efficiency of the ORC turbine can be given by:  248 

ɳ𝑇𝑇 = ℎ3−ℎ4
ℎ3−ℎ4𝑠𝑠

                                                                                                                                         (16) 249 

The power generated by the ORC turbine can be calculated as: 250 

 𝑊𝑊𝑠𝑠𝑜𝑜𝑜𝑜𝑏𝑏𝑖𝑖𝑖𝑖𝑒𝑒 = ɳ𝑠𝑠𝑜𝑜𝑜𝑜𝑏𝑏𝑖𝑖𝑖𝑖𝑒𝑒�̇�𝑚𝑂𝑂𝑂𝑂𝑂𝑂(ℎ3 − ℎ4)                                                                                                 (17)             251 

The ORC cycle thermal efficiency can be calculated as: 252 
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ɳ𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑊𝑊𝑡𝑡𝑡𝑡𝑟𝑟𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏−𝑊𝑊𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝

𝑄𝑄𝑖𝑖𝑛𝑛
                                                                                                                       (18)                                                                                         253 

The power consumed in pump can be calculated as:                                                                                                             254 

𝑊𝑊𝑝𝑝𝑜𝑜𝑚𝑚𝑝𝑝 = �̇�𝑚𝑂𝑂𝑂𝑂𝑂𝑂(𝑃𝑃2−𝑃𝑃1)
𝜌𝜌1ɳ𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝

                                                                                                                         (19)                                                                                                                                                                                                  255 

The overall performance of the integrated system is evaluated using the specific cooling power (SCP), 256 

specific generated power (SP), the cooling coefficient of performance (COP) and overall system 257 

efficiency as expressed in equations (20-23). 258 

𝑆𝑆𝑆𝑆𝑆𝑆 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑑𝑑𝑠𝑠

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0
𝑀𝑀𝑎𝑎𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏

                                                                                              (20) 259 

𝑆𝑆𝑆𝑆 =
∫ �̇�𝑚𝑂𝑂𝑂𝑂𝑂𝑂(h3−h4)dt
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0

𝑀𝑀𝑎𝑎𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
                                                                                                                   (21) 260 

𝑆𝑆𝐶𝐶𝑆𝑆 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑑𝑑𝑠𝑠

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0

(ṁcp)h ∫ �Th,o−Th,i�𝑑𝑑𝑠𝑠
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0

                                                                                              (22) 261 

  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑚𝑚 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝛼𝛼𝑛𝑛𝑐𝑐𝑠𝑠 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑑𝑑𝑠𝑠

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0 +∫ �̇�𝑚𝑂𝑂𝑂𝑂𝑂𝑂(h3−h4)dt

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0

(ṁcp)h ∫ �Th,o−Th,i�𝑑𝑑𝑠𝑠
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
0

                                (23)  262 

4. System modelling 263 

MATLAB Simulink software is used to simulate the integration a two bed adsorption system 264 

with an ORC system to study the feasibility of generating cooling and electricity 265 

simultaneously. The main components of the adsorption system such as beds, condenser and 266 

evaporator in addition to the ORC system are presented in a flow chart as shown in figure (7) 267 

to highlight the main steps used to solve the system equations (1-23). 268 
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 269 

Figure 7: System modelling flow chart. 270 
 271 

5. Results and discussion 272 

Table (5) shows the main operating conditions where the same conditions were applied for all 273 

scenarios except the cold bed temperature (48 oC for AHRS and HES) and the ORC condenser 274 

temperature (25 oC for AHRS and HES), while table (6) shows the characteristics of main 275 

components used in this study. Figure (8) shows the output of the adsorption-ORC integration system 276 

for cooling and power using AQSOA-Z02 (SAPO-34)/water as a working fluid and utilising heat 277 

source temperatures of 95 oC. The cycle can produce average cooling and power of up to 2.73 kW 278 

(using RAHFS) and 1.17 kW (using RORCHFS and R141b) respectively. Figure (9) compares the 279 

COP of adsorption cooling system and the efficiencies of ORC system and integrated adsorption-ORC 280 

system for the four proposed scenarios using a range of heat source temperatures utilising silica-281 

gel/water as adsorption pair and R245fa, R365mfc and R141b as ORC fluids. Results show that, 282 

AHRS has the maximum integrated system efficiency of about 70% and this is because no 283 

additional heat is used in this scenario and ORC is powered only by the heat recovered from 284 

Start

Inputs : simulation 
parameters  tables(5-6)

BED 2
Adsorption equilibrium equations (1-5); adsorption  

rate equation (6); bed energy balance equations (7-8)

BED 1
Adsorption equilibrium equations (1-5); adsorption  

rate equation (6); bed energy balance equations (7-8)

ORC
Energy balance equations 

(14-19)
Condenser 

Energy balance equations
(9-10)

Desorption?

Outputs
COP, Efficiency,  SCP, SP

equations (20-23)

End

Desorption?

Evaporator
Energy balance equations

(11-13)

YesYes

NoNo
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adsorption cycle. Also HES has relatively high overall efficiencies compared to RAHFS and 285 

RORCHFS because HES is similar to AHRS, with a limited amount of additional heat that 286 

used through the heat exchanger. Figure (10) presents similar data but, using AQSOA Z02 287 

(SAPO-34)/water as adsorption pair and again AHRS shows the highest integrated system 288 

efficiency of 60%,while HES has relatively high overall efficiencies compared to RAHFS 289 

and RORCHFS and this is for the same reason as for silica-gel/water. Figure (11) shows the 290 

SCP and SP of the integrated adsorption-ORC system for the four proposed scenarios 291 

utilising silica-gel/water and R245fa, R365mfc and R141b. Results show that, AHRS and 292 

HES show the lowest value of SCP due to using relatively high cooling source temperature 293 

and the lowest value of SP due to the relatively low pressure ratio through the ORC turbine 294 

caused by low temperature in the ORC evaporator. RAHFS shows the highest SCP of almost 295 

432 W/kgads using silica-gel because adsorption system is the topping system where more 296 

heat is applied to the adsorption beds. RORCHFS shows the highest SP of almost 169 297 

W/kgads using silica-gel and R141b with heat source temperature of 115 oC and this is due to 298 

ORC is topping system and more heat is added to the ORC evaporator in this scenario. Figure 299 

(12) presents similar data but, for AQSOA Z02(SAPO-34)/water and results show that 300 

RAHFS shows the highest SCP of almost 616 W/kgads and RORCHFS shows the maximum 301 

SP of 208 W/kgads using R141b and heat source temperature of 115 oC.  302 

The four different scenarios used in this investigation can offer a range of options not only to 303 

the designers of energy systems, but also to the energy consumers. For example, in hot 304 

countries, air conditioning and refrigeration are considered to be the largest portion of the 305 

total residential energy consumption, and the proposed integrated system can be used as 306 

localized units to generate cooling and electricity simultaneously especially in the remote or 307 

off-grid areas (areas which are not connected to the national or main electricity grid), also this 308 

helps to increase the overall utilization efficiency of the low grade heat sources. AHRS is 309 
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preferable when limited amount of low grade heat source is available because this scenario 310 

can generate cooling and electricity simultaneously with high efficiency. Even though, 311 

RAHFS and RORCHFS can generate cooling and power at the same time with relatively high 312 

SP and SCP, the efficiencies of those scenarios are low compared to the efficiencies of AHRS 313 

and HES. However, if the used low grade heat source is infinite or semi-infinite like solar 314 

energy (as in many hot countries around the world) those scenarios can be more preferable. In 315 

addition, in this study energy losses through turbine and pump are considered where the 316 

efficiencies of the turbine and the pump are assumed to be 85% and 65% respectively as 317 

listed in table (5), while the energy losses through heat exchangers, pipes, and valves are 318 

neglected, because they are expected to be thermally insulated. 319 

Table 5: Parameters used in the simulation. 320 
Parameter 
Bed heating fluid temperature oC 
Bed cooling fluid temperature oC 
Condenser cooling temperature oC 
Chilled water temperature oC 
Bed hot fluid mass flow rate kg/s 
Bed cold fluid mass flow rate kg/s 
Condenser mass flow rate kg/s 
Evaporator mass flow rate kg/s 
Half cycle time s 
Switching time s 
ORC condenser temperature oC 
ORC condenser mass flow kg/s   
ORC refrigerant mass flow kg/s 
Expander (turbine) efficiency % 
Pump efficiency %  

Value 
95-115 
48a/30  

30  
14  
1.7 
1.6 

0.75 
0.75  
320  
20 

25a/30 
    0.8 
   0.04 
    85 
    65 
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 321 
a: conditions used only in AHRS and HES 322 
Table 6: System characteristics [36][56]. 323 
(a) Bed heat exchanger characteristics 324 
Parameter  
Fin length m 
Fin width  m 
Fin pitch m 
Module length m 
No. of module 
No. tubes/module 
Tube OD  m 
Tube thickness m 

          Value 
172E-3 
30E-3 
1.2E-3 
450E-3 

4 
6 

15.875E-3 
0.8E-3 

(b) Adsorption condenser/evaporator characteristics 325 
Parameter  
Pipe length m 
No. tubes 
Tube OD  m 
Tube thickness m 

          Value 
5.5 
4 

15.875E-3 
0.8E-3 

(c) ORC condenser/evaporator characteristics 326 
Parameter  
Pipe length m 
No. tubes 
Tube OD  m 
Tube thickness m 

          Value 
5.5 
8 

15.875E-3 
0.8E-3 

 327 
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 330 

 331 

Figure 8: Cooling and power generating using SAPO-34/water with heat source temperature of 95 oC . 332 
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 336 

Figure 9: Effect of using the four scenarios on COP and system efficiencies utilising silica-gel/water. 337 
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 340 

 341 

Figure 10: Effect of using the four scenarios on COP and system efficiencies utilising SAPO-34/water. 342 
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 345 

Figure 11: Effect of using the four scenarios on the SCP and SP utilising silica-gel/water. 346 
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 349 

Figure 12: Effect of using the four scenarios on the SCP and SP utilising SAPO-34/water.      350 
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6. Conclusion 353 

A two-bed adsorption cooling system has been integrated with an Organic Rankine cycle (ORC) to 354 

generate cooling and electricity simultaneously using four different scenarios. In the first three 355 

scenarios, adsorption system is set up as a topping system, while ORC is set up as a bottoming 356 

system. The first scenario AHRS, the adsorption heat is recovered from the adsorption bed and used 357 

to power the ORC system, and in this case, no additional heat is applied. The second scenario 358 

RAHFS, the heating fluid leaving the adsorption system is used to power the ORC system. In the third 359 

scenario HES, a heat exchanged is used to add more heat from the heating source to the cooling line 360 

leaving the adsorption system to enhance the performance of the ORC. In the fourth scenario 361 

RORCHFS, the ORC system is set as a topping system, while the adsorption system is set as a 362 

bottoming system and the adsorption system is powered using the heating fluid leaving the ORC 363 

system.. AQSOA-ZO2 (SAPO-34)/water and silica-gel/water have been used as adsorption working 364 

pairs, while R245fa, R365mfc and R141b have been used as an ORC working fluids. The main results 365 

of this investigation can be surmised as: 366 

1. Integrating adsorption cooling system with ORC offers the advantage of generating cooling 367 

and power simultaneously and it can improve the overall system efficiency.  368 

2. The four proposed scenarios offer wide-range options for energy designers and customers to 369 

use localised cooling and power generation units that utilize low grade heat sources. 370 

3. AHRS achieved the maximum integrated system efficiency of 60% utilizing SAPO-34/water 371 

and R141b and 70% utilizing silica-gel/water and R141b.  372 

4. RAHFS and RORCHFS achieved the maximum COP of about 0.63 and 0.53 using silica gel 373 

and SAPO-34 respectively. 374 

5. Utilizing SAPO-34 and R141b in RORCHFS achieved the maximum specific power of 208 375 

W/kgads, while in RAHFS they achieved the maximum specific cooling power of 616 W/kgads.  376 

6. Using heat exchanger in HES can slightly increase the ORC efficiency and SP, but decrease 377 

the integrated system efficiency compared to AHRS because of using additional heat. 378 
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