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Abstract: A focus of the railway industry over the past decades has been to research, find and
develop methods to mitigate noise and vibration resulting from wheel/rail contact along track
infrastructure. This resulted in a wide range of abatement measures that are available for today’s
engineers. The suitability of each method must be analysed through budget and timeframe limitations,
which includes building, maintenance and inspection costs and time allocation, while also aiming at
delivering other benefits, such as environmental impact and durability of infrastructure. There are
several situations that need noise and vibration mitigation methods, but each design allocates
different priorities on a case-by-case basis. Traditionally, the disturbance caused by railways to the
community are generated by wheel/rail contact sound radiation that is expressed in different ways,
depending on the movement of the rolling stock and track alignment, such as rolling noise, impact
noise and curve noise. More specifically, in special trackworks such as turnouts (or called “switches
and crossings”), there are two types of noise that can often be observed: impact noise and screeching
noise. With respect to the screeching (or flanging), its mitigation methods are usually associated with
curve lubrications. In contrast, the impact noise emerges from the sound made by the rolling stock
moving through joints and discontinuities (i.e., gaps), resulting in various noise abatement features
to minimise such noise impact. Life cycle analysis is therefore vital for cost efficiency benchmarking
of the mitigation methods. The evaluation is based on available data from open literature and the
total costs were estimated from valid industry reports to maintain coherency. A 50-year period for
a life cycle analysis is chosen for this study. As for the general parameters, an area with a high
density of people is considered to estimate the values for a community with very strict limits for
noise and vibration.

Keywords: railway noise; vibration; screeching noise; flanging noise; impact noise; abatement;
mitigation; life cycle analysis

1. Introduction

In previous years, the railway industry has spent special attention towards urban issues with
respect to such environmental impacts as noises and vibration, wastes, air pollution along the rail
corridor, etc. It has developed various methods to mitigate noise and vibration resulting from
wheel/rail contact along track infrastructure. This has resulted in a wide range of abatement measures
that are available for the professionals of the industry today. Although there are many options in the
market, their practical implementations depend upon general and physical constraints that affect the
feasibility of most technological applications in the fields. The progression of these technologies have
enabled the choices of more adequate methods for each best case scenario, but further studies ought to
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be carried out in order to properly assess if each one is fit for their purposes and suitable for the local
environment. In practice, every solution must be analyzed through budget and timeframe limitations,
which includes construction, maintenance and inspection costs and time allocation, while also aiming
to meet other values, such as environmental impact, damage and wear to the whole infrastructure [1].

There are several cases and circumstances in a railway project design that requires noise and
vibration mitigation methods and each circumstance is given different priorities for consideration.
Traditionally, the audible disturbance caused by railways to the community are generated by wheel/rail
contact sound radiation that can be expressed in different ways, depending on the movement of the
rolling stock and track alignment, such as rolling noise, impact noise and curve noise. More specifically,
the emphasis of this study is placed on the special trackworks such as turnouts. There exist two types
of noise that should be evaluated at a railway turnout: impact noise and screeching noise (sometimes
called “flanging noise”). With respect to the flanging noise, its mitigation methods are associated with
curve lubrication technology in turnouts and crossings. The impact noise on the other hand emerges
from the source made by the rolling stock moving through joints and discontinuities (i.e., transferring
gaps) over the crossing zone of the turnout.

From the broad spectrum of methodologies to mitigate nuisance sounds, from rolling stock to
infrastructure measures already put in practice in the railway industry, some already stand out due to
this previous experience. For railway impact noises, jointless switches and swingnose crossings are
the most recommended. As for curve noises in these components, such as squeal and screeching, rail
friction modifiers, flange lubrication and wheel dampers happen to be the mostly commonly used.
Recent studies show that mitigation methods are more efficient if aimed to the noise source, i.e., the
wheel/rail contact interface mostly, rather than having specific infrastructure for it (see Table 1). Still,
special bogie design presents significant results in the general abatement of noise generation.

Table 1. Reduction of wheel maintenance due to lubrication [2].

Track/Vehicle Condition Wheel Life (in km) Wheel Life (in week) Annual Wheel Cost (in £)

No lubrication 170,000 20 1.6 millions
Rail lubrication 300,000 35 825,000

As nuisance sounds are considered environmental impacts, which can cause hearing damage
if their levels are high enough or disrupt daily activities and living conditions even if low, their
tolerance by the neighborhood and overall communities varies from site to site [3,4]. Engineers and
managers involved in the railway industry often receive noise complaints all around urban areas,
and, to avoid such, there are limits already established in order to give a standard level of comfort for
the stakeholders, independent of people’s complaints. In addition, having a manageable noise and
vibration abatement methodology indirectly impairs avoidance of other maintenance related problems
that are as critical as noise and vibration. In many countries, such as in Europe, noise mitigation action
is often required [5]. Thus, railway track maintenance and sound related mediation can be correlated
as two parts of the same condition, and fixing or repairing one can affect the other. The effects of
structural vibration can result in rapid track degradation, ballast pulverization and track settlements,
alongside ballast dilation at turnouts and crossings, which can, on the other hand, all deteriorate the
level of railway noises if not solved.

Therefore, to properly assess how to conduct assets’ life cycles involved in the objective of
this study and to develop a life cycle cost evaluation, a cross-cutting analysis ought to be made,
considering the measures and its effects on maintenance and railway operators’ finances. The aim of
this paper is to evaluate life cycle costs of noise mitigation methodologies currently in place for railway
turnout systems. Thus, this work will rely on a thorough study which starts from understanding the
facilities, i.e., the special trackworks involved, and its noise related problems, finishing with their
economic impacts based on a life cycle costing analysis with regards to extreme weather condition
investigations. The methods for noise and vibration control at railway turnouts (switches and crossings)
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are highlighted in this paper, and their effects on the maintenance cost of the whole special trackwork
components are evaluated. Moreover, the life cycle costs are presented through analysis against
industry reports and past study review, which allowed a cross-cutting economic analysis of the
methods for implementation, operation and maintenance.

2. Noise Problems at Railway Turnout Systems

2.1. Turnouts and Crossings

This study pays special attention to the special trackwork systems that are essential components
in railway infrastructure, since they provide flexibility to traffic operation. It is important to note
that switches and crossings, which, according to maintenance databases, stand for one of the major
causes of track failures and defects (which can potentially lead to train derailments), requiring high
maintenance costs [6]. Hence, this topic will describe its components and its effects on railway noise
generation sources, as well as its impacts on life cycle costs.

Turnouts are generally comprised of a switch panel and a crossing panel, connected by a closure
panel in between. As part of each of these panels, minor components are assembled for the entire
turnout system, and each of them can be seen in Figure 1. Because of its complexity, the interactions
between the wheel and the rail in these elements are the principal issue in the design and maintenance
of railway systems, and thus these are among the most sensitive parts of the railway systems. Over time,
the wheel/rail contact changes along the turnout, transferring the interaction from the stock rail to
the switch rail, and, finally, to the crossing nose through the closure rails. Due to the high level of
interaction and quantity of components, these special trackworks are involved in noise propagation
in railways [7]. Particularly, the type of noise involved in these elements are often the impact noises
generated from the crossing transfer zone and also the screeching noise, which will be further explained
in the next section of this paper.

Environments 2016, 3, 34 3 of 14 

 

through analysis against industry reports and past study review, which allowed a cross-cutting 

economic analysis of the methods for implementation, operation and maintenance. 

2. Noise Problems at Railway Turnout Systems 

2.1. Turnouts and Crossings 

This study pays special attention to the special trackwork systems that are essential components 

in railway infrastructure, since they provide flexibility to traffic operation. It is important to note that 

switches and crossings, which, according to maintenance databases, stand for one of the major 

causes of track failures and defects (which can potentially lead to train derailments), requiring high 

maintenance costs [6]. Hence, this topic will describe its components and its effects on railway noise 

generation sources, as well as its impacts on life cycle costs.  

Turnouts are generally comprised of a switch panel and a crossing panel, connected by a 

closure panel in between. As part of each of these panels, minor components are assembled for the 

entire turnout system, and each of them can be seen in Figure 1. Because of its complexity, the 

interactions between the wheel and the rail in these elements are the principal issue in the design 

and maintenance of railway systems, and thus these are among the most sensitive parts of the 

railway systems. Over time, the wheel/rail contact changes along the turnout, transferring the 

interaction from the stock rail to the switch rail, and, finally, to the crossing nose through the closure 

rails. Due to the high level of interaction and quantity of components, these special trackworks are 

involved in noise propagation in railways [7]. Particularly, the type of noise involved in these 

elements are often the impact noises generated from the crossing transfer zone and also the 

screeching noise, which will be further explained in the next section of this paper. 

 

Figure 1. Components of a turnout [5]. 

2.2. Noise Related Problems 

In railway systems, wheel/rail interaction is, in most cases, the primary source of noise and 

vibration. The ones generated by this interaction are generally categorized as squeal, impact or 

rolling noise [8]. Each of these has their particularities, which occur depending on different causes 

and produce different effects on railway tracks and other infrastructures. Squeals or screeching noise 

relates to the intense noise, occurring with one or more tones, generated when a vehicle travels 

around the curves of small radii [8]. When the rolling stock enters a curve, its wheels cannot keep 

their symmetrical, tangential direction since the axles are strict in the railway alignment and track 

geometry. Thus, the intense contact patch produces the squeal noise along the curve. The impact 

noise, on the other hand, is a term that describes the banging noise due to several situations, such as 

coupling and decoupling vehicles and marshalling yards, discontinuities in the rail or flat spots on 

the wheels. The sound generated is therefore due to a quick change in the dynamics of the wheel/rail 

interaction related to its vertical velocity, and this results in a large force at the interface that causes 

vibration and irradiate sound [9–14].  
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2.2. Noise Related Problems

In railway systems, wheel/rail interaction is, in most cases, the primary source of noise and
vibration. The ones generated by this interaction are generally categorized as squeal, impact or rolling
noise [8]. Each of these has their particularities, which occur depending on different causes and
produce different effects on railway tracks and other infrastructures. Squeals or screeching noise
relates to the intense noise, occurring with one or more tones, generated when a vehicle travels around
the curves of small radii [8]. When the rolling stock enters a curve, its wheels cannot keep their
symmetrical, tangential direction since the axles are strict in the railway alignment and track geometry.
Thus, the intense contact patch produces the squeal noise along the curve. The impact noise, on the
other hand, is a term that describes the banging noise due to several situations, such as coupling
and decoupling vehicles and marshalling yards, discontinuities in the rail or flat spots on the wheels.



Environments 2016, 3, 34 4 of 14

The sound generated is therefore due to a quick change in the dynamics of the wheel/rail interaction
related to its vertical velocity, and this results in a large force at the interface that causes vibration and
irradiate sound [9–14].

Finally, roar or rolling noise is one that is always present in railways since it derives from
a dynamic rolling effect due to basic friction between rail and wheel, and due to roughness on wheels
and rails.

In summary, to reduce each of these types of noises, some action plans have been recommended,
as noted by [8–14]:

Squeal noise

• Reduce lateral creep during curve negotiation;
• Alter friction-creep characteristics at wheel/rail interface;
• Minimize resonant wheel response;
• Block sound radiation;

Impact and rolling noise

• Minimize wheel tread and rail surface discontinuities and roughness;
• Prevent wheel tread discontinuities;
• Minimize wheel/rail response to surface irregularities;
• Block sound radiation.

3. Mitigation Methodologies

3.1. Mitigation Measures

The most general approach to noise and vibration control is reducing and limiting the generated
noise by targeting their principal cause (or at source). In special trackworks, as the wheel passes
through switches and its other components, it encounters gaps that provoke, as a majority, impact
noises, and also squeal (or screeching, in the case of turnouts and crossovers) due to the small curves
that compose these elements [15]. To prevent or mitigate this nuisance source, a plethora of methods is
available, which are listed below:

• Jointless switches;
• Resilient wheels;
• Noise barriers;
• Vehicle skirts;
• Rail grinding;
• Top of rail friction modifier—lubrication;
• Wheel damping;
• Welded rail.

The following sections will give a broader understanding of some of these methods that can then
be evaluated through a life cycle cost analysis in Section 5.

3.1.1. Resilient Wheels and Wheel Damping

Resilient wheels are an all-around mitigation measure that reduces most types of noise generation.
These kinds of wheels are structurally different than the regular ones by having the metal tire isolated
from the wheel hub by an elastomeric material (see Figure 2). Figure 3 shows examples of rail damping.
This not only reduces rolling and squeal noises by reducing the vibration of wheels, but also recent
studies on these types of wheel show that impact forces are lowered by up to 40% [7–9].
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Figure 3. Examples of rail damping systems [2].

Apart from this, even though wheel/rail damping is a specific measure for rolling noise, their
use showed promising results (see Table 2) for reducing impact and squeal noise. The principle of the
damping system is that it abates the vibration waves along the rail and hence reduces the noise emitted.

Table 2. Noise mitigation measures reduction values [2].

Treatment
Wayside Noise Reduction, dB(A)

Squeal Impact Roar (Rolling)

Resilient Wheels Reduces or eliminates 0 to 2 0 to 2

Damped Wheels Reduces or eliminates 0 to 6 0 to 6

Resilient Treaded Wheels Undetermined (thin-tread)
Eliminates (Nitinol-tread) 5 to 10 5 to 10

Wheel Truing 2 to 5 Eliminates flats 2 to 6

Rail Grinding 0 (Unpredictable) 1 to 3 (joints and welds) 2 to 9 Uncorrugated rail
8 to 15 Corrugated rail

Welded Rail 0 Eliminates joints 0

Rail joint maintenance 0 2 to 5 (joints) 0

Rail (or wheel) lubrication Reduces or eliminates 0 0

Resilient or damped rail Unpredictable 0 to 2 At grade
4 to 6 Steel elevated

0 to 2 At grade
4 to 6 Steel elevated

Resilient rail fasteners 0 3 to 6 Steel elevated 3 to 6 Steel elevated

Wayside barriers
(3–6.5 ft high) 5 to 15 5 to 15 5 to 15

Vehicle skirts 0 to 3 0 to 3 0 to 3

Composition (vs. cast iron)
tread brakes 0 Prevent small flats 5 to 7

Vehicle speed reduction Reduces likelihood of squeal 6 to 12 per halving of speed 6 to 12 per halving of speed
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3.1.2. Correction and Maintenance of Rail Profile

Another preferred option is maintaining and correcting the rail profile, being effective in the
frequency range up to 50 Hz, reaching reductions close to 10 dB. With this in mind, railway grinding
has been in use for several years now, with a broad range of specific purpose works such as grinding
of switches and crossings and removal of defects and specific sites harder to reach by other mitigation
methods. The process of grinding a rail produces a much more consistent profile, transversely and also
longitudinally, and can remove shallower depths of metal than most other measures, such as milling
and planning, which increases rail life as illustrated in Figure 4. Along with that, acoustic grinding
stands as a much better developed method for this target. For this reason, rail acoustic grinders are the
most used equipment for corrective maintenance of railways [2,3].
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Alongside that approach, the usage of a ballast mat is beneficial too when thinking about it as
a derivative approach of maintaining rail profile measures. Through this method, soil vibration levels
are reduced substantially by a scale of 2 to 5 dB in the range of 40 to 200 Hz frequencies. When used
in conjunction with other measures such as track resilience improvements, rail profile correction can
result in valid rail and soil vibration reduction by 7.5 for rail and 10 dB for soil [16,17].

3.1.3. Jointless Switches

More specifically, the gaps that are part of the turnouts can be described physically by its width,
the step height (vertical level difference on either side of the gap) and the dip angle, which is caused
by the rail edge that is pushed down by the wheel [16]. Further investigation already showed that the
noise is mostly increased by variations on the depth and the dip angle of the gaps and the velocity of
the train relates to the sound emitted by a single joint with a function of 20 log V, which means that
a train running speed (V) at 80 km/h is emitting about 6 dB more than one at 40 km/h [18]. Thus,
an efficient measure to mitigate the impact sound, alongside the ones already highlighted, is to develop
a better calculated design for these components of the special trackwork.

Furthermore, using joints that smooth the interaction of the wheel changing from one rail
to another has already been proven in order to reduce the impact to infrastructure, especially in
turnouts as shown in Figure 5. Hence, recent designs of special trackworks have adopted bonded
joints or insulated joints with bonds and bolts [8]. Finally, for rattling noises, jointless switches are
state-of-the-art nowadays, reducing the noise emission by 2–4 dB [9]. This is applied especially for
railways in which speeds over 40 km/h are expected to be achieved. In these cases, the turnout length
is designed to be much longer to allow higher velocity.
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3.1.4. Friction Modifiers

Since switches are also composed of small radius curves, which affect operating speeds and may
vary from 90 to 2000 m, the high pitch noises that occur in these elements have the same origin as the
ones in general curves. However, it is important to be clear which type of noise is more evident, as
there can be flanging noises or curve squeal noises over closure rails of a switch as both have different
solutions depending upon their intensity and economic feasibility. The wheel squeal noise is related
to a lateral stick-slip behavior between the wheel and the rail and generates a very high tonal noise
associated with wheel frequencies. As for the flanging noise, it can be described as a non-tonal that
sounds more like high level noises of the consonants “f” and “s”.

These types of noises can be resolved by applying friction modifiers or lubrication, although the
friction coefficient should not reach low values as it would provoke an adhesion problem for traction
and even braking, the last being very critical also in special trackworks. Therefore, friction modifiers
are designed to control friction rather than reducing it to zero, and are applied on top of the rail, as this
is the most critical part of the wheel/rail contact, and its use aids the reduction of wear and corrugation
in curves alongside reducing squeal noise and flanging noise, when applied at the wheel flange and
against the gauge corner of the rail or at the check rail. Table 1 shows the typical outcome.

As for practical feasibility, track mounted systems for gauge-face lubrication (see Figure 6) is
state-of-the-art machinery nowadays, composed of wiping bars, drains and water spraying. In this
procedure, the modifier is applied on the top of the head of the inner rail, and, in addition, when it
suits the track maintainer, between the wheel flange and gauge corner of the outer rail, as it aids to
reduce flanging noise [19]. Aside from this, vehicle mounted systems also exist (such as the jetting
method), but represent a very costly measure yet.
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Despite having many benefits from using friction modifiers in railways, precautions should be
made since there are a variety of defects that correlate to their poor usage: wheel flats and loss of
traction at curves due to grease on top of the rail, variation of properties of lubricants such as viscosity
and its effectiveness due to temperature and aging, increase in wear on the wheel and rails by using
water based lubricants that can also freeze or evaporate on harsh weather conditions, progressive
growth of rail squats due to incompressible fluid in crack tips, etc. [8]. Anyhow, the mitigation of
squeal and flanging noise in switches can help reduce the amount of sound emitted in this facilities by
5 to 20 dB [20].

Aside from this, even more important is the cost that this measure implies on the railway operation.
Having no use of lubrication along the life cycle of the track strongly affects the wheel life as can be
seen in the previous study [20]. Furthermore, the use of vehicle lubrication stands out as the most
efficient method for expanding wheel life in railway maintenance.

3.1.5. Other Methods

It is worth pointing out that an ideal geometry on turnouts, especially of the crossing nose, helps
to avoid loss of contact between the wheels and the rail at these elements, hence the effects of impact
forces generated due to the dipped-like trajectory are generally lower than is regular conditions of
degraded track or track geometry [16]. Furthermore, noise barriers are considered to help establish
noise control everywhere as they are low-investment infrastructure with a maximum height of 2 m
above rail head. In total, 280,000 km of the European network is fringed by these barriers, which
culminates in an annual cost of 70,000 euros per km for noise barriers with a total annual cost for
Europe of 20 billion euros, which is called the equivalent barrier cost [21].

There are two main alternatives for noise barriers. The normal ones are built at distances of about
4.5 m from the track axis, being as high as 4 m above the railhead. The second type, named low-close
barriers, are usually at 1.7 m from the axis and with heights reaching only 1 m.

A summary of most wheel/rail treatments for noise control, with their expected outcomes in
industry use over the three types of noises exposed here, can be seen at the end of this section.

3.2. Methodology

In order to properly access the most feasible options in practical and economic terms, a life cycle
costing (LCC) analysis will be followed based upon the different aspects of each method and their
impacts. Railways are already known as highly costly to construct and operate, but maintenance
also plays a very important part of its life cycle as it helps stretch the durability of its components.
Because of all of these aspects of railways, it is vital that maintenance walks alongside noise control
measures and each supports the other. Thus, secondary improvements and solutions such as noise
abatement measures do not work as threats to the economic viability of railways.

According to LCC theory, the decision of opting for one option over another should be made in
a way that results in the lowest total costs over the life span of a determinate process, which in this case
is the whole of the railway system [22]. Railways already operate with restricted budgets even without
having to consider noise control, so following an action plan that proves to be an efficient method
to calculate the total network costs of implementing such measures with different consequences is
obviously very important [23].

Maintenance of the wheel/rail interface has two fundamental aspects: the control of friction and
control of wheel and rail profile, which thankfully correlates with the approach for abating sound
emission as already seen in Section 4. Even though the stake holders would enjoy having a railway in
a perfect state, the key motivation for maintaining either rail and freight is economics. Thus, it is more
about how economically the railway operates than the state of it, although some levels were already
mentioned as being necessary to reach [24].

In recent studies [22–24], the life cycle cost analysis shows that the overall costs of noise control
measures at source are lower than the ones of noise barriers or façade insulation only. These barrier
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costs evaluated (pointed as the equivalent barrier cost) can be compared to the total annual cost of
track maintenance and renewal, which are 70 billion euros, as around 30% of this.

4. Results and Discussion

4.1. Assumptions

Based on industry reports, assumptions from the railway industry have been addressed.
The benefits acquired for each method can be seen below, as well as the cost assumptions for the whole
life cycle evaluation, in Table 3. The discount rate considered in all projections is of 5% over 50 years of
cash flows:

• Benefit for Track and Rail based Lubrication: £3500.00;
• Benefit for Resilient Wheels: £3000.00.

The values were assumed taking into account that routine maintenance is often undertaken to a
fixed cycle whose period is previously defined by rail operators and maintainers and determined by
terms of the passage of traffic.

Table 3. Cost assumptions (in £) for life cycle analysis regarding squeal and impact noise abatement
measures [25–30].

Mitigation Measure First Cost Control Case Replacement Climate Cost Control Case for
Climate Cost

Track Based Lubrication 20,000 4000 yearly 13 years 20,000 5000 4 times a year
Conventional Barriers 850,000 850,000 25 years Yes 850,000 850,000 15 years

Jointless Switches 450,000 450,000 25 years 10 years 450,000 450,000 8 years
Low-close Barriers 650,000 650,000 20 years Yes 650,000 650,000 10 years

Rail Damping 174,000 8000 yearly 13 years 174,000 11,000 4 times a year
Resilient Wheels 30,000 1000 yearly 30 years 30,000 1200 12 times a year

Vehicle Based Lubrication 30,000 2800 yearly 15 years 16,000 4000 4 times a year

4.2. Friction Modifiers

In order to compare more efficiently the viability of using lubricants in railways special trackworks,
the two categories of friction modifiers mentioned before were compared using the assumptions
exposed above (see Figure 7).
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Based on Figure 4, the outcome of this analysis exhibits that even though vehicle based lubricants
are considered a state-of-the-art method, with higher initial costs (£30,000 compared to £20,000),
the benefits of choosing this measure stand out by taking into consideration the long-term benefits.
The maintenance of this method is also cheaper, but the replacement period is wider.
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4.3. Noise Barriers

In this evaluation, two types of the same methodology were compared regarding their cost life
cycles. The low-close noise barriers are already a good alternative theoretically as they can be installed
nearer the track and in most locations with similar results to noise abatement of conventional ones (see
Figure 8).
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The results shown in Figure 9 reveal that the low close noise barriers are a better option across
a long period of analysis. The high investment costs for the conventional barriers block the viability of
using them for the entire extensions of track, but the conditions of which the properties of each type
works better should be considered. In twin tracks, low close barriers are not as effective, and the use of
conventional ones should be studied. Since special trackworks are complex systems, the feasibility of
having to opt to one over another might be a downside to this method.
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is substantial (see Figure 10). The final costs seen in Figure 9 show that this method, as it is applied by
a state-of-the-art technology, is the most expensive amongst the other ones, and, therefore, should be
analyzed as an alternative only when it is strictly necessary to properly abate the impact vibration due
to the special trackwork components.
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As a general perspective for noise generation and abatement in turnouts and crossings, the
methodologies that stand out as better solutions are friction modifiers in conjunction with resilient
wheels and rail damping systems. This combination will express a condition in which squeal noise is
nearly reduced to 0 and impact noise values will reduce by about 10 dB.

For the impact noise, the most expensive option is using jointless switches with proven full
reduction of impact noises or using damping and resilient wheels that can still reduce the noise on
a lower scale. Thus, the option depends on how critical the condition of the area is and the complaints
of the community and rail stakeholders.
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barriers, although this is also the most expensive one and therefore should only be used in areas
where they are strictly needed, while leaving the other evaluated parts of the track available for other
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