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Abstract Let �b be the Kohn Laplacian acting on (0, j)-forms on the unit sphere in Cn .
In a recent paper of Casarino, Cowling, Sikora and the author, a spectral multiplier theorem
of Mihlin–Hörmander type for �b is proved in the case 0 < j < n − 1. Here we prove an
analogous theorem in the exceptional cases j = 0 and j = n − 1, including a weak type
(1, 1) endpoint estimate. We also show that both theorems are sharp. The proof hinges on an
abstract multivariate multiplier theorem for systems of commuting operators.

Keywords Multivariable multiplier theorem · Spectral multiplier · Kohn Laplacian ·
Tangential Cauchy–Riemann complex

Mathematics Subject Classification Primary 42B15 · 43A85; Secondary 32V20

1 Introduction

Let (X, μ) be a measure space, E be a complex vector bundle over X with a hermitian metric,
and L be a (possibly unbounded) self-adjoint operator on the space L2(E) of L2-sections of
E . By the spectral theorem, we can write

L =
∫

R

λ dEL(λ) (1)
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for a projection-valued measure EL, called the spectral resolution ofL. A functional calculus
for L is then defined via spectral integration and, for all Borel functions F : R → C, the
operator

F(L) =
∫

R

F(λ) dEL(λ)

is bounded on L2(E) if and only if F is an EL-essentially bounded function.
Characterizing, or just giving nontrivial sufficient conditions for the L p-boundedness of

F(L) for some p �= 2 in terms of properties of the “spectral multiplier” F is a much harder
problem. This question has been particularly studied in the case L is the Laplace operator
on Rd , or some analogue thereof acting on sections of a vector bundle over a smooth d-
manifold. For the Laplacian L = −Δ on Rd , the classical Mihlin–Hörmander multiplier
theorem [36,53] tells us that F(L) is of weak type (1, 1) and L p-bounded for all p ∈ (1,∞)

whenever the multiplier F satisfies the scale-invariant local Sobolev condition

‖F‖Lq
s,sloc

:= sup
t≥0

‖F(t ·) χ‖Lq
s (R) < ∞, (2)

for q = 2 and some s > d/2; here Lq
s (R) is the Lq Sobolev space of (fractional) order s

and χ ∈ C∞
c ((0,∞)) is any nontrivial cutoff function (different choices of χ give rise to

equivalent local Sobolev norms). This result is sharp, i.e., the threshold d/2 on the order of
smoothness s required on the multiplier F cannot be lowered. Note that the above-defined
‖F‖Lq

s,sloc
majorizes |F(0)|, because the supremum in (2) includes t = 0; actually, the value

t = 0 may be dispensed with in the case of the Laplacian on Rd , where EL({0}) = 0, but
not in other cases discussed below.

Here we are concerned with the case where L = �b is the Kohn Laplacian acting on
sections of the bundle Λ0, jS of (0, j)-forms (0 ≤ j ≤ n − 1) associated to the tangential
Cauchy–Riemann complex on the unit sphere S in Cn , where n ≥ 2. The sphere S and
the conformally equivalent Heisenberg group have been long studied as models for more
general strictly pseudoconvex CR manifolds of hypersurface type [26,28,32]. The problem
of obtaining a spectralmultiplier theoremofMihlin–Hörmander type for�b has been recently
considered in [7], where the following result is proved.

Theorem 1.1 [7] Let �b be the Kohn Laplacian on (0, j)-forms on the unit sphere S in Cn,
where 0 < j < n − 1. For all bounded Borel functions F : R → C, if ‖F‖L2

s,sloc
< ∞ for

some s > (2n − 1)/2, then the operator F(�b) is of weak type (1, 1) and L p-bounded for
all p ∈ (1,∞), and moreover

‖F(�b)‖L1→L1,∞ ≤ C‖F‖L2
s,sloc

.

A key feature of this result is the threshold (2n − 1)/2 in the smoothness condition, i.e.,
half the topological dimension d = 2n − 1 of the sphere S. In fact, by means of quite
general theorems [10,19], it is fairly straightforward to prove the above result under the
stronger assumption that “‖F‖L∞

s,sloc
< ∞ for some s > Q/2”, where Q = 2n is the so-

called homogeneous dimension associated with the control distance for �b. The fact that
Q > d is connected with the lack of ellipticity of �b (cf. [24,27]) and the problem of
obtaining sharp multiplier theorems of Mihlin–Hörmander type for nonelliptic, subelliptic
operators is still widely open (see, e.g., [50]).Most of the analysis in [7] is devoted to proving a
“weighted Plancherel-type estimate” that allows weakening the assumption on themultiplier,
by replacing Q/2 with d/2 (and L∞

s with L2
s ).
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Joint functional calculi and a sharp multiplier theorem. . .

The cases j = 0 and j = n−1 are not treated in [7]. These cases are exceptional because
the orthogonal projection onto the kernel of �b (which is the Szegő projection in the case
j = 0) is not L1-bounded [43]. This constitutes a serious obstruction to the application of
the “standard machinery” of [10,19], on which [7] is based, and moreover puts some limits
on the results that can be expected. Indeed, when 0 < j < n − 1, the Bochner–Riesz means
(1 − t�b)

α+ of order α > (d − 1)/2 are L1-bounded for all t > 0 [7, Theorem 1.2]. The
analogous statement in the case j ∈ {0, n − 1} is simply false, independently of the order α.

An alternative approach to this problem is developed in [60], where a multiplier theorem
of Mihlin–Hörmander type for �b in the case j = 0 is proved for a fairly general class
of compact CR manifolds. However in [60] the more restrictive smoothness condition that
“‖F‖L2

s,sloc
< ∞ for some s > (Q + 1)/2” is required and the technique used seems not to

yield a weak type (1, 1) bound.
In contrast, the main result of this paper, which extends Theorem 1.1 to the missing cases

j = 0 and j = n−1, requires a smoothness condition s > d/2 on the multiplier and includes
the weak type (1, 1) endpoint.

Theorem 1.2 Let �b be the Kohn Laplacian on (0, j)-forms on the unit sphere S in Cn,
where j ∈ {0, n − 1}. For all bounded Borel functions F : R → C, if ‖F‖L2

s,sloc
< ∞ for

some s > (2n − 1)/2, then the operator F(�b) is of weak type (1, 1) and L p-bounded for
all p ∈ (1,∞), and moreover

‖F(�b)‖L1→L1,∞ ≤ C‖F‖L2
s,sloc

.

Note that this implies the weak type (1, 1) and L p-boundedness for p ∈ (1,∞) of the
Bochner–Riesz means (1− t�b)

α+ for all α > (d − 1)/2 and t > 0.
Our proof of Theorem 1.2 could be easily adapted to the case of Heisenberg groups,

equipped with the standard strictly pseudoconvex structure. In fact, the proof there would be
even simpler because of the translation-invariance and homogeneity of �b on Heisenberg
groups. However, there is no need to do this, in the sense that the result on the Heisenberg
group can be directly obtained from the corresponding result on the sphere by transplantation.

Corollary 1.3 Theorems 1.1 and 1.2 hold also when the sphere S is replaced by the (2n−1)-
dimensional Heisenberg group Hn−1.

The idea of transplanting estimates from complex spheres to Heisenberg groups has been
used several times in the literature (see, e.g., [6,14,15,57]). Here however we propose a dif-
ferent approach, along the lines of [42], which does not require any group or symmetric space
structure on the manifold, or group-invariance of the operator. This general transplantation
technique (Theorem 5.2) applies to arbitrary self-adjoint differential operators on a vector
bundle over a smooth manifold and allows transplanting weak type as well as strong type
bounds.

The same technique, combinedwith an argument of [50], yields the sharpness of the above
multiplier theorems. In fact, thanks to the analysis of [3], we can prove a more general result
for the Kohn Laplacian on any non-Levi-flat CR manifold of hypersurface type (see [3,5,16]
for definitions).

For a general nonnegative self-adjoint operator L on L2(E) as in (1), define the sharp
Mihlin–Hörmander threshold ς(L) as the infimum of the s ∈ (0,∞) such that

∃C ∈ (0,∞) : ∀F ∈ B : ‖F(L)‖L2→L2 + ‖F(L)‖L1→L1,∞ ≤ C ‖F‖L2
s,sloc

,
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where B is the set of bounded Borel functions F : R → C. Clearly

ς(L) ≥ ς−(L),

where ς−(L) is the infimum of the s ∈ (0,∞) such that

∀p ∈ (1,∞) : ∃C ∈ (0,∞) : ∀F ∈ B : ‖F(L)‖L p→L p ≤ C ‖F‖L∞
s,sloc

.

Note that Theorems 1.1 and 1.2 and Corollary 1.3 can be restated as follows:

ς(�b) ≤ (2n − 1)/2

for the Kohn Laplacian �b on a sphere or Heisenberg group of dimension 2n − 1.

Theorem 1.4 Let M be a non-Levi-flat CR manifold of hypersurface type and dimension
2n−1, with a compatible hermitian metric. Let �b be any self-adjoint extension of the Kohn
Laplacian on (0, j)-forms on M, where 0 ≤ j ≤ n − 1. Then

ς−(�b) ≥ (2n − 1)/2.

In particular, Theorems 1.1 and 1.2 and Corollary 1.3 are sharp.

Apart from sharpness and weak type endpoint, another reason of interest for Theorem 1.2
is the technique used in its proof. To prove that F(�b) is of weak type (1, 1), here we show
that F(�b) is a singular integral operator, satisfying the “averaged Hörmander condition” of
[18, Theorem 1] (see also [10, Theorem 3.3]):

sup
r>0

ess sup
y∈S

∫

�(x,y)≥r
|KF(�b)(I−Ar )(x, y)| dμ(x) < ∞, (3)

where μ is the standard hypersurface measure on S, � is the control distance for �b, KT

denotes the integral kernel of an operator T and {Ar }r>0 is some “approximate identity” (as
r ↓ 0) satisfying, among other things, the uniform bound

sup
r>0

‖Ar‖1→1 < ∞. (4)

In other works on spectral multipliers, this approximate identity is constructed as a function
of the operator L under consideration, such as the “heat propagator” Ar = exp(−r2L) (see,
e.g., [19]) or Ar = Φ(r

√
L) for a suitable Schwartz function Φ with Φ(0) = 1 (cf. [10]).

However such choices of Ar are forbidden in the case L = �b and j ∈ {0, n − 1}, because
the L1-unboundedness of the Szegő projection is incompatible with (4).

We are then led to looking for an approximate identity Ar outside the functional calculus
of �b, yet related to it, so as to be able to prove (3). Here comes a key observation: in the
case j = 0, the operator �b belongs to the joint functional calculus of two commuting
differential operators on S, namely, a sublaplacian L and a unit vector field T . Unlike �b,
the sublaplacian L does satisfy Gaussian-type heat kernel estimates, so Ar = exp(−r2L)

satisfies (4) (indeed a sharp multiplier theorem for the sublaplacian L was proved in [11]). In
fact,more is true: the T -derivatives of the heat kernel of L satisfyGaussian-type estimates too.
Based on these estimates, we can prove a spectral multiplier theorem of Mihlin–Hörmander
type for the joint functional calculus of L and iT , which in turn (in combination with the
weighted Plancherel-type estimates from [7]) allows us to derive (3) with Ar = exp(−r2L),
whenever ‖F‖L2

s,sloc
< ∞ for some s > d/2.

Spectral multiplier theorems for systems of commuting operators are not new in the lit-
erature. Actually, the classical Mihlin–Hörmander theorem for Fourier multipliers on Rd
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Joint functional calculi and a sharp multiplier theorem. . .

can be thought of as a spectral multiplier theorem for the joint functional calculus of the
partial derivatives on Rd . However, in settings other than Rd , most of the available results
(see, e.g., [8,17,30,54,55,64,66]) are of “Marcinkiewicz type”, i.e., they impose on the
multiplier function a condition that is invariant under multiparameter rescaling, and the cor-
respondingly obtained estimates appear not to be suitable to prove a weak type (1, 1) bound.
Exceptions to this are the results of [58] and [49, §4], where a one-parameter rescaling of the
multiplier is considered and weak type (1,1) estimates are obtained; however these results
are not directly applicable to the system (L , iT ) on the sphere, because [58] only applies
to a product setting, whereas [49, §4] applies to left-invariant homogeneous operators on a
homogeneous Lie group (this would be enough to deal with the Heisenberg group, but not the
sphere).

For this reason, in Sect. 6 we develop an abstract version of [49, §4] in the context
of doubling metric measure spaces, which includes the main result of [58] as a particular
case and may be of independent interest. When applied to a single operator L, the result
of Sect. 6 essentially reduces to the main result of [33], where only polynomial decay (of
arbitrarily high order) is required on the heat kernel of L, in place of the usual Gaussian-type
exponential decay. Because of the general character of the argument, we have tried to put
minimal assumptions on the system of commuting operators, in order to obtain a statement
that encompasses many different situations; we refer to Sect. 6 for an extensive discussion
and examples. The resulting multivariate spectral multiplier theorem of Mihlin–Hörmander
type (Theorem 6.1) is sufficiently strong to serve as a base for our sharp Theorem 1.2 and
we expect that other similar applications may be found in the future.

Some general remarks about notation are in order. The letterC and variants such asCp will
denote a finite positive quantity that may change from place to place. For any two nonnegative
quantities A, B, we also write A � B instead of A ≤ CB; moreover A ∼ B is the same as
“A � B and B � A”. We denote by 1U the characteristic function of a set U .

2 Unitary group action and joint spectral decomposition

This and the next two sections are devoted to the proof of Theorem 1.2. Indeed we need only
to discuss the case j = 0, i.e., the case of the Kohn Laplacian �b acting on (scalar-valued)
functions on the sphere. In fact, by means of Geller’s Hodge star operator ([32, p. 5]; see also
[7, Remark 4.6]), it is easily seen that the case j = n − 1 in Theorem 1.2 can be reduced to
the case j = 0.

The Kohn Laplacian �b on S is invariant under the action of the unitary group U(n). It is
therefore natural to exploit the representation theory of U(n) for the analysis of �b, as was
done in great detail in [26]. Here we just recall the main results that will be of use later.

As it is well-known (see, e.g., [11,26]), the decomposition into irreducible represen-
tations of the natural representation of U(n) on L2(S) is multiplicity-free and is given
by

L2(S) =
⊕
p,q≥0

Hpq ,

whereHpq is the space of (p, q)-bihomogeneous complex spherical harmonics (denoted by
Φpq0 in [26]). By Schur’s Lemma, all U(n)-equivariant operators R on L2(S) preserve this
decomposition and are scalar when restricted to eachHpq , i.e., R|Hpq = λR

pq idHpq for some

λR
pq ∈ C. In particular, all such operators commute.
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Let the sublaplacian L and the unit vector field T on S be defined as in [11] and set
U = −2(n − 1)iT . The operators �b, L and U are U(n)-equivariant, so they have a joint
spectral decomposition in terms of complex spherical harmonics.

Proposition 2.1 For all p, q ∈ N,

dimHpq = p + q + n − 1

n − 1

(
p + n − 2

n − 2

)(
q + n − 2

n − 2

)
(5)

λL
pq = 4pq + 2(n − 1)(p + q), (6)

λUpq = 2(n − 1)(p − q), (7)

λ�b
pq = 2q(p + n − 1). (8)

In particular
2�b = L −U, (9)

and moreover, for all p, q ∈ N,

λ�b
pq �= 0 ⇒ λ�b

pq ≤ λL
pq ≤ (n + 1)λ�b

pq . (10)

Proof (5) is in [11, Corollary 2.6], (6) and (7) are in [11, Section 4], while (8) is in [26,
Theorem 6]. From these expressions we immediately obtain (10) and

2λ�b
pq = λL

pq − λUpq ,

whence (9) follows. ��

3 Heat kernel estimates and a nonsharp multiplier theorem

Let μ be the standard hypersurface measure on S ⊆ Cn and � denote the control distance for
�b. We refer to [7, Section 3] for precise definitions and discussion of the main properties
of μ and �. Here we just recall that � is U(n)-invariant and

�(z, w) ∼ |1− 〈z, w〉|1/2, (11)

where 〈·, ·〉 denotes the standard Hermitian inner product on Cn . Moreover, if V (r) denotes
the μ-measure of any �-ball of radius r ∈ [0,∞), then

V (r) ∼ min{1, r Q}, (12)

where Q = 2n. In the language of Sect. 6, this tells us that (S, �, μ) is a doubling metric
measure space of homogeneous dimension Q and displacement parameter 0.

Let us introduce some weighted mixed Lebesgue norms defined on Borel functions K :
S× S → C, that will be repeatedly used: for all p ∈ [1,∞], r ∈ (0,∞), and β ∈ R,

|||K |||p,β,r = ess sup
y

V (r)1/p
′ ‖K (·, y) (1+ �(·, y)/r)β‖L p(S).

Here p′ denotes the conjugate exponent p/(p − 1) to p.
As already mentioned in the introduction, a key ingredient of our proof is the fact that the

heat kernel of L , together with its U -derivatives, satisfies Gaussian-type estimates.
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Proposition 3.1 There exists b > 0 such that, for all k ∈ N, there exists Ck > 0 such that,
for all t > 0 and x, y ∈ S,

|KUke−t L (x, y)| ≤ Ck t
−k V (t1/2)−1 exp(−b �(x, y)2/t).

Proof These estimates are well known, at least for for t ≤ 1 (see, e.g., [40, Theorem 3] or
[39, §4]). On the other hand, since S is compact and � is bounded, the estimates for t ≥ 1
follow from the uniform bound

|||KUke−t L |||∞,0,t1/2 ≤ Ck t
−k,

which in turn is easily proved by L2-spectral theory (cf. [11, p. 630] or [7, proof of Theorem
1.1]):

|||KUke−t L |||∞,0,t1/2 = V (t1/2) ‖Uke−t L‖1→∞
≤ V (t1/2) ‖Uke−t L/2‖2→∞ ‖e−t L/2‖1→2

and, for all h ∈ N,

‖Uhe−t L/2‖21→2 = ‖Uhe−t L/2‖22→∞
=

∑
p,q∈N

(λUpq)
2h e−tλL

pq dimHpq/μ(S)

≤ t−2h
∑
p,q∈N

(tλL
pq)

2h e−tλL
pq dimHpq/μ(S)

� t−2h
∑
�∈N

(t�2)2he−t�2�Q−1

� t−2h V (t1/2)−1

by Proposition 2.1, Eq. (12) and [11, eq. (21)]. ��
Thanks to the above bounds on the heat kernel of L and its U -derivative, we can apply

Theorem 6.1 to the system (L ,U ) and isotropic dilations εr (λ) = r2λ on R2 (cf. Example
6.4).

Corollary 3.2 For all β ≥ 0, all ε, R > 0, and all G : R2 → Cwith suppG ⊆ [−R2, R2]×
[−R2, R2],

|||KG(L ,U )|||2,β,R−1 ≤ Cβ,ε ‖G(R2 ·)‖L∞
β+ε (R

2).

Proof This is an instance of Theorem 6.1(ii) applied to the system (L ,U ). ��
From these estimates we can now derive a nonsharp spectral multiplier theorem for �b.

Define, for all t > 0, the operator At by

At = exp(−t2L).

Corollary 3.3 The following estimates hold.

(i) For all β ≥ 0, all ε, R, t > 0, and all F : R → C with supp F ⊆ [R/16, R],
|||KF(

√
�b) (1−At )

|||2,β,R−1 ≤ Cβ,ε ‖F(R ·)‖L∞
β+ε (R) min{1, (Rt)2}.
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(ii) For all β ≥ 0, all ε, R, r, t > 0, and all F : R → C with supp F ⊆ [R/16, R],

ess sup
y

∫

�(x,y)≥r
|KF(

√
�b) (1−At )

(x, y)| dμ(x)

≤ Cβ,ε ‖F(R ·)‖L∞
β+Q/2+ε (R) min{1, (Rt)2} (1+ Rr)−β .

(iii) For all ε > 0 and F : R → C,

‖F(
√

�b)‖L1→L1,∞ ≤ Cε ‖F‖L∞
Q/2+ε,sloc

.

Proof (i) Let

G(λ1, λ2) = F(
√

(λ1 − λ2)+/2) (1− exp(−t2λ1)) η((λ1 − λ2)/(2λ1)),

where η ∈ C∞
c ((0, 2)) and η = 1 on [1/(n+1), 1]. By (9) and (10), it is easily seen that

G(L ,U ) = F(
√

�b) (1− At )

and moreover, for all s ∈ [0,∞),

‖G(R2 ·)‖L∞
s (R2) ≤ Cs ‖F(R ·)‖L∞

s (R) min{1, (Rt)2},
hence (i) follows by Corollary 3.2.

(ii) This follows from (i), since

ess sup
y

∫

�(x,y)≥r
|KF(

√
�b) (1−At )

(x, y)| dμ(x)

≤ (1+ Rr)−β |||KF(
√

�b) (1−At )
|||1,β,R−1

and

|||KF(
√

�b) (1−At )
|||1,β,R−1 ≤ Cβ,ε |||KF(

√
�b) (1−At )

|||2,β+Q/2+ε/2,R−1

by Hölder’s inequality (44).
(iii) Suppose first that F(0) = 0. Note that, by Proposition 3.1, the operators At satisfy the

“Poisson-type bounds” of [18, eq. (2) and (3)]. A simple adaptation of the argument in
[19, Proof of Theorem 3.1] (see also the proof of Theorem 6.1(vi) below), exploiting (ii)
in place of [19, eq. (4.18)], shows that F(

√
�b) is of weak type (1, 1), with

‖F(
√

�b)‖L1→L1,∞ ≤ Cε ‖F‖L∞
Q/2+ε,sloc

.

In particular, if we take F = 1(0,∞), then we recover the weak type (1,1) of the Szegő
projection 1{0}(�b) = I − 1(0,∞)(�b) on the unit sphere [43].
For a general F , it is then sufficient to split

F(
√

�b) = F(0) 1{0}(�b) + (F1R\{0})(
√

�b)

and apply what we have just proved to the two summands. ��
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4 Sharpening the result

Here we show how the weighted Plancherel estimates proved in [7] can be used to sharpen
the multiplier theorem given by Corollary 3.3(iii) and obtain Theorem 1.2. As in [7, §5],
define the weight � : S× S → [0,∞) by

�(z, w) = |1− |〈z, w〉|2|1/2.

Here are some basic properties of � that will be of use.

Lemma 4.1 For all r > 0 and α, β ≥ 0 such that α + β > Q and α < 2n − 2, and for all
w ∈ S, ∫

S

(1+ �(z, w)/r)−β(1+ �(z, w)/r)−α dμ(z) ≤ Cα,βV (r). (13)

Moreover ∫

S

(1+ �(z, w)/r)−α dμ(z) ≤ Cα min{1, rα}. (14)

for all r > 0, all α ∈ [0, 2n − 2) and all w ∈ S, and

�(z, w) ≤ C�(z, w) (15)

for all z, w ∈ S.

Proof By U(n)-invariance of � and �, we may assume that w = (1, 0, . . . , 0). If z =
(z1, z2, . . . , zn) = (z1, z′), then

�(z, w) = |1− |z1|2|1/2 = |z′|

and

�(z, w) ∼ |1− z1|1/2 � |z′| + |�z1|1/2

(see [7, Proposition 3.1]). This gives (15) immediately, and (14) follows because

∫

S

�(z, w)−α dμ(z) < ∞

for α < 2n − 2.
As for (13), the case r ≥ 1 is trivial because S is compact, so we may assume that r ≤ 1.

Since β > Q−α = (2n− 2−α)+ 2 and 2n− 2−α > 0, we can decompose β = β1 + β2

so that β1 > 2n − 2− α and β2 > 2, hence
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∫

S

(1+ �(z, w)/r)−β(1+ �(z, w)/r)−α dμ(z)

≤ Cα,β

∫

S

(1+ (|z′| + |�z1|1/2)/r)−β(1+ |z′|/r)−α dμ(z)

≤ Cα,β

∫

S

(1+ |�z1|1/2/r)−β2(1+ |z′|/r)−α−β1 dμ(z)

≤ Cα,β

∫

R

(1+ |u|1/2/r)−β2 du
∫

R2n−2

(1+ |v|/r)−α−β1 dv

= Cα,β r
Q,

and we are done. ��

Let us introduce the following bi-weighted mixed Lebesgue norms defined on Borel
functions K : S× S → C: for all p ∈ [1,∞], r ∈ (0,∞), and α, β ∈ R,

|||K |||p,β,α,r = ess sup
y

V (r)1/p
′ ‖K (·, y) (1+ �(·, y)/r)β (1+ �(·, y)/r)α‖L p(S).

As in [7, §2] (see also [10,19]), for all N ∈ N \ {0} and F : R → C supported in [0, 1], let
the norm ‖F‖N ,2 be defined by

‖F‖N ,2 =
⎛
⎜⎝ 1

N

N∑
i=1

sup
λ∈

[
i−1
N , i

N

] |F(λ)|2
⎞
⎟⎠

1/2

.

Proposition 4.2 For all α ∈ [0, 1/2), all N ∈ N \ {0}, all t > 0, and all F : R → C
vanishing off (0, N ),

|||KF(
√

�b)
|||2,0,α,N−1 ≤ Cα ‖F(N ·)‖N ,2, (16)

|||KF(
√

�b) (1−At )
|||2,0,α,N−1 ≤ Cα ‖F(N ·)‖N ,2 min{1, (Nt)2}. (17)

Proof We prove only (17), the other estimate being similar and easier. By Proposition 2.1
and [7, Lemma 4.3], KF(

√
�b) (1−At )

is a “kernel polynomial” in the sense of [7, §5], which

satisfies the assumptions of [7, Proposition 5.3]. Hence, for all θ ∈ [0, 1),
∫

S

|KF(
√

�b) (1−At )
(x, y)|2 �(x, y)θ dμ(x)

≤ Cθ NQ−1−θ
N∑
j=2

max{|F(

√
λ

�b
pq )(1− exp(−t2λL

pq))|2 : ( j − 1)2 ≤ λ�b
pq ≤ j2}

≤ Cθ NQ−1−θ (1− e−(n+1)t2N2
)

N∑
j=2

max{|F(

√
λ

�b
pq )|2 : ( j − 1)2 ≤ λ�b

pq ≤ j2},
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where we have used (10). As in [7, proof of Theorem 1.1], we then deduce that, for all
θ ∈ [0, 1), ∫

S

|KF(
√

�b) (1−At )
(x, y)|2 �(x, y)θ dμ(x)

≤ Cθ NQ−θ ‖F(N ·)‖2N ,2 max{1, (Nt)2}2.
Since V (N−1) ∼ N−Q for N ∈ N \ {0}, the conclusion follows by combining the two
instances of the above estimate corresponding to θ = 0 and θ = 2α. ��

Fix a nonnegative function ξ ∈ C∞
c ((−1/16, 1/16)) such that∫

R

ξ(t) dt = 1 and
∫

R

tk ξ(t) dt = 0 for k = 1, . . . , 2Q. (18)

As in [10,19], we first deal with the operator (F∗ξ)(
√

�b) corresponding to a smoothened
version of the multiplier F .

Proposition 4.3 The following estimates hold.

(i) For all β ≥ 0, all α ∈ [0, 1/2), all N ∈ N \ {0}, all ε, t > 0, and all F : R → C with
supp F ⊆ [N/4, 3N/4],

|||K
(F∗ξ)(

√
�b) (1−At )

|||2,β,α,N−1 ≤ Cα,β,ε ‖F(N ·)‖L2
β+ε (R) min{1, (Nt)2}.

(ii) For all β ≥ 0, all N ∈ N \ {0}, all ε, r, t > 0, and all F : R → C with supp F ⊆
[N/4, 3N/4],

ess sup
y

∫

�(x,y)≥r
|K

(F∗ξ)(
√

�b) (1−At )
(x, y)| dμ(x)

≤ Cβ,ε ‖F(N ·)‖L2
β+d/2+ε (R) min{1, (Nt)2}(1+ Nr)−β .

(iii) For all ε > 0 and F : R → C with supp F ⊆ [1/2,∞),

‖(F ∗ ξ)(
√

�b)‖L1→L1,∞ ≤ Cε ‖F‖L2
d/2+ε,sloc

.

Proof (i) By Corollary 3.3(i) and Young’s inequality,

|||K
(F∗ξ)(

√
�b) (1−At )

|||2,β,N−1 ≤ Cβ,ε‖F(N ·)‖L∞
β+ε (R) min{1, (Nt)2}.

for all β ≥ 0, N ∈ N \ {0}, ε, t > 0, and F : R → C with supp F ⊆ [N/8, 7N/8]; in
particular, by Sobolev embedding and the inequality (15),

|||K
(F∗ξ)(

√
�b) (1−At )

|||2,β,α,N−1 ≤ Cβ,α,ε‖F(N ·)‖L2
β+α+1/2+ε (R) min{1, (Nt)2}.

for all α, β ≥ 0, N ∈ N \ {0}, ε, t > 0, and F : R → C with supp F ⊆ [N/8, 7N/8].
On the other hand, by Proposition 4.2 and [19, eq. (4.9)],

|||K
(F∗ξ)(

√
�b) (1−At )

|||2,0,α,N−1 ≤ Cα‖F(N ·)‖2 min{1, (Nt)2}
for all α ∈ [0, 1/2), N ∈ N \ {0}, t > 0, and F : R → C with supp F ⊆ [N/8, 7N/8].
Interpolation of the last two inequalities (cf., for instance, [52, proof of Lemma 1.2] or
[51, proof of Proposition 13]) gives the conclusion.
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(ii) Note that

ess sup
y

∫

�(x,y)≥r
|K

(F∗ξ)(
√

�b) (1−At )
(x, y)| dμ(x)

≤ |||K
(F∗ξ)(

√
�b) (1−At )

|||1,β,0,N−1(1+ Nr)−β .

Moreover, for all nonnegative α ∈ (1/2−ε/2, 1/2), since d/2+ε/2+α > d/2+1/2 =
Q/2, Hölder’s inequality and (13) give that

|||K
(F∗ξ)(

√
�b) (1−At )

|||1,β,0,N−1 ≤ Cα,β,ε |||K(F∗ξ)(
√

�b) (1−At )
|||2,β+d/2+ε/2,α,N−1 .

The conclusion follows by (i).
(iii) This follows from (ii) in the sameway as Corollary 3.3(iii) follows fromCorollary 3.3(ii).

��
It remains to deal with (F−F ∗ξ)(

√
�b); however this part satisfies even better estimates.

Proposition 4.4 For all ε > 0 and F : R → C with supp F ⊆ [1/2,∞),

‖(F − F ∗ ξ)(
√

�b)‖L1→L1 ≤ Cε ‖F‖L2
d/2+ε,sloc

.

Proof We follow the argument in [10, proof of Theorem 3.6] (cf. also [19, proof of Theorem
3.2]).

Set ε′ = min{1/4, ε} and choose α ∈ [0, 1/2) such that d/2 + ε′ + α > Q/2. Choose
η ∈ C∞

c ((0,∞)) such that supp η ⊆ [1/4, 3/4] and ∑
k∈Z ηk = 1 on (0,∞), where ηk =

η(2−k ·). In particular, if Fk = ηk F , then F = ∑
k∈N Fk . Set ξk = 2kξ(2k ·). By (33), Hölder’s

inequality, (14), (12), the “Plancherel estimate” (16), and [19, Proposition 4.6] (which applies
because of (18)), for all k ∈ N,

‖(Fk − Fk ∗ ξ)(
√

�b)‖L1→L1

= |||(Fk − Fk ∗ ξ)(
√

�b)|||1,0,0,2−k

≤ Cε 2
−kα V (2−k)−1/2 |||(Fk − Fk ∗ ξ)(

√
�b)|||2,0,α,2−k

≤ Cε 2
k(Q/2−α) ‖Fk(2k ·) − Fk(2

k ·) ∗ ξk‖2k ,2
≤ Cε 2

k(Q/2−α−d/2−ε′) ‖Fk(2k ·)‖L2
d/2+ε′

≤ Cε 2
k(Q/2−α−d/2−ε′) ‖F‖L2

d/2+ε,sloc
.

The conclusion follows by summing over k ∈ N. ��
Proof of Theorem 1.2 By combining Propositions 4.3(iii) and 4.4,

‖F(
√

�b)‖L1→L1,∞ � ‖F‖L2
d/2+ε,sloc

for all ε > 0 and F : R → C with supp F ⊆ [1/2,∞). On the other hand, since the
eigenvalues λ

�b
pq of �b are nonnegative integers by (8) and 1{0}(�b) is of weak type (1, 1)

(see Corollary 3.3(iii)),

‖F(
√

�b)‖L1→L1,∞ = ‖F(0) 1{0}(�b)‖L1→L1,∞ � |F(0)|
for all F : R → C with supp F ⊆ (−∞, 1). Hence a partition of unity argument yields

‖F(
√

�b)‖L1→L1,∞ ≤ Cε ‖F‖L2
d/2+ε,sloc

.
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Interpolation of this bound with the trivial estimate

‖F(
√

�b)‖L2→L2 ≤ ‖F‖∞ ≤ Cε ‖F‖L2
d/2+ε,sloc

gives L p-boundedness of F(
√

�b) for p ∈ (1, 2); the case p ∈ (2,∞) follows by applying
this result to F in place of F . ��

5 Transplantation to the Heisenberg group and sharpness

In this section we prove Corollary 1.3 and Theorem 1.4 via transplantation. Our approach
is an extension of the technique of [42], which is based on perturbation theory for self-
adjoint operators. In [42] scale-invariant L p-bounds for the functional calculus of a self-
adjoint differential operator D on a d-manifold M are transplanted to analogous bounds for
the homogeneous constant-coefficient differential operator D0 on Rd corresponding to the
principal symbol of D (with respect to a choice of coordinates) at an arbitrary point of M .

The results of [42] do not apply to our situation, because the Kohn Laplacian on the
Heisenberg group (that would play the role of D0 above) is not a constant-coefficient operator.
Indeed themethod of “freezing the coefficients” is not appropriate for the analysis of operators
such as the Kohn Laplacian on a CR manifold (see, e.g., [3,28,59]). For this reason we
introduce in Definition 5.1 below a generalization of this method, based on a system of
(possibly nonisotropic) dilations. Correspondingly, we prove a general transplantation result
(Theorem 5.2) for an arbitrary self-adjoint differential operator acting on sections of a vector
bundle over a smooth manifold. Finally we apply the general result to the Kohn Laplacian.

Manifolds are assumed to be smooth and second-countable. Vector bundles overmanifolds
are assumed to be smooth as well. By a hermitian vector bundle we mean a complex vector
bundle with a (smooth) hermitian metric. A smooth measure on a manifold is a positive
Borel measure whose density with respect to the Lebesgue measure in all coordinate charts
is smooth and nowhere vanishing.

If E is a vector bundle over M and U ⊆ M , we denote by E|U the vector bundle over U
obtained by restriction. By T k

d we denote the trivial bundle over Rd with fibre Ck , equipped
with the standard hermitianmetric. Sections ofT k

d will be identifiedwithCk -valued functions.
By a system of dilations (δR)R>0 on Rd we mean a family of linear automorphisms of

Rd of the form δR = exp((log R)A) for some positive self-adjoint linear endomorphism A
of Rd ; note that det δR = RQ , where Q = tr A is the “homogeneous dimension” associated
with the system of dilations.

Definition 5.1 Let M be a d-manifold, equipped with a smooth measure μ. Let E be a
hermitian vector bundle of rank k over M . Let D : C∞(E) → C∞(E) be a differential
operator. We say that a differential operator D0 : C∞(T k

d ) → C∞(T k
d ) is a local model for

D at the point x ∈ M of order γ ∈ R with respect to a system of dilations (δR)R>0 on Rd if
there exist a coordinate chart φ : U → V ⊆ Rd of M centred at x and an orthonormal frame
X = (Xl)

k
l=1 for E|U such that, if we define

(a) Ψ : C∞(E|U ) → C∞(T k
d |V ) by

Ψ

(
k∑

l=1

fl Xl

)
= (( fl ◦ φ−1) a1/2)kl=1, (19)

where a ∈ C∞(V ) is the density with respect to the Lebesgue measure of the push-
forward of μ via φ, and
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(b) DR : C∞(T k
d |δ−1

R (V )
) → C∞(T k

d |δ−1
R (V )

), for all R > 0, as the differential operator
given by

DR f = Rγ (Ψ DΨ−1( f ◦ δ−1
R )) ◦ δR,

then, for all f ∈ C∞
c (T k

d ),
lim
R↓0 DR f = D0 f in L2. (20)

Note that the domains C∞(T k
d |δ−1

R (V )
) and C∞(T k

d ) of the differential operators DR and

D0 may be different. However, if we identify C∞
c (T k

d |δ−1
R (V )

) with a subspace of C∞
c (T k

d ),

then, for all f ∈ C∞
c (T k

d ), we have that supp f ⊆ δ−1
R (V ) for all sufficiently small R > 0,

so DR f is well defined as an element of C∞
c (T k

d ) for such small R and the condition (20)
makes sense.

Similar considerations show that the coordinate chart and the local orthonormal frame in
Definition 5.1 could be replaced with their restrictions to any smaller open neighbourhood
of x , without changing the limit operator D0 in (20). Hence two differential operators with
same germ at x have the same local model.

The definition (19) of the map Ψ involves the density a of the measure on M , in such a
way that Ψ |C∞

c (E|U ) extends to an isometry L2(E|U ) → L2(T k
d |V ). This corresponds to the

fact that our functional calculi, based on the spectral theorem, are initially defined on L2 and
are equivariant with respect to L2-isometries. Similarly, we require L2-convergence in (20).
However, in applications (cf. proof of Proposition 5.4), it may happen that the convergence
in (20) holds in a stronger sense and that the limit operator D0 is independent of the positive
smooth function a in (19).

The system of dilations (δR)R>0 is crucial in determining the local model. If we take
isotropic dilations δR(v) = Rv and let γ be the order of D as a differential operator, then
the local model D0 is nothing else than the principal part of the constant-coefficient differ-
ential operator obtained by freezing the coefficients of D at x in the chosen coordinates.
Hence Theorem 5.2 extends some results of [42]. On the other hand, our applications involve
nonisotropic dilations.

In what follows, we denote by C0(R) the space of complex-valued continuous functions
on R vanishing at infinity. Strong convergence of operators is always understood in the sense
of the strong L2 operator topology.

Theorem 5.2 Let M be a d-manifold, equipped with a smooth measure. Let E be a hermitian
vector bundle of rank k over M. Let D : C∞(E) → C∞(E) be a formally self-adjoint
differential operator. Suppose that D has a local model D0 : C∞(T k

d ) → C∞(T k
d ) at some

point x ∈ M of order γ ∈ R with respect to some dilations (δR)R>0 on Rd . Assume that
D0 is essentially self-adjoint on C∞

c (T k
d ) and denote its unique self-adjoint extension by

D0 as well. Let D̃ be any self-adjoint extension of D. Then, for all F ∈ C0(R) and all
neighbourhoods U ⊆ M of x,

‖F(D0)‖L1(T k
d )→L1,∞(T k

d ) ≤ lim inf
r↓0 ‖PU F(rγ D̃)PU‖L1(E)→L1,∞(E) (21)

and, for all p ∈ [1,∞],
‖F(D0)‖L p(T k

d )→L p(T k
d ) ≤ lim inf

r↓0 ‖PU F(rγ D̃)PU‖L p(E)→L p(E), (22)

where PU is the operator of multiplication by 1U .
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Proof The right-hand sides of (21) and (22) do not increase if we replace U by a smaller
neighbourhood of x . Hence we may assume thatU is open and is the domain of a coordinate
chart φ : U → V centred at x and of an orthonormal frame X for E|U such that the conditions
of Definition 5.1 are satisfied. We may also assume that the topological boundary ∂U has
zero measure in M and that V is bounded in Rd . Let the map Ψ : C∞(E|U ) → C∞(T k

d |V )

and the differential operators DR (R > 0) be as in Definition 5.1.
Take an open set U∗ ⊇ U of full measure in M and such that φ and X can be extended to

a coordinate chart φ∗ : U∗ → V∗ ⊆ Rd and an orthonormal frame X∗ for E|U∗ . To construct
such a setU∗, take a countable open cover {Un}n∈N of M such thatU0 = U , eachUn carries
local coordinates for M and a local frame for E , and each ∂Un has zero measure in M , and
then define U∗ = ⋃

n∈N(Un \ ⋃
m<n Um).

We can then define Ψ∗ : C∞(E|U∗) → C∞(T k
d |V∗) in the same way as Ψ in (19),

with φ∗ and X∗ in place of φ and X . In particular Ψ∗|C∞
c (E|U∗ ) extends to an isometry

Ψ̃ : L2(E) → L2(T k
d |V∗).

Correspondingly we extend the differential operators DR to (densely defined) self-adjoint
operators D̃R on L2(T k

d ) as follows:

D̃R f = Rγ (D̃1( f ◦ δ−1
R )) ◦ δR,

where D̃1 is the self-adjoint operator on L2(T k
d ) = L2(T k

d |V∗) ⊕ L2(T k
d |Rd\V∗) given by

D̃1 =
(

Ψ̃ D̃Ψ̃−1 0
0 0

)
.

In particular D̃R f = DR f for all f ∈ C∞
c (T k

d |δ−1
R (V )

), and

lim
R↓0 D̃R f = D0 f

in L2 for all f ∈ C∞
c (T k

d ).
Since D0 is essentially self-adjoint on C∞

c (T k
d ), by [41, §VIII.1.1, Corollary 1.6] we

conclude that D̃R converges strongly in the generalized sense to D0 as R ↓ 0 (as defined
in [41, §VIII.1.1, p. 429]). Consequently, by [41, §VIII.1.1, Corollary 1.4], the resolvents
(D̃R − ζ )−1 converge strongly to (D0 − ζ )−1 as R ↓ 0 for all ζ ∈ C \ R. An application of
the Stone–Weierstraß theorem to the class of functions F ∈ C0(R) such that

F(D̃R) → F(D0) and F(D̃R) → F(D0) strongly as R ↓ 0 (23)

shows that (23) holds for all F ∈ C0(R).
On the other hand, by construction,

F(D̃1) f = Ψ̃ F(D̃)Ψ̃−1 f

for all f ∈ L2(T k
d |V ), hence

F(D̃R) f = (Ψ̃ F(Rγ D̃)Ψ̃−1( f ◦ δ−1
R )) ◦ δR

for all f ∈ L2(T k
d |δ−1

R (V )
).

We now prove (21). Since F(D0) is L2-bounded, for all f ∈ L1 ∩ L2(T k
d ) and α > 0, if

fn ∈ C∞
c (T k

d ) and fn → f in L1 ∩ L2, then, by Markov’s inequality,

μ0

({
|F(D0) f | > α

})
≤ sup

r>0
inf
ε>0

lim inf
n→∞ μ0

(
Br ∩

{
|F(D0) fn | > α/(1+ ε)

})
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where μ0 is the Lebesgue measure and Br is the closed ball of radius r in Rd centred at the
origin. Hence it is sufficient to prove that, for all compact sets K ⊆ H , all f ∈ C∞

c (T k
d ),

and all α > 0,

μ0

(
K ∩

{
|F(D0) f | > α

})
≤ κF‖ f ‖1/α

where κF = lim inf R↓0 κF,R and κF,R = ‖PU F(Rγ D̃)PU‖L1(E)→L1,∞(E). On the other
hand, by (23) and Markov’s inequality,

μ0

(
K ∩

{
|F(D0) f | > α

})
≤ inf

ε>0
lim inf
R↓0 μ0

(
K ∩

{
|F(D̃R) f | > α/(1+ ε)

})
.

Let R be sufficiently small that K̃ := supp f ∪K ⊆ δ−1
R (V ). Letμ be the measure on M . Let

a ∈ C∞(V ) be as in Definition 5.1, and set AR = max
δR(K̃ )

a1/2 and BR = max
δR(K̃ )

a−1/2.
Let Q be the homogeneous dimension associated with the dilations δR . Then

μ0

(
K ∩

{
|F(D̃R) f | > α

})

= R−Qμ0

(
δR(K ) ∩

{
|Ψ̃ F(Rγ D̃)Ψ̃−1( f ◦ δ−1

R )| > α
})

≤ B2
R R−Qμ

(
U ∩

{
|F(Rγ D̃)Ψ−1( f ◦ δ−1

R )| > α/AR

})

≤ B2
R AR R−Q κF,R ‖Ψ−1( f ◦ δ−1

R )‖L1(E)/α

≤ B2
R A2

R R−Q κF,R ‖ f ◦ δ−1
R ‖L1(T k

d )/α

= B2
R A2

R κF,R ‖ f ‖L1(T k
d )/α

and in particular, since limR↓0 ARBR = 1,

lim inf
R↓0 μ0

(
K ∩

{
|F(D̃R) f | > α

})
≤ κF ‖ f ‖L1(T k

d )/α.

The proof of (22) is similar and follows the lines of the proof of [42, Theorem 2], keeping
track of the constants. ��

Corollary 5.3 With the notation and hypotheses of Theorem 5.2, assume moreover that D̃
is nonnegative. Then D0 is nonnegative and

ς(D0) ≤ ς(D̃) and ς−(D0) ≤ ς−(D̃).

Proof We may assume that D̃ �= 0, otherwise D0 = 0 by (20) and the result is trivial. Let Σ
be the L2-spectrum of D̃. Then, from the definition of ς and the fact that ‖F(D̃)‖L2→L2 =
supλ∈Σ |F(λ)| for all continuous F , it follows easily that ς(D̃) ≥ 1/2 (see, e.g., [62, §2.6.2,
proof of Theorem 1] or [47, Proposition 2.3.15]).

Take s > ς(D̃) and let κs ∈ (0,∞) be such that

‖F(D̃)‖L2→L2 + ‖F(D̃)‖L1→L1,∞ ≤ κs ‖F‖L2
s,sloc

. (24)

for all bounded Borel functions F : R → C. We show now that a similar inequality holds
with D0 in place of D̃.

Take any F such that ‖F‖L2
s,sloc

< ∞. Since s > 1/2, by Sobolev embedding F is

continuous and bounded on (0,∞). Arguing as in the proof of Corollary 3.3(iii), it is not
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restrictive to assume that F(0) = 0. Let ηn ∈ C∞
c ((0,∞)), for n ∈ Z, be as in the proof of

Proposition 4.4 and define FN = ∑
|n|≤N Fηn . Theorem 5.2 and (24) then give that

‖FN (D0)‖L2→L2 + ‖FN (D0)‖L1→L1,∞ ≤ κs ‖FN‖L2
s,sloc

≤ Cs κs ‖F‖L2
s,sloc

.

for all N ∈ N. On the other hand, FN (D0) → F(D0) strongly as N → ∞. Consequently

‖F(D0)‖L2→L2 + ‖F(D0)‖L1→L1,∞ ≤ Cs κs ‖F‖L2
s,sloc

.

This proves that ς(D̃) ≥ ς(D0). The other inequality is proved analogously. ��
We now apply these results to the Kohn Laplacian. To this purpose we exploit the analysis

of [3].

Proposition 5.4 Let M be a CR manifold of hypersurface type and dimension 2n − 1,
equipped with a compatible hermitian metric. Let �b be the Kohn Laplacian acting on
section of the bundle Λ0, j M of (0, j)-forms, where j ∈ {0, . . . , n − 1}. Let J = {J ⊆
{1, . . . , n − 1} : |J | = j} and let T J be the trivial bundle over R2n−1 with fibre CJ . Let
y ∈ M and let λ1, . . . , λn−1 be the eigenvalues of the Levi form of M at p. Define vector
fields on R2n−1 by

U0 = ∂

∂u0
, Uk = ∂

∂uk
+ 2λk un−1+k

∂

∂u0
, Un−1+k = ∂

∂un−1+k
− 2λk uk

∂

∂u0

for k = 1, . . . , n − 1. Let �y
b : C∞(T J ) → C∞(T J ) be the differential operator defined

by
�y

b( f J )J∈J = (�y,J
b f J )J∈J , (25)

where

−4�y,J
b =

2n−2∑
k=1

U 2
k + 4i

(∑
k∈J

λk −
∑
k /∈J

λk

)
U0. (26)

Then �y
b is a local model for �b at p of order 2 with respect to the dilations

δR(u0, u1, . . . , u2n−2) = (R2u0, Ru1, . . . , Ru2n−2)

on R2n−1.

Proof This follows from the results of [3, Chapter 4]. Indeed, if the complex vector fields
Zk and Z y

k are defined as in [3, eqs. (21.1) and (21.5)], and a is any smooth function on the
domain of the Zk , then it is easily seen that, for all f ∈ C∞

c (R2n−1),

R(Zk( f ◦ δ−1
R )) ◦ δR → Z y

k f

(a( f ◦ δ−1
R )) ◦ δR → a(0) f

as R ↓ 0, in the LF-space topology of C∞
c (R2n−1). Consequently, by composition, for all

nowhere zero smooth functions a and for all f ∈ C∞
c (R2n−1),

R2(a−1Zk Zl((a f ) ◦ δ−1
R ) ◦ δR → Z y

k Z
y
l f

as R ↓ 0, in the topology ofC∞
c (R2n−1), and also in L2. From this it is not difficult to see that

the operator�y
b given by [3, eq. (21.10)] is a local model, in the sense of our Definition 5.1, of

the operator �b given by [3, eq. (20.43)]. In order to conclude, it is sufficient to observe that
[3, eq. (22.1)], which corresponds to (25) and (26) above, is obtained from [3, eq. (21.10)]
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by means of the coordinate changes [3, eqs. (21.14) and (21.21)], which commute with the
dilations δR . ��

Note that the vector fields U0,U1, . . . ,U2n−2 of Proposition 5.4 are left-invariant with
respect to the nilpotent Lie group law on R2n−1 defined by

(u0, u1, . . . , u2n−2) · (u′0, u′1, . . . , u′2n−2)

=
(
u0 + u′0 + 2

n−1∑
k=1

λk(u
′
kun−1+k − uku

′
n−1+k), u1 + u′1, . . . , u2n−2 + u′2n−2

)

(27)

(cf. [3, Definition (1.14)]). Hence the operators�y,J
b and�y

b are essentially self-adjoint (see,
e.g., [56] or [48, Proposition 3.2]).

It is now immediate that Theorems 1.1 and 1.2 may be transplanted to the Heisenberg
group.

Proof of Corollary 1.3 The sphere S is a strictly pseudoconvex CR manifold with a Levi
metric [59, Definition 1.5], so the eigenvalues of the Levi form at each point are all equal to 1.
Hence, if we apply Proposition 5.4 to theKohn Laplacian�S

b on the sphere, we obtain as local
model (at any point) an operator that corresponds, in suitable coordinates and trivializations,
to the Kohn Laplacian �H

b on the Heisenberg group with the standard strictly pseudoconvex
structure (see [28, §§4–5]). Consequently ς(�H

b ) ≤ ς(�S
b ) by Corollary 5.3. ��

As for Theorem 1.4, the following variation of a result of [50] will be of use.

Proposition 5.5 Let G be a 2-step stratified group of topological dimension d, L a homo-
geneous sublaplacian thereon and V a left-invariant vector field in the second layer of G,
such that L ≥ iV . Then

ς−(L− iV ) ≥ d/2.

Proof The proof follows the lines of the argument in [50, Section 2], where the case V = 0
is treated. Here we just list the main steps and modifications needed.

As in [50, Section 2], let Q be the homogeneous dimension of G, g2 ∼= Rd2 be the second
layer of the Lie algebra of G and U be the corresponding vector of central derivatives. Then
−iV = β ·U for some β ∈ g2. Similarly as in [50, eq. (10)], define Ω

χ,θ
β,t as the convolution

kernel of mχ
t (L+ β · U) θ(tU).

By arguing as in [50, Proposition 5], one obtains an expression for Ω
χ,θ
β,t analogous to the

right-hand side of [50, eq. (11)], where I θ is replaced by

I θ
β (t, s, r, y, v) =

∫

g∗2

exp(i tΦ(y, v, μ) − isΣ(y, v) − ir R(s, r, y, μ))

× exp(i(1− sr)〈μ, β〉) B(sr, μ) θ(μ) dμ.

Hence the argument of [50, Proposition 7] gives that

t Q−d/2 Ω
χ,θ
β,t (2t y, t2v) = eiπd1/4eitΨβ(y,v)Aχ,θ (y, v) + O(t−1),

where Ψβ(y, v) = Ψ (y, v) + β · μc(y, v).
One can then repeat the proof of [50, Theorem 8] to obtain that

‖mχ
t (L+ β · U)‖p→p ≥ Cp,χ,β td(1/p−1/2), p ∈ [1, 2], t ≥ 1.

Comparison of this estimate with [50, eq. (9)] gives the conclusion. ��
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Proof of Theorem 1.4 As in Proposition 5.4, let λ1, . . . , λn−1 be the eigenvalues of the Levi
form at a point y ∈ M . Since M is not Levi-flat, we can choose y ∈ M so that not all λ j

are zero. Hence the group law (27) defines a 2-step stratified structure on R2n−1, for which
L = −∑2n−2

k=1 U 2
k is a homogeneous sublaplacian andU0 is a vector field in the second layer.

Consequently, by Corollary 5.3 and Proposition 5.5,

ς−(�b) ≥ ς−(�y
b) = max

J∈J ς−(�y,J
b ) ≥ (2n − 1)/2

and we are done. ��

6 An abstract multivariable multiplier theorem

In this section we prove a multiplier theorem for commuting operators in the setting of
a doubling metric measure space X . More precisely, we will consider a system of strongly
commuting, possibly unbounded self-adjoint operatorsU1, . . . ,Un on L2(X). Here “strongly
commuting” means that such operators have a joint spectral resolution E on Rn , so

Uj =
∫

Rn

λ j dE(λ)

for j = 1, . . . , n, and a joint functional calculus is defined by

F(U1, . . . ,Un) =
∫

Rn

F(λ) dE(λ)

for all Borel functions F : Rn → C. In the following we aim at giving a sufficient condition
for the weak type (1, 1) and L p-boundedness of an operator F(U1, . . . ,Un) in terms of a
smoothness condition of Mihlin–Hörmander type on the multiplier F :

sup
r≥0

‖(F ◦ εr ) χ‖L∞
s (Rn) < ∞. (28)

for some s ≥ 0 sufficiently large. Here (εr )r>0 is a system of dilations on Rn , ε0 : Rn → Rn

is the constant function 0, and χ ∈ C∞
c (Rn \ {0}) is a cutoff supported on an annulus.

A model result for us is the classical Mihlin–Hörmander theorem for Fourier multipliers
on Rn , thought of as a multiplier theorem for the joint functional calculus of the partial
differential operators Uj = −i∂ j on Rn . In this case isotropic dilations εr (λ) = rλ are
considered and a condition (28) of order s > n/2 is required.

In the general setting described above, clearly some assumptions on the operators
U1, . . . ,Un are necessary, other than self-adjointness and strong commutativity, in order
to prove L p-bounds for p �= 2. This problem has been studied extensively in the case n = 1,
especially for a single nonnegative self-adjoint operator L = U1; in this case the choice of
dilations εr is irrelevant and (28) reduces to (2). Several assumptions on L have been consid-
ered in the literature (see, e.g., [4,10,19,20,33,45,46] and references therein), which usually
involve estimates for the heat propagator e−tL or the wave propagator cos(t

√
L) associated

with L. When bounds on the heat propagator (such as Gaussian-type bounds) are assumed,
a classical proof strategy (which appears to originate in the study of group-invariant differ-
ential operators on Lie groups, see [1,9,12,13,29,37,38,52] and references therein) consists
in a “change of variable”, i.e., writing F(L) = G(e−tL) for G(s) = F(−t−1 log s), and
then using the particularly favourable bounds on the heat propagator e−tL to obtain L p-
boundedness of G(e−tL) whenever G is sufficiently smooth and supported away from 0;
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since the “change of variables” is given by a smooth function, smoothness properties of G
can be reduced to smoothness properties of F .

For a system U1, . . . ,Un of several commuting operators, there seems not to be an obvi-
ous standard generalization of heat propagator bounds. In [58] the case of direct products is
considered, where X = X1 × · · · × Xn and each Uj operates on a different factor X j of the
product; there a multiplier theorem for the systemU1, . . . ,Un is proved by assuming bounds
for each heat propagator e−tU j on X j . However there are many systems of commuting oper-
ators that are not in “direct product form”. Numerous examples come from the setting of Lie
groups and homogeneous spaces, such as the systems of commuting differential operators
associated to Gelfand pairs [25,31,35,65]. In these cases, one can usually find an operator
L = P(U1, . . . ,Un) for some polynomial P such that good bounds hold for the heat prop-
agator e−tL, as well as for the “Uj -derivatives” Uje−tL of the propagator. In [48,49] such
systems of commuting group-invariant differential operators on Lie groups are studied and,
in the case of homogeneous operators on a homogeneous Lie group, a multiplier theorem
of Mihlin–Hörmander type is proved. The basic idea in the proof is again to use a change
of variables such as F(U1, . . . ,Un) = G(e−tL,U1e−tL, . . . ,Une−tL) in order to reduce
the functional calculus of the original (unbounded) operators to the functional calculus of
operators satisfying good bounds.

What follows can be considered as an extension of the multiplier theorem of [49, §4] to
the setting of abstract operators on a doubling metric measure space. To this purpose, here we
take as an assumption the existence of a “change of variables” with suitable smoothness and
invertibility properties and such that the operators resulting from this change satisfy suitably
good bounds. In order for our result to encompass the various different cases mentioned
above, we do not prescribe a specific form for this “change of variables”, and we state fairly
minimal hypotheses that are enough for the argument to work.

So far we have been vague on the “good bounds” to be required on the operators resulting
from the “change of variables”. In the case n = 1, a typical assumption is given by Gaussian-
type heat kernel bounds, i.e., superexponential decay in space of the integral kernel of the heat
propagator. However in [33] it is shown that polynomial decay of arbitrarily large order is
sufficient. Following [33], an analogous polynomial decay assumption is stated in our result
below. This assumption is sufficient to prove the weak type (1, 1) of F(U1, . . . ,Un) under a
condition of the form (28) of order s > Q/2, where Q is the “homogeneous dimension” of
X (see definitions below).

Note that in the smoothness condition (28) an L∞ Sobolev norm is used. It would be
interesting to investigate whether sharper results involving other Sobolev norms are possible.
In the case n = 1, this problem is extensively discussed in [19], where further assumptions
on the operator, such as “Plancherel-type estimates”, are used to replace L∞

s with Lq
s for

some s. A similar approach is used in [49] in the case of systems of group-invariant operators
on Lie groups. For the sake of brevity, we will not pursue this here.

Let (X, �, μ) be a doubling metric measure space of homogeneous dimension Q and
displacement parameter N . In other words, (X, �) is a metric space and μ is a positive
regular Borel measure on X , such that all balls B(x, r) = {y ∈ X : �(x, y) < r} have
nonzero finite measure V (x, r) = μ(B(x, r)), and moreover there exist c′, c′′ > 0 such that,
for all x, y ∈ X , λ, r ∈ [0,∞),

V (x, λr) ≤ c′(1+ λ)Q V (x, r), (29)

V (y, r) ≤ c′′(1+ �(x, y)/r)N V (x, r). (30)
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The constants Q, N , c′, c′′ contained in the inequalities (29), (30) will be referred to as the
“structure constants” of the doubling space (X, �, μ).

A basic consequence of the doubling property (29) is the following integrability property:
for all s > Q and y ∈ X ,∫

X

(1+ �(x, y)/r)−s dμ(x) ≤ Cs V (y, r). (31)

In the following we will consider bounded linear operators T between Lebesgue spaces
on X with an integral kernel, that is, a locally integrable function KT : X × X → C such
that

T f (x) =
∫

X

KT (x, y) f (y) dμ(y) (32)

for all f ∈ Cc(X) and μ-almost all x ∈ X . Not all the operators of interest have an integral
kernel, so we also consider a weaker notion: in case the function KT is just locally integrable
on {(x, y) ∈ X × X : x �= y} and (32) holds for μ-a.e. x /∈ supp f , then we say that KT is
the off-diagonal kernel of T .

In dealing with integral kernels, we will make repeated use of certain mixed weighted
Lebesgue norms on functions K : X × X → C, defined as follows: for all p ∈ [1,∞],
s ∈ [0,∞), r ∈ (0,∞),

|||K |||p,s,r = ess sup
y

V (y, r)1/p
′ ‖K (·, y) (1+ �(·, y)/r)s‖L p(X)

where p′ = p/(p − 1) is the conjugate exponent. We will also write |||K |||p,s in place of
|||K |||p,s,1. It is worth noting that, if the operator T has integral kernel KT , then

‖T ‖1→1 = |||KT |||1,0,r (33)

for all r ∈ (0,∞).

Theorem 6.1 LetU1, . . . ,Un be strongly commuting, possibly unbounded self-adjoint oper-
ators on L2(X), with joint spectrum Σ ⊆ Rn. Let γ1, . . . , γn ∈ (0,∞) and define dilations
εr on Rn by εr (λ1, . . . , λn) = (rγ1λ1, . . . , rγnλn) for all r ∈ (0,∞). LetΣ∗ = ⋃

r>0 εr (Σ).
Assume that, for some m ≥ n, there exists a continuous map Ψ = (Ψ1, . . . , Ψm) : Rn → Rm

such that:

(A) Ψ (0) �= 0 and there exist an open neighbourhood Ω of Ψ (0) in Rm and a smooth map
Φ : Ω → Rn such that Φ ◦ Ψ is the identity on Ψ−1(Ω) ∩ Σ∗;

(B) for all j = 1, . . . ,m and r > 0, the operator Ψ j ◦ εr (U1, . . . ,Un) has an integral kernel
and

sup
r>0

|||KΨ j◦εr (U1,...,Un)|||2,a,r < ∞ (34)

for all a ∈ [0,∞) and j = 1, . . . ,m.

Then the following estimates hold.

(i) For all bounded Borel functions F : Rn → C supported in [−1, 1]n, the operator
F ◦ εr (U1, . . . ,Un) has an integral kernel for all r ∈ (0,∞) and

sup
r>0

|||KF◦εr (U1,...,Un)|||2,0,r ≤ C‖F‖∞.
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(ii) For all p ∈ [1,∞], b, s ∈ [0,∞) with s > b+ Q(1/p− 1/2)+ + N (1/2− 1/p)+ and
all bounded Borel functions F : Rn → C supported in [−1, 1]n,

sup
r>0

|||KF◦εr (U1,...,Un)|||p,b,r ≤ Cp,s,b‖F‖L∞
s

.

(iii) For all F : Rn → C in the Schwartz class, for all a ∈ [0,∞) and p ∈ [1,∞],
sup
r>0

|||KF◦εr (U1,...,Un)|||p,a,r < ∞.

(iv) For all s > Q/2 and all bounded Borel functions F : Rn → C supported in [−1, 1]n,
sup
r>0

‖F ◦ εr (U1, . . . ,Un)‖1→1 ≤ Cs‖F‖L∞
s

.

(v) Let E be the joint spectral resolution of U1, . . . ,Un. Then E({0}) is bounded on L p(X)

for all p ∈ [1,∞]. Moreover E({0}) = 0 if μ(X) = ∞.
(vi) For all s > Q/2 and all bounded Borel functions F : Rn → C, if

sup
r>0

‖(F ◦ εr ) χ‖L∞
s

< ∞

for some cutoff χ ∈ C∞
c (Rn \ {0}) with ⋃

r>0 εr ({χ �= 0}) = Rn \ {0}, then the operator
F(U1, . . . ,Un) is of weak type (1, 1) and bounded on L p(X) for all p ∈ (1,∞), and
moreover

‖F(U1, . . . ,Un)‖L1→L1,∞ ≤ Cχ,s sup
r≥0

‖(F ◦ εr ) χ‖L∞
s

.

Here are some examples of applications of the above theorem.

Example 6.2 Let X = Rd with the Euclidean metric and Lebesgue measure, so Q = d .
Then Theorem 6.1 can be applied with n = d , γ j = 1 andUj = −i∂ j for j = 1, . . . , d , and
Ψ : Rd → Rd+1 given by

Ψ (λ1, . . . , λd) = (e−(λ21+···+λ2d ), λ1 e
−(λ21+···+λ2d ), . . . , λd e

−(λ21+···+λ2d )).

Note that F(−i∂1, . . . ,−i∂d) is the Fourier multiplier operator on Rd corresponding to the
multiplier F . Hence Theorem 6.1(vi) in this case essentially reduces to the classical Mihlin–
Hörmander theorem, with a smoothness condition of order s > d/2 on the multiplier. It is
known that the threshold d/2 is sharp in this case, so the condition s > Q/2 in Theorem
6.1(vi) cannot be weakened in general. By suitably adjusting the metric on Rd [34], one
could also take arbitrary γ j ∈ [1,∞), thus obtaining nonisotropic versions of the Mihlin–
Hörmander theorem on Rd (cf. [23,44]).

Example 6.3 Suppose that L is a nonnegative self-adjoint operator on L2(X) satisfying, for
some h ∈ (0,∞), the following heat kernel estimate: for all a ∈ [0,∞),

sup
t>0

|||Ke−t L |||2,a,t1/h < ∞. (35)

Then Theorem 6.1 can be applied with n = 1,U1 = L , γ1 = h and Ψ (λ) = e−λ. In the case
h > 1, the estimate (35) can be obtained by Hölder’s inequality from the following pointwise
Gaussian-type heat kernel estimate: for all t > 0 and x, y ∈ X ,

|Ke−t L (x, y)| ≤ C V (y, t1/h)−1 exp

(
−b

(
�(x, y)/t1/h

)h/(h−1)
)

. (36)
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This is one of the usual assumptions in abstract spectral multiplier theorems for a single
operator L (cf., e.g., [19, Assumption 2.2], where h ≥ 2 is required).

Example 6.4 Let L and h be as in Example 6.3. Suppose moreover that D is a self-adjoint
operator on L2(X), that commutes strongly with L and satisfies, for some k ∈ (0,∞), the
following estimate: for all a ∈ [0,∞),

sup
t>0

tk/h |||KDe−t L |||2,a,t1/h < ∞. (37)

Then Theorem 6.1 can be applied with n = 2, (U1,U2) = (L , D), (γ1, γ2) = (h, k) and
Ψ (λ1, λ2) = (e−λ1 , λ2e−λ1). As before, in the case h > 1, the estimate (37) can be obtained
from the following Gaussian-type estimate for the “D-derivative” of the heat kernel of L: for
all t > 0 and x, y ∈ X ,

|KDe−t L (x, y)| ≤ C t−k/h V (y, t1/h)−1 exp(−b(�(x, y)/t1/h)h/(h−1)). (38)

See, e.g., [2,22,61,63] for examples of differential operators L , D satisfying (36) and (38);
see also [47–49] for examples of commuting operators.

Example 6.5 Suppose that X is the product X1×X2 of twodoublingmetricmeasure spaces of
homogeneous dimensions Q1 and Q2, so Q = Q1+Q2. For j = 1, 2 let L j be a nonnegative
self-adjoint operator on L2(X j ) satisfying the analogue of (35): for some h j ∈ (0,∞) and
all a ∈ [0,∞),

sup
t>0

|||K
e−t L j |||2,a,t1/h j

< ∞. (39)

Let L̃1 = L1 ⊗ I and L̃2 = I ⊗ L2 be the corresponding operators on L2(X1 × X2).
Then Theorem 6.1 can be applied with n = 2, (U1,U2) = (L̃1, L̃2), (γ1, γ2) = (h1, h2),
Ψ (λ1, λ2) = (e−2λ1−λ2 , e−λ1−2λ2), since

K
Ψ1◦εr (L̃1,L̃2)

(x, y) = K
e−2rh1 L1

(x1, y1) Ke−rh2 L2
(x2, y2),

K
Ψ2◦εr (L̃1,L̃2)

(x, y) = K
e−rh1 L1

(x1, y1) Ke−2rh2 L2
(x2, y2)

and

(1+ �(x, y)/r)a ≤ (1+ �1(x1, y1)/r)
a(1+ �2(x2, y2)/r)

a .

This gives an alternative proof and a generalization of themain result of [58], whereGaussian-
type estimates like (36) are required for each L j , and only the case h1 = h2 is considered.

Remark 6.6 In the case the map Ψ in Theorem 6.1 is smooth, one could replace the assump-
tion (A) with the following:

(A’) Ψ (0) �= 0, dΨ (0) is injective, Ψ−1(Ψ (0)) = {0} and Ψ−1(Γ ) is compact for some
compact neighbourhood Γ of Ψ (0) in Rm .

Indeed, under the assumption (A’), the existence of the smooth local inverse Φ as in (A) can
be obtained from the constant rank theorem. On the other hand, smoothness of Ψ is never
used in the proof of Theorem 6.1. In fact, one could even weaken the smoothness assumption
on the local inverse Φ of Ψ as follows:

(A”) Ψ (0) �= 0 and there exist an open neighbourhood Ω of Ψ (0) in Rm and a continuous
map Φ : Ω → Rn which is smooth on Ω \ {Ψ (0)} and such that Φ ◦ Ψ is the identity
on Ψ−1(Ω).
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However, under this weaker assumption, one would obtain weaker versions of items (ii), (iii),
(iv) of Theorem6.1,where F is constant in some neighbourhood of 0.A further generalization
would be to consider several maps Ψ instead of a single one and assume that, for all a ∈
[0,∞), the kernel estimate (34) is satisfied by some Ψ that may depend on a. In the case
n = 1, this idea has been exploited in the study of the L p functional calculus for certain
pseudodifferential operators L , where better and better estimates are available for the kernel
of e−t LM

as M ∈ N grows [21]. For the sake of brevity, we will not pursue this here.

As mentioned above, one of the main ideas in the proof of Theorem 6.1 is to use the
map Ψ as a “change of variables”, in order to replace the (possibly unbounded) operators
U1, . . . ,Un with the bounded operators Ψ j ◦ εr (U1, . . . ,Un), j = 1, . . . ,m. By means of
this change of variables, the proof of Theorem 6.1 is essentially reduced to the following
result, which is a multivariate extension of a result of [33].

For notational convenience, set

exp0(λ) = eλ − 1. (40)

Proposition 6.7 Let M1, . . . , Mm be pairwise commuting, self-adjoint bounded operators
on L2(X), admitting integral kernels K1, . . . , Km.

(i) Suppose that, for some κ ≥ 0 and a > 0,

|||K j |||2,0 ≤ κ, |||K j |||1,a ≤ κ (41)

for j = 1, . . . ,m. Then, for all h ∈ Zm, the operator

exp0(i(h1M1 + · · · + hmMm))

has an integral kernel Eh satisfying

|||Eh |||1,b ≤ Cκ,a,b |h|γa,b
1

for all b ∈ [0, a). Here |h|1 = |h1| + · · · + |hm | and the constants in the previous
inequality depend only on the specified parameters and on the structure constants of
(X, �, μ); in particular

γa,b = 2�(b+Q/2)/(a−b)�(1+ (b + Q/2)(1+ 1/(a − b))). (42)

(ii) Suppose moreover that, for some b ∈ [0, a),

|||K j |||2,b ≤ κ

for j = 1, . . . ,m. Then, for all h ∈ Zm,

|||Eh |||2,b ≤ Cκ,a,b |h|γa,b+1
1 . (43)

(iii) Under the previous assumptions, if F ∈ L2
s (R

m) for some

s > γa,b + 1+ m/2

and F(0) = 0, then the operator F(M1, . . . , Mm) has an integral kernel satisfying

|||KF(M1,...,Mm )|||2,b ≤ Cm,κ,a,b,s‖F‖L2
s
.
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Remark 6.8 Proposition 6.7 is stated in terms of the norms ||| · |||p,s , instead of the more
general ||| · |||p,s,r . However the norm ||| · |||p,s,r can be considered as the norm ||| · |||p,s defined
in terms of the rescaled distance �/r . Moreover it is easily seen that the “rescaled space”
(X, �/r, μ) satisfies the same estimates (29) and (30) as the original space (X, �, μ), with
the same structure constants. For this reason, it is not restrictive to omit the “scale parameter”
r in Proposition 6.7 and other statements where just a single scale is used.

Before entering the proofs of the above statements, let us briefly recall a few basic facts
about integral kernels. If an operator has integral kernel K , then its adjoint corresponds to
the integral kernel K ∗ given by

K ∗(x, y) = K (y, x).

Composition of operators corresponds (under suitable integrability conditions on the kernels)
to the following “convolution” of integral kernels:

K1 ∗ K2(x, y) =
∫

X

K1(x, z) K2(z, y) dμ(z).

The following lemma collects a few useful inequalities, among which is an extension of
Young’s inequality for convolution.

Lemma 6.9 Let H, K be the integral kernels of the operators S, T respectively.

(i) For all a, b ∈ [0,∞) and 1 ≤ p < q ≤ ∞,

|||K |||p,a ≤ Cp,q,a,b |||K |||q,b if b > a + Q(1/p − 1/q). (44)

(ii) For all a ∈ [0,∞) and 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1+ 1/r ,

|||H ∗ K |||r,a ≤ (c′′)1/p′ |||H |||p/rp,a |||H∗|||p/q ′p,a+N/p′ |||K |||q,a+N/p′ . (45)

The constants c′′ and N in (45) are the same as in (30).
(iii) For all p ∈ [1,∞],

|||H ∗ K |||p,0 ≤ ‖S‖p→p |||K |||p,0. (46)

Proof (i) This follows immediately from Hölder’s inequality and (31).
(ii) Note that 1/r ′ = 1/p′ + 1/q ′. Define

H̃1(x, y) = H(x, y) V (y, 1)1/p
′
(1+ �(x, y))a,

H̃2(x, y) = H(x, y) V (x, 1)1/p
′
(1+ �(x, y))a+N/p′ ,

K̃ (y, z) = K (y, z) V (z, 1)1/q
′
(1+ �(y, z))a+N/p′ .

Then, by (30) and the inequality (1+ �(x, z)) ≤ (1+ �(x, y)) (1+ �(y, z)),

V (z, 1)1/r
′ |H(x, y)K (y, z)|(1+ �(x, z))a

≤ (c′′)1/p′ |H̃1(x, y)|p/r |H̃2(x, y)|p/q ′ |K̃ (y, z)|q/r |K̃ (y, z)|q/p′ .
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Integration in y and Hölder’s inequality yield

V (z, 1)1/r
′ |H ∗ K (x, z)|(1+ �(x, z))a

≤ (c′′)1/p′
⎛
⎝

∫

X

|H̃1(x, y)|p|K̃ (y, z)|q dμ(y)

⎞
⎠

1/r

×
⎛
⎝

∫

X

|H̃2(x, y)|p dμ(y)

⎞
⎠

1/q ′ ⎛
⎝

∫

X

|K̃ (y, z)|q dμ(y)

⎞
⎠

1/p′

.

By raising both sides to the power r , integrating in x and taking the essential supremum
in z, the inequality (45) follows.

(iii) This follows easily from the fact that H ∗ K (·, y) = S(K (·, y)). ��
We are now ready to prove Theorem 6.1 and Proposition 6.7. Let us see first how Theo-

rem 6.1 is derived from Proposition 6.7.

Proof of Theorem 6.1 By replacing Ψ with Ψ ◦ εr for sufficiently small r > 0 and possibly
permuting the components of Ψ , we may assume the following:

– there exists ψ ∈ Cc(Rn) such that ψ · Ψ1 = 1 on [−1, 1]n ;
– there exist an open neighbourhoodΩ ofΨ ([−1, 1]n) in Rm and a smooth mapΦ : Ω →

Rn such that Φ ◦ Ψ is the identity on Ψ−1(Ω) ∩ Σ̃ .

(i) If F : Rn → C is supported in [−1, 1]n , then F = (Fψ)Ψ1, hence

|||KF◦εr (U1,...,Un)|||2,0,r ≤ ‖(Fψ) ◦ εr (U1, . . . ,Un)‖2→2 |||KΨ1◦εr (U1,...,Un)|||2,0,r
≤ ‖F‖∞ ‖ψ‖∞ |||KΨ1◦εr (U1,...,Un)|||2,0,r

for all r > 0, and the conclusion follows by (34).
(ii) We consider first the case p = 2, i.e., we want to prove the inequality

|||KF◦εr (U1,...,Un)|||2,b,r ≤ Cs,b ‖F‖L∞
s

. (47)

for all r > 0, all F : Rn → C supported in [−1, 1]n , and all s > b ≥ 0.
Suppose first that s > b + Q/2 + 2 + m/2. Then we can find a > 0 sufficiently large
that s > γa,b + 1 + m/2, where γa,b is given by (42). By (34) and Hölder’s inequality
(44), there exists κ ∈ [0,∞) such that

|||KΨ j◦εr (U1,...,Un)|||1,a,r ≤ κ, |||KΨ j◦εr (U1,...,Un)|||2,b,r ≤ κ

for all r > 0 and j = 1, . . . ,m. Take some η ∈ C∞
c (Rm) supported in Ω and identically

1 on Ψ ([−1, 1]n). Then, for all F : Rn → C supported in [−1, 1]n ,
F = ((F ◦ Φ) η) ◦ Ψ on Σε,

so, for all r > 0,

F ◦ εr (U1, . . . ,Un) = ((F ◦ Φ) η)(Ψ ◦ εr (U1, . . . ,Un)).

By Proposition 6.7(iii) applied to the rescaled space (X, �/r, μ) and the operators Ψ j ◦
εr (U1, . . . ,Un), we then obtain that

|||KF◦εr (U1,...,Un)|||2,b,r ≤ Cs,b‖(F ◦ Φ) η‖L2
s
≤ Cs,b‖F‖L∞

s
,
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since η is smooth and compactly supported and Φ is smooth on supp η.
This gives (47) for b ≥ 0, s > b + Q/2 + 2 + m/2. On the other hand, (47) also holds
when s = b = 0, by (i). The full range s > b is then obtained by interpolation (cf., e.g.,
the proofs of [52, Lemma 1.2], [19, Lemma 4.3], [49, Theorem 2.7]).
So the proof of the case p = 2 is concluded. Note now that the case p < 2 follows
from the case p = 2 by Hölder’s inequality (44). As for p > 2, take any real-valued
ξ ∈ C∞

c (Rn) such that ξ = 1 on [−1, 1]n , and define q by 1/q = 1/2 + 1/p. Then
q < 2 and, from what we have just proved, it follows that

sup
r>0

|||Kξ◦εr (U1,...,Un)|||q,a,r < ∞ (48)

for all a ∈ [0,∞). Moreover F = ξ · F for all F : Rn → C supported in [−1, 1]n ;
hence, by Young’s inequality (45) and the estimates (47) and (48),

|||KF◦εr (U1,...,Un)|||p,b,r
≤ Cp|||Kξ◦εr (U1,...,Un) |||q,b+N/q ′,r |||KF◦εr (U1,...,Un)|||2,b+N/q ′,r
≤ Cp,b‖F‖L∞

s

for all r ∈ (0,∞) and b, s ∈ [0,∞) with s > b + N/q ′ = b + N (1/2− 1/p).
(iii) Let a ∈ [0,∞) and p ∈ [1,∞], and set

s = a + Q(1/p − 1/2)+ + N (1/2− 1/p)+ + 1.

Let φ0 ∈ Cc(Rn) and φ ∈ Cc(Rn \ {0}) be supported in [−1, 1]n and such that φ0 +∑
k>0 φk = 1, where φk = φ ◦ ε2−k for all k > 0. Then, by (ii), for all r > 0,

|||K(Fφ0)◦εr (U1,...,Un)|||p,a,r ≤ Cp,a‖Fφ0‖L∞
s

,

and moreover, for all k ∈ N \ {0},
|||K(Fφk )◦εr (U1,...,Un)|||p,a,r ≤ Cp 2

kQ/p′ |||K(Fφk )◦εr (U1,...,Un)|||p,a,2−kr

≤ Cp,a 2
kQ/p′ ‖(F ◦ ε2k )φ‖L∞

s
,

by (29). Since it is easily seen that

‖Fφ0‖L∞
s
+

∑
k>0

2kQ/p′ ‖(F ◦ ε2k )φ‖L∞
s

is controlled by some Schwartz norm of F , the conclusion follows.
(iv) This follows immediately from (ii) and (33).
(v) Note that E({0}) = 1{0}(U1, . . . ,Un). Hence, by (i),

|||KE({0})|||2,0,r ≤ C

uniformly in r > 0, so∫

X

|KE({0})(x, y)|2 dμ(y) ≤ CV (y, r)−1

for a.e. y ∈ X and all r > 0. If μ(X) = ∞, then the right-hand side tends to zero as
r → ∞, hence KE({0}) = 0 a.e. and consequently E({0}) = 0.
If instead μ(X) < ∞, then by (29) we can find r > 0 such that B(y, r) = X for all
y ∈ X . Therefore, by Hölder’s inequality,

|||K ∗
E({0})|||1,0 = |||KE({0})|||1,0 ≤ |||KE({0})|||2,0,r ≤ C,
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hence ‖E({0})‖p→p ≤ C < ∞ for 1 ≤ p ≤ ∞ by (33) and interpolation.
(vi) Note that F = F(0)1{0} + F1Rn\{0}, so

F(U1, . . . ,Un) = F(0)E({0}) + (F1Rn\{0})(U1, . . . ,Un).

Hence, because of (v), it is not restrictive to assume in the following that F(0) = 0. In
particular

‖F(U1, . . . ,Un)‖2→2 ≤ ‖F‖∞ ≤ Cχ,s sup
R>0

‖(F ◦ εR) χ‖L∞
s

.

Let ω ∈ C∞
c (Rn \ {0}) be such that suppω ⊆ [−1, 1]n and ∑

k∈Z ωk(λ) = 1 for λ �= 0,
where ωk = ω ◦ ε2−k . Take moreover a cutoff η ∈ C∞

c (Rn) which is identically 1 on
[−1, 1]n . Hence, by (ii), the operators At = η ◦ εt (U1, . . . ,Un) satisfy

sup
t>0

|||KAt |||∞,b,t < ∞

for all b ∈ [0,∞), and in particular they satisfy the “Poisson-type bounds” of [18, eq.
(2) and (3)].
Fix a ∈ (Q/2, s) and an integer M > s. For r, t > 0, k ∈ Z and a.e. y ∈ X , we then
have ∫

X\B(y,r)

|K(Fωk )(U1,...,Un) (I−At )(x, y)| dμ(x)

≤
⎛
⎜⎝

∫

X\B(y,r)

(1+ 2k�(x, y))−2a

V (y, 2−k)
dμ(x)

⎞
⎟⎠

1/2

|||K(Fωk (1−η◦εt ))(U1,...,Un)|||2,a,2−k

≤ Cβ(1+ 2kr)Q/2−a‖(F ◦ ε2k ) ω‖L∞
s
‖(1− η) ◦ ε2k t‖CM (suppω)

by Hölder’s inequality, (29) and (ii).
Note now that the quantity ‖(1− η) ◦ εt‖CM (suppω) is continuous in t , vanishes for t ≤ 1
and is constant for t large, therefore is bounded uniformly in t > 0. We then conclude
that the series

∑
k∈Z K(Fωk (1−η◦εt ))(U1,...,Un) converges, off the diagonal of X × X , to a

function Kt satisfying

ess sup
y∈X

∫

X\B(y,r)

|Kt (x, y)| dμ(x) ≤ Cs

∑
k:2k>1/t

(1+ 2kr)Q/2−a‖(F ◦ ε2k ) ω‖L∞
s

≤ Cχ,s(r/t)
Q/2−a sup

R>0
‖(F ◦ εR) χ‖L∞

s
,

and it is easily checked that Kt is the off-diagonal kernel of

(F(1− η ◦ εt ))(U1, . . . ,Un) = F(U1, . . . ,Un) (1− At ).

If we take r = t in the previous inequality, then [18, Theorem 1] implies that
F(U1, . . . ,Un) is of weak type (1, 1) and bounded on L p for 1 < p ≤ 2, with norm
controlled by supR>0 ‖(F ◦εR) χ‖L∞

s
. For 2 < p < ∞, it is sufficient to apply the result

just obtained to the function F . ��
We are left with the proof of Proposition 6.7. The proof, which follows the lines of [33,

§2], will require some preliminary considerations and lemmas.
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By Young’s inequality (45), for all a ∈ [0,∞), the norm ||| · |||1,a is submultiplicative, i.e.,

|||K1 ∗ K2|||1,a ≤ |||K1|||1,a |||K2|||1,a;
consequently, the space of kernels

B0
a = {K : |||K |||1,a, |||K ∗|||1,a < ∞},

equipped with the norm
‖K‖Ba = max{|||K |||1,a, |||K ∗|||1,a} (49)

and with the operations of convolution and involution, is a Banach ∗-algebra (with isometric
involution).

Let us denote by TK the operator corresponding to the integral kernel K . The identity (33),
togetherwith interpolation, shows that the correspondence K  → TK embeds B0

a continuously
into the space B(L p) of bounded operators on L p(X) for all p ∈ [1,∞], with

‖K‖p→p := ‖TK ‖p→p ≤ ‖K‖Ba . (50)

If the algebra B0
a has an identity element I , then we set Ba = B0

a . Otherwise we formally
introduce an identity I , i.e., we consider the unitization Ba = CI ⊕ B0

a , which is a Banach
∗-algebra with norm

‖λI + H‖Ba = |λ| + ‖H‖Ba
for every λ ∈ C and H ∈ B0

a . Notice that, if we extend analogously the definition of the
||| · |||1,a-norm by setting

|||λI + H |||1,a = |λ| + |||H |||1,a,
then the extension is still a submultiplicative norm, and (49) holds for every K ∈ Ba .
Moreover the embedding into B(L p) extends to the whole Ba , together with the inequality
(50).

The introduction of the identity I makes the manipulation of kernels easier. For instance,
for every K ∈ Ba , the exponential eK is defined via power series as an element of Ba , and
‖eK ‖Ba ≤ e‖K‖Ba ; moreover the corresponding operator on L2(X) is nothing else than the
exponential eTK . In the case K is a “genuine kernel”, i.e., K ∈ B0

a , then eK ∈ I + B0
a (as

it is clear by inspection of the power series); therefore, by (40), eK − I ∈ B0
a is the integral

kernel of the operator exp0(TK ).
Let M1, . . . , Mm ∈ B(L2) be pairwise commuting, self-adjoint operators admitting inte-

gral kernels K1, . . . , Km . According to the above discussion, under the hypothesis (41), for
all h ∈ Zm , the operator exp0(i(h1M1 + · · · + hmMm)) has integral kernel

Eh = A∗h1
1 ∗ · · · ∗ A∗hm

m − I ;

here A j = eiK j and A
∗h j
j is the iterated convolution of |h j | factors of the form A j or A∗

j ,
depending on the sign of h j . Proposition 6.7(i) will then be proved by showing that, for all
b ∈ [0, a) and h ∈ Zm \ {0},

‖A∗h1
1 ∗ · · · ∗ A∗hm

m ‖Bb ≤ Cκ,a,b|h|γa,b
1 . (51)

From now on, we will assume that h ∈ Nm ; the proof in the general case can be obtained by
replacing some of the A j with A∗

j in the argument below.
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The idea is to decompose each A j , or rather the kernel A′
j = A j− I , into pieces supported

at different distances from the diagonal. Namely, for some parameter r ≥ 1 (which will be
fixed later) we set

A j,k(x, y) =
{
A′
j (x, y) if ekr ≤ �(x, y) < ek+1r,

0 otherwise,

for k > 0, and A j,0 = I + A′
j,0, where

A′
j,0(x, y) =

{
A′
j (x, y) if �(x, y) < er,

0 otherwise.

By dominated convergence, A′
j = A′

j,0 + ∑
k>0 A j,k in B0

a , and consequently A j =∑
k≥0 A j,k in Ba . By so decomposing each factor in A∗h1

1 ∗ · · · ∗ A∗hm
m , we obtain an infinite

sum of products of the form

Pα,β = Aα1,β1 ∗ · · · ∗ Aαn ,βn ,

where n = |h|1, α = (α1, . . . , αn) ∈ {1, . . . ,m}n , β = (β1, . . . , βn) ∈ Nn ; to simplify
notation, we set In = {1, . . . ,m}n × Nn , and

|β|H = |{u : βu �= 0}| .
In order to estimate the Bb-norm of the products Pα,β , we use the fact that δ = a−b > 0;

hence, for all k > 0,

‖A j,k‖2→2 ≤ ‖A j,k‖Bb ≤ e−kδr−δ‖A′
j‖Ba ≤ e−kδr−δκ̃, (52)

where κ̃ = eκ . For k = 0 this does not work, however we can exploit cancellation from the
L2-theory: since ‖A j‖2→2 = ‖eiTK j ‖2→2 ≤ 1 by spectral theory,

‖A j,0‖2→2 ≤ ‖A j‖2→2 + ‖A j − A j,0‖Bb ≤ 1+ r−δκ̃; (53)

moreover, by (41) and Young’s inequality (45),

|||A′
j,0|||2,0 ≤ |||A′

j |||2,0 ≤
∑
n>0

∣∣∣∣
∣∣∣∣
∣∣∣∣ (i K j )

∗n

n!
∣∣∣∣
∣∣∣∣
∣∣∣∣
2,0

≤
∑
n>0

‖K j‖n−1
B0

|||K j |||2,0
n! ≤ κ̃ (54)

and the same holds for (A′
j,0)

∗.
Set b̃ = b + Q/2.

Lemma 6.10 For all n ∈ N \ {0} and (α, β) ∈ In,

‖Pα,β‖Bb ≤ Cκ,b n

(
r

n∑
u=1

eβu

)b̃

e−δ|β|1(r−δκ̃)|β|H (1+ r−δκ̃)n . (55)

In particular, if n ≤ (r−δκ̃)−1, then

‖Pα,β‖Bb ≤ Cκ,b n
1+b̃

(
re|β|∞

)b̃
e−δ|β|1(r−δκ̃)|β|H , (56)

where |β|∞ = max{β1, . . . , βn}.
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Proof Note that (56) follows from (55) because (1 + r−δκ̃)n ≤ (1 + 1/n)n ≤ e whenever
n ≤ (r−δκ̃)−1. We are therefore reduced to proving (55).

By (52) and (53), a simpler estimate can be immediately obtained, for the B(L2)-norm:
for all n ∈ N and (α, β) ∈ In ,

‖Pα,β‖2→2 ≤ e−δ|β|1(r−δκ̃)|β|H (1+ r−δκ̃)n .

From this, (46) and (54) we then get, for all j ∈ {1, . . . ,m},
|||Pα,β ∗ A′

j,0|||2,0 ≤ κ̃ e−δ|β|1(r−δκ̃)|β|H (1+ r−δκ̃)n .

On the other hand, it is easily proved that (Pα,β ∗A′
j,0)(x, y) vanishes for d(x, y) ≥ R, where

R = e(r+r
∑n

u=1 e
βu ) ≥ 1. Hence, by Hölder’s inequality and the doubling condition (29),

|||Pα,β ∗ A′
j,0|||1,b ≤ (1+ R)b|||Pα,β ∗ A′

j,0|||1,0 ≤ CbR
b̃|||Pα,β ∗ A′

j,0|||2,0
and finally

|||Pα,β ∗ A′
j,0|||1,b ≤ C ′

κ,b

(
r + r

n∑
u=1

eβu

)b̃

e−δ|β|1(r−δκ̃)|β|H (1+ r−δκ̃)n; (57)

here C ′
κ,b depends only on κ , b and the constants in (29).

We now prove, for all n ∈ N \ {0} and (α, β) ∈ In , the inequality

|||Pα,β |||1,b ≤ Cκ,b n

(
r

n∑
u=1

eβu

)b̃

e−δ|β|1(r−δκ̃)|β|H (1+ r−δκ̃)n,

where Cκ,b = C ′
κ,b + 1, by induction on n.

Set α′ = (α1, . . . , αn−1), β ′ = (β1, . . . , βn−1). If βn �= 0, then

|||Pα,β |||1,b ≤ |||Pα′,β ′ |||1,b |||Aαn ,βn |||1,b;
since the first factor |||Pα′,β ′ |||1,b is 1 when n = 1 and is controlled by the inductive hypothesis
when n > 1,while the second factor |||Aαn ,βn |||1,b is controlled by (52), the conclusion follows.
If instead βn = 0, then

|||Pα,β |||1,b ≤ |||Pα′,β ′ |||1,b + |||Pα′,β ′ A′
αn ,0|||1,b;

the required estimate then follows by majorizing |||Pα′,β ′ |||1,b as before and |||Pα′,β ′ A′
αn ,0

|||1,b
by (57).

An analogous argument proves the same estimate for |||P∗
α,β |||1,b and the two estimates

together give (56). ��
From now on, the argument becomes purely Banach-algebraic. In fact, the inequality (56)

can be improved via a combinatorial technique. The following lemma should be compared
with [33, Lemma (2.6)].

Lemma 6.11 Let ν ∈ N \ {0}. For all n ∈ N \ {0} and β ∈ Nn, there exists I ⊆ {1, . . . , n}
such that:

(i) |I | ≤ 2ν−1 − 1;
(ii) β j �= 0 for all j ∈ I ;
(iii) ν

∑
j∈J β j ≤ |β|1 for all J ⊆ {1, . . . , n} with |J | ≤ |I | + 1 and J ∩ I = ∅.
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Proof Modulo reordering and padding with zeros, we may assume that the sequence
β1, . . . , βn is nonincreasing and n ≥ 2ν − 1. In particular

|β|1 ≥
ν−1∑
k=0

2k+1−1∑
j=2k

β j ,

hence there exists k ≤ ν − 1 such that

|β|1 ≥ ν

2k+1−1∑
j=2k

β j .

Set I = { j ∈ {1, . . . , 2k−1} : β j �= 0}. Clearly (i) and (ii) are satisfied. Moreover, since β is
nonincreasing, if I �= {1, . . . , 2k−1}, then, for every J ⊆ {1, . . . , n}which is disjoint from I ,
we have β j = 0 for all j ∈ J , so that (iii) is trivially satisfied. In the case I = {1, . . . , 2k−1},
instead, we have J ⊆ {2k, . . . , n}, hence, if |J | ≤ |I | + 1 = 2k ,

ν
∑
j∈J

β j ≤ ν

2k+1−1∑
j=2k

β j ≤ |β|1,

because β is nonincreasing, and we are done. ��
Lemma 6.12 Let ν ∈ N\{0}. For all n ∈ Nwith 1 ≤ n ≤ (r−δκ̃)−1, and for all (α, β) ∈ In,

‖Pα,β‖Bb ≤ Cκ,b,ν r
2ν−1b̃n2

ν−1(1+b̃)e(b̃/ν−δ)|β|1(r−δκ̃)|β|H .

Proof Let I ⊆ {1, . . . , n} be given by Lemma 6.11 applied to ν, n, β; in particular l =
|I | ≤ 2ν−1 − 1. Let j1, . . . , jl be an increasing enumeration of the elements of I , so that
β j1 , . . . , β jl are nonzero, and set j0 = 0, jl+1 = n + 1. Then

Pα,β = Pα(0),β(0) Aα j1 ,β j1
Pα(1),β(1) . . . Aα jl ,β jl

Pα(l),β(l) ,

where α(k) = (α jk−1+1, . . . , α jk−1), β(k) = (β jk−1+1, . . . , β jk−1), and

ν

l∑
k=0

|β(k)|∞ ≤ |β|1.

Moreover (56) gives, for the β(k) which are nonempty,

‖Pα(k),β(k)‖Bb ≤ Cκ,b n
1+b̃r b̃eb̃|β(k)|∞e−δ|β(k)|1(r−δκ̃)|β(k)|H ,

whereas

‖Aα jk ,β jk
‖Bb ≤ e−β jk δr−δκ̃

by (52). Since

|β|1 = |β(0)|1 + β j1 + |β(1)|1 + · · · + β jl + |β(l)|1,
|β|H = |β(0)|H + 1+ |β(1)|H + · · · + 1+ |β(l)|H ,

the conclusion follows by multiplying these estimates together. ��
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Proof of Proposition 6.7 (i) From the previous discussion, we are reduced to proving (51)
for h ∈ Nm \ {0}. Having fixed such an h, we choose r = (|h|1κ̃)1/δ and ν = νa,b :=
�b̃/δ� + 1, so that εa,b := δ − b̃/ν > 0. Hence Lemma 6.12 gives, for (α, β) ∈ I|h|1 ,

‖Pα,β‖Bb ≤ Cκ,a,b |h|γa,b
1 e−εa,b|β|1 |h|−|β|H

1 .

Set now α = (1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m), with h1 occurrences of 1, h2 occur-
rences of 2, and so on. Then

‖A∗h1
1 ∗ · · · ∗ A∗hm

m ‖Bb ≤
∑

β∈N|h|1
‖Pα,β‖Bb

≤ Cκ,a,b |h|γa,b
1

∑
β∈N|h|1

e−εa,b |β|1 |h|−|β|H
1

= Cκ,a,b |h|γa,b
1

(
1+ |h|−1

1

∞∑
k=1

e−εa,bk

)|h|1

≤ Cκ,a,b exp

( ∞∑
k=1

e−εa,bk

)
|h|γa,b

1 ,

and we are done.
(ii) We assume as before that h1, . . . , hm ≥ 0. First of all, by arguing as in (54), one

immediately obtains that

|||A j − I |||2,b ≤ κ̃

for j = 1, . . . ,m. Now we proceed inductively on |h|1. The case |h|1 = 0 is trivial. If
instead h j �= 0 for some j , then

Eh = Eh′ + (A
∗h′1
1 ∗ · · · ∗ A

∗h′m
m ) ∗ (A j − I ),

where h′ = (h1, . . . , h j−1, h j − 1, h j+1, . . . , hm), hence

|||Eh |||2,b ≤ Cκ,a,b(|h′|γa,b+1
1 + |h′|γa,b

1 ) ≤ Cκ,a,b |h|γa,b+1
1

by (51), Young’s inequality (45) and the inductive hypothesis.
(iii) We may assume, modulo rescaling, that κ = 1, so in particular the joint spectrum of

M1, . . . , Mm is contained in [−1, 1]m . The Fourier series expansion
F(λ) =

∑
h∈Zm

F̂(h) eih·λ =
∑

0 �=h∈Zm

F̂(h) (eih·λ − 1)

for λ ∈ (−π, π) (where the last equality is due to the fact that F(0) = 0, and the
convergence is uniform because s > m/2) then implies that

F(M1, . . . , Mm) =
∑

0 �=h∈Zm

F̂(h) exp0(i(h1M1 + · · · + hmMm))

with convergence in B(L2). On the other hand,
∑

0 �=h∈Zm

|F̂(h)| |||Eh |||2,b ≤ Ca,b

∑
0 �=h∈Zm

|F̂(h)| |h|γa,b+1
1 ≤ Ca,b,m,s‖F‖L2

s

by (43) and Hölder’s inequality, since s > γa,b + 1+ m/2, and we are done. ��
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