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Abstract

Populations of physiologically vital mitochondrial DNA
(mtDNA) molecules evolve in cells under control from
the nucleus. The evolution of populations of mixed
mtDNA types is complicated and poorly understood,
and variability of these controlled admixtures plays a
central role in the inheritance and onset of genetic dis-
ease. Here, we develop a mathematical theory describ-
ing the evolution and variability in these stochastic pop-
ulations for any type of cellular control, showing that
cell-to-cell variability in mtDNA, and mutant load, in-
evitably increases with time, according to rates which we
derive and which are notably independent of the mecha-
nistic details of feedback signalling. We show with a set
of experimental case studies that this theory explains
disparate quantitative results from classical and mod-
ern experimental and computational studies on hetero-
plasmy variance in different species. We demonstrate
that our general model provides a host of specific in-
sights, including a modification of the often-used but
hard-to-interpret Wright formula to correspond directly
to biological observables, the ability to quantify selec-
tive and mutational pressure in mtDNA populations,
and the pronounced variability inevitably arising from
the action of possible mtDNA quality-control mecha-
nisms. Our general theoretical framework, supported
by existing experimental results, thus helps understand
and predict the evolution of stochastic mtDNA popula-
tions in cell biology.

Introduction

Molecules of mitochondrial DNA (mtDNA) form dy-
namic evolutionary populations within cells, replicat-
ing and degrading according to cellular control signals
[1, 2]. MtDNA can vary due to mutation or artificial
manipulation [3]; the proportion of mutant mtDNA in
a cell is referred to as heteroplasmy. MtDNA encodes
vital aspects of the bioenergetic machinery of eukaroytic
cells; mtDNA variability can thus have dramatic cellu-
lar consequences, including devastating genetic diseases
and numerous other conditions [3], making a theoreti-
cal understanding of this complex evolutionary system
important. Understanding the natural feedback con-

trol acting on mtDNA populations is also a vital step in
the development of artificial approaches to control mito-
chondrial behaviour with genetic tools [4, 5]. The pop-
ulation variances of mtDNA types, and heteroplasmy
variance, are of particular importance, owing to their
implications for maternal transmission of dangerous mu-
tations [6] and the manifestation of pathologies depen-
dent on the range of heteroplasmies present in a tissue
[7], including the demonstration that a very small pro-
portion of cells exceeding a heteroplasmy threshold can
lead to pathologies [8].

Stochasticity underlies cell biology; cellular processes
including gene expression [9, 10, 11], DNA replica-
tion [12], and mitochondrial and mtDNA dynamics
[13, 14, 15, 16] are subject to fundamentally stochastic
influences. Variability in mitochondria can be a leading
contributor to cell physiological behaviour, making mi-
tochondria an important target for explanatory stochas-
tic models [15]. Existing studies have included stochas-
tic modelling and numerical treatments of mitochondrial
[17] and mtDNA populations with the assumption of
specific control mechanisms [18, 19, 1, 14, 20]. Other
theoretical studies have drawn on classical statistical ge-
netics, notably including the well-known Wright formula
[21, 22], to produce a description of partitioning at cell
divisions, but the role of stochastic mtDNA dynamics
between cell divisions is largely omitted. Although re-
cent experimental studies are starting to shed light on
cellular control of mtDNA [14, 16], a general theoret-
ical framework is currently absent. Here we address
this open question by constructing a general, bottom-
up stochastic description of mtDNA populations subject
to arbitrary cellular control mechanisms, providing ana-
lytic results for the predicted behaviour associated with
any mtDNA control mechanism, and adapting the clas-
sic Wright formula to account for and interpret stochas-
tic mtDNA dynamics. Notably, our approach and re-
sults hold independently of the details of specific reg-
ulatory mechanisms underlying mtDNA feedback sig-
nalling, providing a general theoretical framework for
control of stochastic mtDNA populations across differ-
ent species and environments.

As we develop the theoretical framework to address
mtDNA dynamics below, we will consider a set of appli-
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I. When mean copy numbers are constant, at least one variance 
(wildtype or mutant) increases linearly with time (Eqns. 8-10).

II. When mean copy numbers are constant, heteroplasmy variance 
increases linearly with time with a rate that depends only on mtDNA 
copy numbers and the rate of mtDNA turnover, and not on any details of 
mechanism or signalling (Eqn. 12); many copy-number control 
mechanisms are therefore indistinguishable even from dynamical
measurements of heteroplasmy (Fig. 2).

III. Control applied through (a) biogenesis rates and (b) degradation 
rates induce comparable behaviour in the cellular mtDNA population
(Fig. 2; SI Section 2). 

IV. A modified Wright formula (Eqn. 14; Fig. 4) gives a general method 
to establish a quantitative link between observed normalised 
heteroplasmy variance 〈 h² 〉 ' and observable (as opposed to 
effective) quantities (Fig. 5).

V. Quality control does not guarantee the clearing or stabilisation of 
mutant load, and can induce substantial variance in wildtype mtDNA 
(potentially challenging cells with diminished populations; Fig. 6 & Fig. 
7).

Figure 1: Key biological findings from our mathemat-
ical model. These results arise when the assumptions of our
modelling approach hold – that cells are heteroplasmic, mtDNA
replication and degradation are Poisson processes with the same
rates for mutant and wildtype mtDNA, and feedback mechanisms
depend only on the current state of the system. We justify these
assumptions with reference to experimental data in the text and
in Appendix A1.

cations of the theory, linking with existing experimental
data from a variety of studies to validate our approach
and obtain quantitative results and predictions on the
processes governing mtDNA dynamics. We will focus on
two questions arising from the study of mtDNA diseases:
(a) how and at what rate does cell-to-cell heteroplasmy
variance increase; and (b) how does selective pressure
against a particular mtDNA mutation affect cellular
mtDNA populations. The single-cell measurements re-
quired to address these questions directly remain chal-
lenging: we aim to show that mathematical theory, ap-
propriately validated and refined with available data,
allows us to make quantitative progress understanding
this important behaviour. Fig. 1 summarises the cen-
tral biological messages arising from development and
analysis of our theory.

Methods

We will consider mtDNA populations in cells that are
heteroplasmic with two non-recombining haplotypes,
though this treatment can readily be extended to other
species. We write a state with w wildtype mtDNAs and
m mutant mtDNAs as {w,m}. We first consider the
class of systems where both haplotypes are subject to
the same degradation rate ν and the same replication
rate λ, both of which may be general functions of both
haplotype copy numbers. This model thus represents
the situation where no direct selective difference exists
between mutant and wildtype. This assumption only
holds for some biological cases (see Ref. [23] and refer-
ences therein for a review of studies where mtDNA types

segregate unevenly) and will be relaxed later. We also
assume that cellular control is based only on the current
state of the cellular mtDNA population, and not its his-
tory. The dynamics governing the system then consist
of a set of Poisson processes:

{w,m} wλ(w,m)−−−−−−→ {w + 1,m} (1)

{w,m} mλ(w,m)−−−−−−→ {w,m+ 1} (2)

{w,m} wν(w,m)−−−−−−→ {w − 1,m} (3)

{w,m} mν(w,m)−−−−−−→ {w,m− 1} (4)

This formalism captures a wide range of models for
mtDNA dynamics (see below). We will begin with the
assumption that the system does not undergo cell divi-
sions, and has a stationary state in the population mean
of both haplotype copy numbers, and will write this
steady state as {w̃, m̃}. This initial picture is more ap-
propriate for quiescent cell types or mtDNA ‘set points’
than for the pronounced changes in mtDNA copy num-
ber that occur during development [2, 14]. We will later
generalise this picture to allow for arbitrary changes in
copy number.

We will first consider general results from this for-
malism, applicable to a wide variety of possible cellular
behaviours. We will then illustrate its application with a
range of previously proposed, and new, feedback mech-
anisms.

Results

Copy number variance with stable population
means

Any control mechanism of the form Eqns. 1-4 (including
manifestations of feedback control) can be represented
to linear order by a Taylor expansion of its rates about
{w̃, m̃} (the steady state exists by construction with our
previous assumption):

λ(w,m) ' β0 + βw(w − w̃) + βm(m− m̃), (5)

ν(w,m) ' δ0 + δw(w − w̃) + δm(m− m̃). (6)

It will readily be seen that to support a stable pop-
ulation mean at {w̃, m̃}, δ0 = β0. Assuming that w
and m can be written as the sum of a deterministic and
a fluctuating component, we use Van Kampen’s system
size expansion to find a Fokker-Planck equation describ-
ing the behaviour of w and m governed by Eqns. 5-6
[24, 25]. From this equation we extract expressions for
the time behaviour of the mean and variance of w and
m (see SI Sections 1-2).

We show in SI Section 4 that attempting to identify
a stable state for population variances and covariance
yields the condition:

2m̃(m̃+ w̃)β0

w̃
= 0; (7)
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hence, any population mean state in which mutant
content m̃ is nonzero does not admit a stationary solu-
tion for variances, unless β0 = 0. If β0 = 0 then there
is no further change to the system once steady state
has been reached (no stochastic turnover occurs) and
the system remains frozen thereafter. In other words,
for a nonzero mutant population and nonzero mtDNA
turnover, the variance of at least one mtDNA popula-
tion will change with time.

The Fokker-Planck equation can be used to com-
pute the expected behaviours of 〈w2〉 (wildtype vari-
ance), 〈m2〉 (mutant variance), and 〈wm〉 (wildtype-
mutant covariance) for a given control mechanism. The
variance and covariance solutions display some tran-
sient behaviour, involving terms on the timescale t′ ≡
exp(((βm − δm)m̃ + (βw − δw)w̃)t). As, for stability,
βi are nonpositive and δi are nonnegative, t′ is either a
constant or an exponentially decaying function of time
t. The expressions thus subsequently converge to linear
trends for large t:

〈w2〉 = F decay1 (t′) + θ1t+ φ1 (8)

〈wm〉 = F decay2 (t′) + θ2t+ φ2 (9)

〈m2〉 = F decay3 (t′) + θ3t+ φ3 (10)

︸ ︷︷ ︸
transient
behaviour

︸ ︷︷ ︸
long-term linear

behaviour

The forms of the transient functions F decayi , and the
constants θi and φi are given in SI Section 2 and are
functions only of the difference between replication and
degradation rates (βi − δi), steady-state copy numbers
m̃ and w̃, and mitophagy rate β0. Furthermore, the
structure of these expressions is such that for β0 6= 0
and nonzero w and m, at most one of the θi can be
zero, θ1 ≥ 0, and θ3 ≥ 0. Thus, around the mean
(w̃, m̃), either wildtype variance or mutant variance, or
both, increase linearly with time (Fig. 1 I). As time
continues, the increasing variance means that extinction
of one mtDNA becomes increasingly likely: implications
of this behaviour are explored below.

The mathematical structure of the solutions only ever
involves the difference between replication and degrada-
tion rates (βi − δi), showing that control of (a) biogen-
esis rates and (b) degradation rates induce comparable
behaviour in the cellular mtDNA population (Fig. 1 III).

Heteroplasmy statistics

As shown in SI Section 5, a first order Taylor expansion
of a function of random variables gives an approximation
for the variance of h = m/(w +m):

〈h2〉 =
〈w〉2〈m2〉+ 〈m〉2〈w2〉 − 2〈wm〉〈w〉〈m〉

(〈m〉+ 〈w〉)4
(11)

Figure 2: Behaviour of different specific control mecha-
nisms. All control mechanisms have at least one population with
time-increasing variance and so have increasing heteroplasmy vari-
ance; mean heteroplasmy 〈h〉 remains constant through these sim-
ulations. (i) Replication λ(w,m) and degradation ν(w,m) rates
for model control mechanisms explored in the text, from existing
studies and newly proposed here. (ii)-(iii) Copy number and het-
eroplasmy moments with time for these control mechanisms, (ii)
in the absence of cell divisions and (iii) with binomial cell divi-
sions every 10 time units. Analytic results (lines; full expressions
in SI Section 3) match stochastic simulation (crosses) through-
out. Parameters used are chosen to support the same steady state
(w̃ = 900, m̃ = 100) and with a turnover timescale of τ = 5 days.
Other parameters: γ = 0, αm = 0.001, α = 2 (except for models
B, E, F, for which α = 0.002, 0.002, 200 respectively); 105 stochas-
tic simulations used.
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and we can then use previously obtained expressions
for 〈w〉, 〈m〉, 〈w2〉, 〈m2〉, 〈wm〉 to compute this approxi-
mate heteroplasmy variance. Neglecting transient terms
and using 〈w〉 = w̃ and 〈m〉 = m̃ in Eqn. 11, gives, after
some algebra,

〈h2〉 =
2β0

n
h(1− h)t;

〈h2〉
〈h〉(1− 〈h〉)

≡ 〈h2〉′ =
2β0t

n
,

(12)
where n = w̃ + m̃, with w̃ = (1 − h)n and m̃ = hn:

thus h is (mean) heteroplasmy and n is (mean) total
copy number (recall that β0 = δ0 in steady state). In
Eqn. 12 we have used normalised heteroplasmy variance
〈h2〉′, accounting for the dependence of 〈h2〉 on the mag-
nitude of h; 〈h2〉′ is the quantity most often reported in
experimental studies.

In other words, when the system size expansion is
valid (see below), for any control mechanism, hetero-
plasmy variance in the copy number steady state in-
creases linearly with time with a rate that depends only
on the copy numbers of the system and the timescale
of random turnover (Fig. 1 II) (Eqn. 12 is indepen-
dent of the β and δ terms in Eqns. 5-6). As we dis-
cuss later, this observation implies that many possible
mechanisms could be responsible for the same observed
trend in heteroplasmy variance, meaning that measure-
ments of heteroplasmy variance alone, even if repeated
at different time points, place only a limited mechanistic
constraint on mtDNA dynamics [14]. In SI Section 7 we
discuss experimental strategies that can more efficiently
discriminate between different control mechanisms.

Transient behaviour and cell divisions, and va-
lidity of the expansion

To obtain analytic insight, we have thus far focussed
on modelling mtDNA behaviour using the system size
expansion when a steady-state assumption had already
been applied. Transient behaviour can also be explored
by employing the system size expansion directly on
the appropriate master equation, using the full expres-
sions for λ(w,m) and ν(w,m) (see SI Sections 2 & 6).
Relaxing the steady state assumption means that the
ODEs describing variance behaviour are analytically in-
tractable for many forms of λ(w,m), ν(w,m). However,
they can simply be solved numerically and, as shown
in subsequent sections, well match stochastic simula-
tion (which of course is numerically far more intensive).
This ODE approach fully accounts for non-equilibrium
behaviour – including transient relaxation, cycling, and
so on – while the system size expansion remains appro-
priate (see below).

This analysis can readily be used to characterise the
effect of partitioning mtDNAs at cell divisions. To com-
pute the time behaviour of variance where cell divisions
occur at arbitrary times, we invoke a linear noise as-
sumption [24, 25], first using the ODEs above to com-
pute the variance behaviour within one cell cycle. Parti-

tioning rules for copy number statistics are then applied,
and the resulting post-partition statistics are used as the
initial condition for a next phase of ODE solution. We
here illustrate this process for binomial partitioning of
mtDNAs to connect with recent studies in mice [14] and
HeLa [15], although with an appropriate choice of par-
titioning rules, this approach can be used to address
any partitioning regime (for example, the sub-binomial
case recently reported in fission yeast [16]). In the case
of binomial partitioning, the appropriate partitioning
rules are 〈w〉 → 〈w〉/2, 〈m〉 → 〈m〉/2, 〈w2〉 → 〈w2〉/4 +
〈w〉/4, 〈wm〉 → 〈wm〉/4, 〈m2〉 → 〈m2〉/4 + 〈m〉/4, fol-
lowing straightforwardly from the variance of a bino-
mial distribution with p = 1/2 as n/4. We will see
below that this picture well describes the behaviour of
stochastic populations in dividing cells: hence, the to-
tal variance contributions of turnover between divisions
and partitioning at divisions can be modelled as a linear
sum, and the behaviour of mechanisms across cell cycles
is comparable to that within a cell cycle.

The results above hold for a nonzero mutant popu-
lation. As copy number variance increases, we expect
extinction of one mtDNA type to become increasingly
likely. To address this behaviour, we must consider
when the system size expansion itself, which is reliant
on the validity of the linear noise approximation, holds.
An important threat to this validity is a non-negligible
extinction probability for one mtDNA type, whereupon
a normal distribution no longer adequately models the
copy number distribution. Heuristically, this situation
arises when, for example,

√
〈m2〉 ∼ 〈m〉. Another chal-

lenge arises due to the fact that, when λ and ν are func-
tions of w and m, our linear theory is an approximation
to the nonlinear dynamics that result. Highly nonlin-
ear behaviour (for example, pronounced discrete steps
in rates occuring at critical copy numbers) will therefore
not be perfectly captured; but the ability of our theory
to reproduce simulation of the fully nonlinear dynam-
ics (in Figs. 2, 4, 6 and SI Section 3) suggests that
the linear theory provides valuable insight into a wide
range of biologically plausible behaviours. Treatments
of fully nonlinear cases represent a substantial technical
challenge which will be addressed in future work.

In these cases, the mean and variance of mtDNA pop-
ulations are likely to be underestimated by the preced-
ing analysis (see SI Section 3), and the heteroplasmy
variance is overestimated, with the increase in 〈h2〉 with
time gradually becoming sublinear. Fixation is also ne-
glected by the deterministic version of the mean equa-
tions of motion, which allow an asymptotic descent to
zero. Thus, the more general statement of our finding is
that (i) for the period when extinction of either type is
unlikely, variances and covariances change linearly (af-
ter transients); (ii) as extinction of one type becomes
more likely due to this increased variance, the increas-
ing trend continues but departs from those linear forms
(in particular, the increase of 〈h2〉 slows to become sub-
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linear); (iii) when extinction of one type is almost cer-
tain, the system tends towards its behaviour if only one
type was present (ultimately stalling variance increase,
as if m̃ = 0 in Eqn. 7). The results we focus on in
this main text can be viewed as describing the ‘quasi-
stationary state’ where extinction is negligible; further
quantitative details can be derived using, for example,
adaptations of the system size expansion that address
extinction [26].

Specific control mechanisms and comparison
with simulation

The previous results make no assumptions about the
specific form of control applied to the mtDNA popula-
tion, other than it depends only on current state and is
manifest through the rates of Poissonian replication and
degradation which are equal for both mtDNA species
(and can be described with the system size expansion,
as discussed above). We can exploit the generality of
the preceding formalism to obtain results for any given
(feedback) control mechanism, defined by a specific form
of λ(w,m) and ν(w,m) in Eqns. 1-4.

We first consider the well-known ‘relaxed replication’
model [19, 1], which involves stochastic mtDNA degra-
dation, coupled with mtDNA replication which is phys-
ically modelled as a deterministic process. We propose
that, if degradation is regarded as a stochastic process
(due to its microscopic reliance on complicated pro-
cesses and colocalisations in the cell), picturing repli-
cation (which also relies on complicated interactions on
the microscopic scale) as a stochastic process leads to a
consistent stochastic generalisation (see Appendix A1).
The corresponding model has exactly the same expres-
sions for rates as in Ref. [1] (A in Fig. 2 i), but replica-
tion rate is now interpreted as the rate of a stochastic,
rather than a deterministic, process.

We also introduce several other models for mtDNA
control, to consider a range of potential functional
forms, including differential and ratiometric control
based on a target wildtype copy number, an absence
of any feedback control, and others (Fig. 2 i B-G). The
presence or absence of w and m in these expressions re-
flects what quantity is being sensed by the cell (wildtype
mtDNA alone, mutant mtDNA alone, or a combination
of the two). We further note that this general formalism
can also incorporate physical constraints on the mtDNA
population. For example, the hypothesis that mitochon-
drial concentration is controlled between cell divisions
[15] (recently confirmed in fission yeast [16]) could corre-
spond to wopt, the ‘target’ mtDNA number, being a lin-
ear function of cell volume in the models above; or could
arise through passive birth-death dynamics (model D)
with control implemented at the cell division stage (see
previous section). The interpretations of these control
mechanisms in terms of cellular sensing and the lan-
guage of stochastic population processes are given in SI

Section 3.

Fig. 2 ii illustrates the application of our analysis to
these example control mechanisms in the absence of cell
divisions. The close agreement between stochastic sim-
ulation and analytic results in steady state shows the
generality of our theory. The long-term linear increases
in one or both mtDNA variances are clear (Fig. 1 I),
and trajectories of 〈h2〉 with the same steady state and
turnover timescale are identical (Fig. 1 II). Fig. 2 iii,
including cell divisions, demonstrates close agreement
between ODE solutions and stochastic simulation, fur-
ther showing that the linear noise treatment successfully
captures stochastic behaviour over cell divisions. The
close similarity of 〈h2〉 trajectories across divisions is a
consequence of their aforementioned identity in steady
state conditions with no cell divisions (Fig. 2 ii); differ-
ences are due to the difference in mechanism behaviour
away from the steady state.

Applications I: Heteroplasmy variance increases
at constant mean copy number

The increase of heteroplasmy variance 〈h2〉 with time is
of profound importance in determining the inheritance
and onset of mtDNA diseases. Because disease symp-
toms often manifest only when heteroplasmy exceeds a
certain threshold [7], increasing heteroplasmy variance
with time can lead to pathologies even if mean hetero-
plasmy does not change (because a higher cell-to-cell
variance implies a greater probability of a given cell ex-
ceeding a threshold) [14].

We sought experimental evidence to support the lin-
ear increase of 〈h2〉 predicted by our theory. Time
course measurements of single-cell heteroplasmy val-
ues remain limited; we identified results from the
Drosophila germline [27] and in the mouse germline for
the NZB/BALB model [28, 29] and the HB model [14].
For these data, we compared the ability to fit the data of
a null model (H0 : 〈h2〉′ = α+ ε, where α is a constant),
and an alternative model (H1 : 〈h2〉′ = α+βt+ε), where
〈h2〉′ changes linearly with time as our theory predicts
(Eqn. 12; Fig. 1 II). Using the Akaike information cri-
terion (AIC) and assuming normally-distributed noise
on mean 〈h2〉′ (ε ∼ N (0, σ2), an assumption consistent
with our linear approximation, but which can be further
refined as in Ref. [29]), we found that the alternative,
time-varying model was favoured in all cases, providing
support for our theory (Fig. 3A-C).

These results are quantitatively consistent with a pre-
vious study on the dynamics of heteroplasmy variance
during the mtDNA bottleneck in mice [14] where a
mechanism involving random mtDNA turnover and ran-
dom mtDNA partitioning at cell divisions was found
to best explain experimental observations. MtDNA in
mice and rats often has a half-life of 10-100 days [23].
This corresponds to β0 = δ0 = log 2/t1/2 = 0.03− 0.003
days−1 and τ = t1/2/ log 2 = 5 − 50 days. In Fig. 2
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Figure 3: Experimental support for linear 〈h2〉 in-
crease. Normalised heteroplasmy variance 〈h2〉′ in model organ-
ism germlines over time (points); lines show maximum-likelihood
linear fit for 〈h2〉 as a function of time. Insets give Akaike infor-
mation criterion (AIC) values for H0 (〈h2〉′ is constant) and H1

(〈h2〉′ increases linearly with time). Model organism and refer-
ence(s): (i) Drosophila [27]. (ii) NZB/BALB mice [28, 29]. (iii)
HB mice [14].

we show the patterns of copy number and heteroplasmy
means and variances for τ = 5 days and 103 mtDNA
molecules per cell under different specific control strate-
gies. The increase of 〈h2〉 from 0 to 10−3, correspond-
ing for h = 0.1 to an increase in 〈h2〉′ from 0 to 0.011,
matches the scale of change observed in the mtDNA
bottleneck (though the bottleneck is complicated by
changing population size n and compensatory chang-
ing turnover β0) [14]. Previous work has shown that
the case with no feedback (D in Fig. 2 ) describes well
the behaviour of mtDNA with cell divisions in mouse
development [14]. In Appendix A1 we discuss further
connections with previous theoretical studies; experi-
mental cell-to-cell measurements in more quiescent cell
types, while currently lacking, will provide valuable fur-
ther tests of our theory.

MtDNA turnover in the Wright formula

Powerful existing analyses of mtDNA population vari-
ance [22, 29] with widespread influence [3] have drawn
upon a classical theory by Wright (and Kimura) [21, 30],
describing stochastic sampling of a population of ele-
ments between generations. The resulting expression
for expected heteroplasmy variance is the well-known
equation sometimes referred to as the ‘Wright formula’
(though other equations also bear this name) [22, 3]:

〈h2〉′ = 1−
(
1− (2ne)

−1
)g
, (13)

where ne is an effective population size and g is a num-
ber of generations. The mapping of this effective theory
to the complicated mtDNA system is valuable to de-
velop intuition but cannot capture the detailed dynam-
ics of individual mtDNA molecules, due to assumptions
(see Appendix A2) that mean the effective parameters
of the theory (ne and g) cannot generally be interpreted
as biological observables [22, 31], preventing quantita-
tive analyses of mechanisms and dynamics [3]. In par-

Figure 4: Correcting the Wright formula to include
mtDNA turnover and connect to biological observables.
Application of the Wright formula Eqn. 13 to stochastic mtDNA
populations subject to division is only semi-quantitative: the Un-
adjusted Theory lines (dashed) for given effective population sizes
ne do not describe the behaviour of simulations of mtDNA pop-
ulations of that size (crosses). Correcting for mtDNA turnover
with Eqn. 14 quantitatively connects Theory lines (solid) and
simulation (crosses); further improvement can be achieved using
the ODE approach in Fig. 2 .

ticular, ne does not generally correspond to a minimum
mtDNA copy number (see Appendix A2), and, being
a genetic rather than a physical parameter, ‘is unlikely
ever to correspond closely to the number of anything’
[31].

The Wright formula, however, does accurately de-
scribe the heteroplasmy variance due to binomial sam-
pling of 2ne real elements at cell divisions for an ob-
servable population size, and, as seen in the previous
section, the additional effect of mtDNA turnover based
on observable values can be included as an extra lin-
ear contribution. In general, this term will depend on
the dynamics controlling the mtDNA population and
can easily be calculated using the ODE approach above
(Fig. 2 ).

In the case where no systematic change in mtDNA
population size occurs with time, we can use the obser-
vation that 〈h2〉 trajectories are often comparable across
a variety of different possible cellular control mecha-
nisms (and identical in the steady state; Fig. 2 and Eqn.
12) to produce a simple approximate description linking
〈h2〉′ to observables. The simple steady state behaviour
is given by Eqn. 12. To construct an approximation we
use a simple estimate of mean population size over a cell
cycle, writing n′ = 3

2n, where n is the mtDNA popula-
tion size immediately after division, and n′ thus gives a
population size ‘average’ over the changes within a cell
cycle. Using the above analysis with w0 = (1 − 〈h〉)n′,
m0 = 〈h〉n′ (representing the ‘average’ populations of
wildtype and mutant mtDNA), and β0 = 1/τ (so that
τ is the timescale of mtDNA degradation), the corre-
sponding expression in terms of h and n is then given
by a ‘turnover-adjusted’ Wright formula (see Appendix
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Figure 5: Using the adapted Wright formula to estimate
mtDNA turnover. (i) MtDNA copy number n, taken to cor-
respond to 〈w +m〉, in the mouse germ line during development.
Data from several existing studies, referred to by first author
[32, 28, 33, 34]. (ii) Normalised heteroplasmy variance 〈h2〉′ in
this time period (points). Dark grey line is the mean inferred
increase (which is linear, in agreement with our theoretical pre-
dictions, as in Fig. 3). Light grey lines give the 95% confidence
intervals in the 8.5-13.5 dpc window, from a linear model fit. Val-
ues used in the turnoved-adjusted Wright formula (Eqn. 14) are
given.

A2):

〈h2〉′ = 1−
(
1− (2n)−1

)g
+ 4t/(3nτ), (14)

where g is the number of cell divisions that have oc-
curred and t is the amount of time that has expired since
an initial state with 〈h2〉′ = 0. This expression is sub-
ject to the conditions for system size expansion validity
described above; thus, as fixation probability increases,
the increase of 〈h2〉′ will drop below this prediction.

Fig. 4 illustrates the agreement between Eqn. 14
and stochastic simulation for the range of control mech-
anisms we consider under different population sizes and
heteroplasmies. It is worth reiterating that more ex-
act solutions for a given control mechanism can eas-
ily be computed using the preceding ODE approach,
and stochastic analysis can also be used to quantita-
tively describe the effects of more specific circumstances
(for example, the systematically varying population size
through the mtDNA bottleneck [14]). In the case of no
such systematic variation, and, crucially, if the Poisso-
nian model Eqns. 1-4 holds, then Eqn. 14, a modi-
fied Wright formula, represents a simpler, approximate
way to establish a quantitative link between observed
normalised heteroplasmy variance 〈h2〉′ and observable
quantities (Fig. 1 IV) – n (mtDNA copy number imme-
diately after division), g (number of cell divisions), and
τ (timescale of mtDNA turnover).

Applications II: Linking physical and genetic
rates with the modified Wright formula

The Wright formula is traditionally used to compare a
heuristic, effective ‘bottleneck size’ across experimental
systems (for example, in studies of different organisms
[22] and of human disease [35]). In its uncorrected form
this ‘bottleneck size’ can only be semi-quantitatively
treated – bottleneck sizes can be ranked, but absolute
values and differences cannot be straightforwardly inter-
preted. Our adaptation allows us to use this formula to
connect the rates of physical subcellular processes with
the resulting rates of genetic change.

To illustrate this connection, we focus on a partic-
ular period during mouse development. Between 8.5
and 13.5 days post conception (dpc) in the developing
mouse germ line, cell divisions occur with a period of
about 16 hours [36], giving g = 7 or 8 cell divisions in
this period (of length t = 5 days). Copy number mea-
surements during this period show that the mean total
number of mtDNA molecules per cell remains of the or-
der of n = 2000 (Fig. 5(i)) [28, 33, 34]. During this
period, heteroplasmy variance 〈h2〉′ increases on aver-
age (but with substantial variability) from around 0.01
to 0.02 (Fig. 5(ii)) [32, 28]. Fig. 5(ii) shows a best-fit
line to 〈h2〉′ data, with slope 1.52× 10−3 day−1 (5-95%
confidence intervals (1.11− 1.92)× 10−3 day−1).

We can use these measurements in conjunction with
the turnover-adjusted Wright fomula (Eqn. 14) to ob-
tain estimates for the rate of mtDNA turnover during
this period. Using Eqn. 14 with the best-fit 〈h2〉′ =
1.52 × 10−3 × 5 = 7.6 × 10−3, and g = 7 divisions,
n = 2000 mtDNA molecules, t = 5 days gives the result-
ing estimate τ ' 0.57 days (5-95% confidence intervals
0.43-0.88 days, using the same values for n, g, t) for the
characteristic timescale of mtDNA degradation. This in-
crease in mtDNA turnover (relative to the τ ' 5−50 day
timescale in differentiated tissues [23]) in the germline
during this developmental period matches quantitative
results from a more detailed study of the bottleneck re-
porting τ within the range 0.38-2.1 days (based on pos-
teriors for ν = 1/τ between 0.02-0.11 hr−1) [14], and
illustrates how a suitable mathematical model can be
used to estimate biological quantities that are challeng-
ing to directly address with experiment [37].

Influence of mutations, replication errors, and
selective differences: quality control of replica-
tion errors

Our approach is easily generalised to include other pro-
cesses than those described by Eqn. 1-4: in SI Section
6 we demonstrate that adding and changing appropri-
ate processes allows us to analyse the effects on mtDNA
mean and variance due to de novo mutations, replication
errors, and multiple selective pressures. Our approach
can be thus used to characterise variability arising from
selection and mutation under any control mechanisms,
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Figure 6: Variability in quality control clearing of mu-
tants from replication errors. Co-evolution of (i) means and
(ii) variances of mutant m and wildtype w mtDNA in cells where
replication errors occur. Solid lines (downward trajectories; labels
[A-F]0) give the case where quality control is sufficiently strong
to clear the resulting mutant molecules (hence decreasing 〈m〉
in (i)); dashed lines (upward trajectories; labels [A-F]1) give the
case where quality control cannot clear mutants (hence increasing
〈m〉). Colours and labels correspond to different control models
(see text and Fig. 2 ). Points show stochastic simulation. Im-
portantly, regardless of the success of quality control in clearing
mutants, wildtype mtDNA variability 〈w2〉 can increase substan-
tially during the action of quality control (rightwards movement
in (ii)), and some strategies lead to order-of-magnitude differences
in this increase (starred arrow).

without requiring stochastic simulation.
We can use this ability to explore a particular sci-

entific question: if mtDNA replication errors occur
and the cell attempts to clear the resulting mutant
mtDNA through selective quality control, how do cel-
lular mtDNA populations change? To investigate this

question we introduce the process {w,m} µw−−→ {w,m +
1} (replication errors – leading to the production of a
new mutant mtDNA – occuring with rate µ) and repa-

rameterise Eqn. 4 as {w,m} (1+ε)mν(w,m)−−−−−−−−−→ {w,m − 1}
(a proportional increase of ε in mutant degradation com-
pared to wildtype degradation). We thus model the
situation where replication errors arise and the cell at-
tempts to clear them through quality control, while a
control strategy for mtDNA populations is also in place.

Fig. 6 illustrates the mean and variance of w and
m in two different cases, distinguished by the relative
magnitude of the selective difference (ε) and error rate
(µ). This ratio is crucial in determining whether mu-
tant mtDNA is cleared or increased: Fig. 6 (i) shows
that mutant is cleared when (1 + εν) � µ (selection is
sufficiently strong to overcome errors), but when selec-
tive difference ε is insufficiently high, mutant mtDNA
mean and variance (and heteroplasmy) increase with
time. In both cases, we also observe substantial dif-
ferences in mtDNA behaviour depending on the control
model in place. Control models lacking an explicit tar-
get copy number (D (no feedback); F,G (immigration-
like)) experience substantial increases in wildtype vari-
ance while mutant is being removed. Models involving a
target wildtype copy number and weak or no coupling to
mutant mtDNA (B, C, E) admit an order-of-magnitude
lower increase in wildtype variance as mutant is cleared.

Relaxed replication (model A), which combines a target
copy number with a strong coupling between mutant
and wildtype mtDNA, displays an intermediate increase
on wildtype variance as mutant is cleared.

Theoretical approaches which only consider the mean
behaviour of mtDNA populations (Fig. 6 (i)) cannot
account for this cellular heterogeneity, and the impor-
tant fact that quality control acting to remove mutant
mtDNA can also induce variability in wildtype mtDNA
(Fig. 6 (ii)). The action of quality control may there-
fore yield a subset of cells with wildtype mtDNA sub-
stantially lower than the mean value across cells – po-
tentially placing a physiological challenge on those cells
where wildtype mtDNA is decreased. In addition to the
important point that the simple presence of quality con-
trol does not guarantee the clearing or stabilisation of
mutant load, we thus find that quality control may have
substantial effects on wildtype as well as mutant mtDNA
if cellular control couples the two species (Fig. 1 V).

Applications III: Variance induced through mu-
tant clearing

The A > G mutation at position 3243 in human
mtDNA is the most common heteroplasmic pathologi-
cal mtDNA mutation, giving rise to MELAS (mitochon-
drial encephalomyopathy, lactic acidosis, and stroke-
like episodes), a multi-system disease. The dynamics
of 3243A > G heteroplasmy are complex and tissue-
dependent; its behaviour in blood has been charac-
terised in particular detail using a fluorescent PCR assay
for heteroplasmy [38] in a way that allows us to explore
our theoretical predictions about mtDNA statistics with
mutant clearing.

The authors of Ref. [38] took two blood samples,
several years apart, from human patients, and quan-
tified 3243A > G heteroplasmy (h) and mean mtDNA
copy number per cell for both samples. While single-cell
data is not presented in the publication, progress can be
made with the averaged quantities. A strong decrease
in (h) with time is observed for all patients, confirming
that mutant mtDNA is being cleared (Fig. 7(i)). The
behaviour of total mtDNA molecules per cell (w + m)
is less consistent, with a range of large increases and
moderate decreases in total number. As shown in Fig.
7(ii)-(iii), patient-to-patient variance in both w and m
increases with time in conjunction with h decreases.

Although the measurements in Ref. [38] are averages
over groups of cells, an approximate quantitative com-
parison of these data with the predictions of our theory
can be made. In the spirit of ‘back-of-the-envelope’ cal-
culations [39], we estimate that each sample of cells giv-
ing rise to a measurement corresponds to approximately
103 cells (see SI Section 8). Then, using an estimate
of τ = 5 days (by comparison with other mammalian
species, as above), we find that a selective pressure of
ε8 ' 1.2×10−4 day−1 matches the observed decrease in
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Figure 7: MtDNA evolution in MELAS patients from
Ref. [38]. (i) Changes in mean heteroplasmy 〈h〉 between two
samples from patient blood, showing a general decrease in 〈h〉 over
time. (ii) Changes in mean cellular wildtype content w between
these samples. (iii) Changes in mean cellular mutant content m.
In both (ii) and (iii), an overall increase in variance over time
is observed: hence 〈w2〉 and 〈m2〉 increase while 〈h〉 decreases,
consistent with Fig. 6.

heteroplasmy, corresponding, for example, to a decrease
from 0.15 to 0.14 over 8 years, as in Fig. 7(i). Solv-
ing the ODEs resulting from this system, using control
model D as the simplest case, predicts increases in cell-
to-cell copy number variance of approximate magnitude
〈w2〉 ∼ 105 and 〈m2〉 ∼ 2 × 104 over 8 years. We can
translate these cell-to-cell values into the variance ex-
pected across samples of cells by dividing by the num-
ber of samples (taken as 103 as above). The resulting
variance corresponds, for example, to expected standard
deviations in wildtype and mutant copy number after
8 years of 10.0 and 4.0 respectively for a sample with
〈w〉 = 85 and 〈m〉 = 15 (consistent with the increas-
ing spread of values in Fig. 7(ii)-(iii)). We used the
Kolmogorov-Smirnov test respectively to test the alter-
native hypotheses that the experimentally-observed 〈w〉
and 〈m〉 at the later time point differed from those pre-
dicted by our model; no test yielded p < 0.05 (see SI
Section 8). Of course, an absence of support for an al-
ternative hypothesis cannot be taken as support for a
null hypothesis, but shows that the existing experimen-
tal data is not incompatible with our model.

The observations in Fig. 7 support the predictions
made in Fig. 6, where mutant load is decreased but
variance in wildtype copy number (and mutant copy
number) increases. The bottom-left quadrant of Fig.
6 (ii) shows that different control mechanisms display
similar initial behaviour; follow-up studies on these pa-
tients could be used to distinguish possible mechanisms
for mtDNA control. For example, if the rate of wild-
type variance increase decreases over time, models B,
C, and E are more likely; if wildtype variance contin-
ues to increase, models A, D, F, and G and more likely.
More detailed model discrimination based on the time
behaviour of w and m variances are possible (Fig. 2),
and can be performed using statistical methods account-

ing for mean and variance behaviour [29, 40].

Discussion

A general, bottom-up theory has been produced to
describe the time behaviour of cell-to-cell variance in
mtDNA populations subject to controlled biogenesis
and/or degradation, mutation, selection, and cell divi-
sions. This theory is based around the microscopic be-
haviour of mtDNA molecules, allowing a hitherto absent
connection between widely-used ‘effective’ statistical ge-
netics approaches (Eqn. 13) and measurable biological
quantities, and motivating experiments to further elu-
cidate the mechanisms acting to control mtDNA (de-
scribed in SI Section 7). We have shown that the predic-
tions of this theory agree with experimental observations
of mixed mtDNA populations, and that the application
of appropriately validated mathematical theory allows
us to make estimates of important biological quantities
that remain challenging to directly address with exper-
iments. Our theory describes the cell-to-cell variability
in mtDNA populations and thus provides a framework
with which to understand the inheritance and onset of
mtDNA diseases [6, 14].

Our theoretical platform unifies several existing mod-
elling approaches that have driven advances in the study
of mtDNA populations. We have specifically demon-
strated that the ‘relaxed replication’ model [19, 1, 33]
(our model A), simple birth-death models [14, 20] (our
model D), and cellular controls based on homeostatic
principles [15, 16] (our models B, C, G) can naturally
be represented within our framework. As a result, an-
alytic expressions for the expected behaviour of het-
eroplasmy variance and other population statistics can
readily be extracted for these and other mtDNA mod-
els (see SI Section 3), allowing the detailed character-
isation of mtDNA dynamics, including the probability
of crossing disease thresholds [7], which can be com-
puted from heteroplasmy statistics [14]. We have also
used the theoretical ideas developed herein to refine a
widely-used model for mtDNA populations of changing
size (the Wright formula), explicitly connecting it with
cellular processes and allowing a link between physical
and genetic quantities (Eqn. 14, Fig. 5 ).

Further, our theory also describes the dynamics of
heteroplasmy change with time in the presence of se-
lective pressure for one mtDNA type. Given an ini-
tial heteroplasmy h0 and a selective pressure β (posi-
tive β corresponding to positive selection for the mutant
mtDNA type), we find (see SI Section 5) that hetero-
plasmy evolves according to:

h =
1

1 + 1−h0

h0
e−βt

. (15)

This behaviour immediately motivates a transforma-
tion allowing the evolution of heteroplasmy to be com-
pared across different starting values h0:
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∆h′ ≡ βt = log

(
h(h0 − 1)

h0(h− 1)

)
, (16)

allowing, as in our previous work [23], heteroplasmy
results from different biological samples to be compared
together, accounting for different initial heteroplasmies
(in other words, the same selective pressure will produce
the same ∆h′ regardless of h0).

It is likely that control mechanisms found in biology
have nonlinear forms (for example, sigmoidal response
curves are common in cellular signalling). We have
shown that a linearisation satisfactorily describes some
non-equilibrium behaviour (for example, in the case of
our cell division model) but further investigation of more
general nonlinear behaviour, and modulation of wider
cell behaviour by mtDNA populations (for example, by
influencing cell cycle progression [15]), are important fu-
ture developments. In SI Section 1 we discuss a linear
stability analysis of our expressions for mean mtDNA
behaviour, which highlights a link between the ‘sensing’
of an mtDNA species (in the sense that the presence of
that species modulates replication or degradation rates)
and the ability to control the mean level of that species.

The control of stochastic systems is a well established
field within control theory [41]. Optimal control mech-
anisms addressing the mean and variance of stochastic
processes have been derived in a variety of contexts (see,
for example, [42] and citations therein), particularly in
financial applications [43], and often find tradeoffs be-
tween controlling the mean and variance of a process.
We observe a comparable tradeoff, that tight control on
moments of one species leads to loose control on another.
We have focussed on providing a general theoretical for-
malism with which to treat any given control mecha-
nism; it is anticipated that the above treatment may
also be of value in describing heterogeneity in other sys-
tems where replication and/or death rates of individuals
depend on feedback from current numbers of individu-
als (for example, through terms describing competition
for resources in ecology). Within the context of mtDNA
populations, we anticipate that this theoretical frame-
work will assist in understanding natural processes of
mtDNA inheritance and evolution within an organismal
lifetime (including segregation and increasing variance
with age) [14, 23], and informing applied approaches to
control mitochondrial behaviour with genetic tools [4, 5].

Appendix

A1. Interpretation of relaxed replication.

The relaxed replication model [19, 1] describes a cel-
lular population of mtDNA molecules according to the
following algorithm. MtDNAs randomly degrade as a
Poisson process with rate 1/τ . Every timestep ∆t, the
value of C(w,m), a deterministic function of w and m,
is computed, then ∆tC(w,m) mtDNAs are added to the

population. The genetic properties of these added mtD-
NAs are random – each is assigned a genetic type based
on a random sampling of the existing populations – but
their physical properties (i.e. the total copy number
added at each step) is deterministic. We argue that, as
both replication and degradation of mtDNAs depend on
complicated behaviour and thermal, microscopic inter-
actions, it makes more sense to model both processes as
stochastic. Thus, C(w,m) is interpreted as the rate of a
Poisson process describing replication, just as 1/τ is the
rate of a Poisson process describing degradation. This
interpretation reconciles the nature of the two processes.

Although this feature is less interesting than the un-
derlying scientific behaviour, the original algorithm also
raises a (not insurmountable) technical problem with
implementation. If a timestep ∆t < 1/C(w,m) is cho-
sen, the algorithm will never add any mtDNA to the sys-
tem. But, in order to suitably characterise the stochas-
tic degradation without using the Gillespie algorithm
[44], it is desirable to choose a timestep ∆t as low as
possible. There is therefore a risk that one or other of
the deterministic replication and stochastic degradation
processes is inadequately captured in a given simulation
protocol.

We have illustrated the excellent agreement between
our theoretical approaches and stochastic simulation
(for example, Fig. 2 ). To quantitatively connect with
previous analyses of specific control strategies, we con-
firm that the behaviour for model A (relaxed repli-
cation) matches that observed in previous simulation
studies [19] with a back-of-the-envelope calculation [39].
The rate of variance increase with time with τ = 5
(comparable in magnitude to the (1 − 10) × ln 2 days
used in Ref. [19]) and wopt = 1000 from Fig. 2 is
roughly 40 day−1. Considering 50 years of evolution of
this system, we expect a standard deviation of roughly√

40× 50× 365 ' 850 in mutant copy number. This
value is consistent with the simulations in Ref. [19].

We connect to an additional numerical result in Ref.
[1]. In the absence of a mutant population, the vari-
ance of the wildtype population was reported to be sta-
ble at wopt/(2α), with the original model interpretation
of mtDNA replication as deterministic. Under the in-
terpretation of stochastic replication, an absent mutant
population (mss = 0) permits stability in the wildtype
population variance, which after a little algebra is calcu-
lated to be wopt/α. Intuitively, modelling both replica-
tion and degradation as stochastic does not affect mean
copy number but does increase variance.

A2. Interpretation of Wright formula for
mtDNA.

The Wright formula

〈h2〉 = 〈h〉(1− 〈h〉)
(

1−
(

1− 1

ne

)g)
. (17)
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has been proposed as a model for the time evolution
of heteroplasmy variance 〈h2〉 in a population with ef-
fective size ne subject to random partitioning at each
of g generations. This picture has been successfully em-
ployed to investigate heteroplasmy distributions in real
systems [22], with ne and g interpreted as parameters of
the theory without immediate biological interpretation.

The mapping of the original genetic system consid-
ered by Wright [21] to cellular populations of mtDNA
requires some discussion. If ‘generations’ are interpreted
as cell divisions, the mechanism by which mtDNA copy
number is redoubled between divisions is assumed by
the model to be deterministic. Cell divisions will result
in a halving of the mtDNA population. Application
of the Wright model assumes that the original popula-
tion is thenceforth recovered with no increased variance
in the population. In other words, the mtDNA popu-
lation is assumed to exactly double between divisions
with no stochasticity in the process. As we underline in
the Main Text, the effects of (inevitable) stochasticity
due to mtDNA turnover are not explicitly captured by
the Wright formula. Other complications exist, as de-
scribed in [22], but play less important roles here. As a
result, the ‘bottleneck size’ ne cannot immediately be in-
terpreted as an observable minimum cellular copy num-
ber of mtDNA molecules (a quantity that is reported
by, for example, a qPCR experiment measuring cellu-
lar mtDNA content), but rather the size of an effective
‘founder’ population.
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Supplementary Information

S1. Expansion of the control law.

If we write εw = w − wss, εm = m−mss, the expansion of replication and degradation rates λ(w,m) and ν(w,m)
about the steady state {wss,mss} gives

λ(w,m) ' λ(wss,mss) +
∂λ(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂λ(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2) (18)

ν(w,m) ' ν(wss,mss) +
∂ν(w,m)

∂w

∣∣∣∣
(wss,mss)

εw +
∂ν(w,m)

∂m

∣∣∣∣
(wss,mss)

εm +O(ε2). (19)

This expansion represents a model of a given control strategy λ(w,m), ν(w,m), which, if the original function is
well behaved, we expect to reasonably reflect behaviour of the system close to {wss,mss}. Simulation results show
that this expectation is fulfilled for a wide variety of cases (see figures in the Main Text).

To find wss and mss we solve the equations describing the deterministic behaviour of the system:

dw

dt

∣∣∣∣
(wss,mss)

= wssλ(wss,mss)− wssν(wss,mss) = 0 (20)

dm

dt

∣∣∣∣
(wss,mss)

= mssλ(wss,mss)−mssν(wss,mss) = 0 (21)

It will be observed that for this steady state to exist, the terms λ(wss,mss) and ν(wss,mss) in Eqns. 18-19 must
be equal. We can write the general expansion form of λ(w,m) and ν(w,m), truncated to first order, as

λ(w,m) ' β0 + βw(w − wss) + βm(m−mss), (22)

ν(w,m) ' δ0 + δw(w − wss) + δm(m−mss), (23)

with βw = ∂λ/∂w|wss,mss , βm = ∂λ/∂m|wss,mss , δw = ∂ν/∂w|wss,mss , δm = ∂ν/∂m|wss,mss . Clearly, to support
convergence to a steady state, βw and βw must be negative and δw and δm must be positive. Given this model for
control dynamics, we next characterise the variance of the system. We can thus describe the system with a set of
R = 4 processes with rates

f1 = w (β0 + βw(w − wss) + βm(m−mss)) (24)

f2 = m (β0 + βw(w − wss) + βm(m−mss)) (25)

f3 = w (δ0 + δw(w − wss) + δm(m−mss)) (26)

f4 = m (δ0 + δw(w − wss) + δm(m−mss)) (27)

and stoichiometry matrix describing the effects of these reactions on the N = 2 species we consider as

S = ((1, 0), (0, 1), (−1, 0), (0,−1))T . (28)

Using index i = 1 to correspond to species w and i = 2 to correspond to species m, the master equation for the
system, describing the time evolution of Pw,m (the probability of observing w wildtype and m mutant mtDNAs)
can then be written

∂Pw,m
∂t

=

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
fj(w,m)Pw,m (29)

where E−Sij takes its normal meaning as a raising and lowering operator [24], adding −Sij to each occurrence
of index i that follows it on the right (so e.g. as S11 = 1 and w corresponds to index 1, E−S11fj(w,m)Pw,m →
fj(w − 1,m)Pw−1,m).

The potential nonlinearities and coupling between species in this equation prevents a full general solution. To make
progress, we employ Van Kampen’s system size expansion [24, 25] and write w = φwΩ+ξwΩ1/2,m = φmΩ+ξmΩ1/2,

13



representing copy numbers as the sum of deterministic components φi and fluctuation components ξi scaled by
powers of system size Ω. Following the standard expansion procedure, by writing E, Pw,m and fi in terms of
Ω and collecting powers of Ω in Eqn. 29, first gives equations for the deterministic components of the system
(corresponding straightforwardly to the macroscopic rate equations):

∂φi
∂t

=

R∑
j=1

Sijfj , (30)

then gives a Fokker-Planck equation for the time behaviour of the fluctuation components in terms of the bivariate
probability distribution Π(ξ, t) of ξ = (ξw, ξm) at time t:

∂Π(ξ, t)

∂t
=

N∑
i,j=1

Aij
∂(ξjΠ)

∂ξi
+

1

2

N∑
i,j=1

Bij
∂2Π

∂ξi ∂ξj
, (31)

where

Aij =

R∑
k=1

Sik
∂fk
∂φj

, (32)

Bij =

R∑
k=1

SikSjkfk. (33)

The form of Eqns. 24-27 and Eqn. 28 gives, for steady state copy numbers and δ0 = β0, A11 = κwwss, A12 =
κmwss, A21 = κwmss, A22 = κmmss, B11 = 2β0wss, B22 = 2β0mss, B12 = B21 = 0, where κw = (βw − δw), κm =
(βm − δm). From this Fokker-Planck equation expressions for the moments of ξi can be extracted [24], leading to
the expressions:

d〈ξ2
w〉
dt

= 2A11〈ξ2
w〉+ 2A12〈ξwξm〉+B11 (34)

d〈ξwξm〉
dt

= (A11 +A22)〈ξwξm〉+A12〈ξ2
m〉+A21〈ξ2

w〉+B12 (35)

d〈ξ2
m〉
dt

= 2A22〈ξ2
m〉+ 2A21〈ξwξm〉+B22, (36)

A linear stability analysis of the deterministic ODEs describing mean behaviour is straightforward to perform.
Linearising Eqns. 20-21 about (wss,mss) gives

dw

dt
' (βw − δw)wss(w − wss) +O(w2) +O(wm) (37)

dm

dt
' (βm − δm)mss(m−mss) +O(m2) +O(wm), (38)

from which it is straightforward to see that if κw < 0 and κm < 0, the mean dynamics of w and m respectively
are linearly stable. This condition is met for w and m in control laws A and E, for w in B, C, and F, and for neither
in D. These specific examples illustrate the principle that if a species is explicitly ‘sensed’ – in the sense that it
modulates replication or degradation rate – its mean dynamics can be controlled to be linearly stable. If a species
is not explicitly sensed (replication and degradation are not functions of its copy number) then its mean dynamics
are not explicitly linearly stable, but may be ‘balanced’, as the corresponding κ term is zero. Perturbations in these
unsensed ‘balanced’ variables are neither damped away by control nor guaranteed to explode with time; hence the
variables are unconstrained but not explicitly unstable.

S2. Full solutions for steady state ODEs.

Eqns. 34-36 can be solved exactly for the Aij , Bij corresponding to the steady state condition above. The complete
solutions for arbitrary 〈ξ2

w〉, 〈ξwξm〉, 〈ξ2
m〉 at t = 0 are lengthy and do not allow much intuitive interpretation.

For 〈ξ2
w〉 = 〈ξwξm〉 = 〈ξ2

m〉 = 0 at t = 0 (noiseless initial conditions), we can solve and separate the long-term
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behaviour from the transient behaviour. The transients, given by Eqns. 42-44 below, involve terms in t′ ≡
exp((κmmss + κwwss)t). As the κi are nonpositive (for stability, βi are nonpositive and δi are nonnegative), t′ is
either a constant or an exponentially decaying function of time t; in the cases we consider, it either decays with
time (all models except D) or the associated term is always zero (model D).

〈ξ2
w〉 = F decay1 (t′) +

(
2β0msswss(mss + wss)κ

2
m

(mssκm + wssκw)2

)
t

+

(
−β0w

2
ss(wssκ

2
w +mssκm(4κw − 3κm))

(mssκm + wssκw)3

)
(39)

〈ξwξm〉 = F decay2 (t′) +

(
−2β0msswss(mss + wss)κmκw

(mssκm + wssκw)2

)
t

+

(
β0msswss(mssκm(κm − 2κw) + wssκw(κw − 2κm))

(mssκm + wssκw)3

)
(40)

〈ξ2
m〉 = F decay3 (t′) +

(
2β0msswss(mss + wss)κ

2
w

(mssκm + wssκw)2

)
t

+

(
−β0m

2
ss(mssκ

2
m + wssκw(4κm − 3κw))

(mssκm + wssκw)3

)
, (41)

where the F decayi functions characterising the transient behaviour are

F decay1 (t′) =
β0w

2
sst
′(κ2

wwsst
′ + κmmss(κm(t′ − 4) + 4κw))

(κmmss + κwwss)3
(42)

F decay2 (t′) =
β0wssmsst

′(κ2
mmss(t

′ − 2) + 2(mss + wss)κwκm + κ2
wwss(t

′ − 2))

(κmmss + κww2
ss)

3
, (43)

F decay3 (t′) =
β0m

2
sst
′(κ2

mmsst
′ + κwwss(κw(t′ − 4) + 4κm))

(κmmss + κwwss)3
(44)

(45)

Eqns. 39-41 with Eqns. 42-44 then give the full transient behaviour displayed in Fig. 2 , decaying to the
aforementioned linear behaviour with characteristic timescale (κmmss + κwwss).

S3. Interpretation and behaviour of specific control strategies.

The mechanisms described in the Main Text have simple interpretations in the language of stochastic processes.
Mechanism A, as discussed, corresponds to the ‘relaxed replication’ picture studied previously (Appendix A1).
Mechanism D corresponds to independent birth-death processes acting on both species (analysed in [14]). Mecha-
nism F corresponds to an immigration-death process acting on the wildtype (the dependence of replication rate on
1/w means that overall production is constant with time), and model C can be regarded as a birth-immigration-
death process on the wildtype (analysed in [20]). Both these mechanisms are thus expected to tightly control
wildtype behaviour (including controlling variance: immigration-death processes yield a constant steady-state vari-
ance), but do not sense (and, therefore, do not apply feedback to) mutant load. We also note that mechanisms
F and G are in a sense ‘dual’, in that they apply similar control manifest through replication with rate ∼ 1/w
and degradation with rate w respectively. The previous result that control applied to (a) biogenesis rates and (b)
degradation rates yields similar population behaviour is visible in the behaviour of F and G in Fig. 2 .

Table 1 gives, for each example control strategy in the Main Text, the corresponding steady state {wss,mss} and
the expansion terms for the strategy β, δ. The corresponding behaviours of variances, from Eqns. 39-41, are given
in Table 2 .

In the Main Text we discuss the implications of an increasing extinction probability of one mtDNA type. A non-
negligible extinction probability challenges the validity of the linear noise approximation and leads to departure
from results derived using the system size expansion. To illustrate this behaviour, we reduce the characteristic
timescale of the parameterisations used to explore models A-G in the Main Text, setting τ = 1 rather than τ = 5,
and simulate for a longer time window (see Fig. 8 ). It will be observed that as extinction probability increases
(as

√
〈m2〉 → 〈m〉), the numerical behaviour departs from that predicted analytically; in particular, the increase of

〈h2〉 slows from a linear to sublinear regime as discussed in the Main Text.
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Figure 8: Influence of fixation on expansion analysis. The models from the Main Text, simulated for a longer
time window and for a shorter characteristic timescale τ , illustrating the behaviour of the systems when extinction
becomes possible. Pm0 gives the numerically computed probability that m = 0; it can be seen that an increase in
this quantity corresponds to a moderate increase of 〈m〉 and 〈m2〉 relative to their predicted values, and a decrease
of 〈h2〉 relative to its predicted value (shifting towards a sublinear increase as discussed in the Main Text).

Control λ(w,m) (ν(w,m) for G) wss mss βw (δw for G) βm (δm for G)

A
α(wopt−w−γm)+w+γm

τ(w+m)

w0woptα

m0+w0α+γm0(α−1)

m0woptα

m0+w0α+γm0(α−1)
−m0−w0α−m0γ(α−1)
m0woptτ+w0woptτ

−(1+(α−1)γ)(m0+w0α+m0(α−1)γ)
(m0+w0)woptατ

B α(wopt − w) wopt − 1/ατ
m0
w0

(wopt − 1/ατ) −α 0

C α
(wopt

w
− 1

) woptατ

1+ατ
m0
w0

woptατ

1+ατ
−(1+ατ)2

woptατ
2 0

D 1/τ w0 m0 0 0

E αwopt − αw − αmm
w0(woptατ−1)

τ(w0α+m0αm)

m0(woptατ−1)

τ(w0α+m0αm)
−α −αm

F 1/w ατ
m0
w0

ατ −1

ατ2
0

G 1/τ −
wopt−w
woptτ

wopt
m0wopt
w0

1
woptτ

0

Table 1: Steady states and expansion terms for control strategies A-G.

We note that, in some physiological circumstances, the representation of one mtDNA type in a cellular population
may be low – for example, the appearance of one mutant mtDNA through de novo mutation or replication error,
or the presence of a small percentage of a foreign mtDNA haplotype due to carryover in gene therapies [6]. In these
cases, a non-negligible extinction probability may occur quickly and the transition of 〈h2〉 to a sublinear, or flat,
regime will be an important aspect of the long-term dynamics. In the case of mtDNA disease inheritance, however,
situations with a macroscopic fraction of mutant mtDNA are often the most important, due to the presence of a
‘heteroplasmy threshold’ [7] beyond which disease symptoms manifest. With two mtDNA haplotypes represented
in comparable proportions in the cell, our linear analysis holds and can be used to describe heteroplasmy variance
in somatic and germline cells.

S4. Steady state solution.

Eqns. 34-36 give, for steady state,
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Control Time-independent part of 〈ξ2w〉 Time-independent part of 〈ξwξm〉 Time-independent part of 〈ξ2m〉
w2

0(m0+w0)woptα(w0α
2−m0(1+γ(α−1))(3−4α+3γ(α−1)))

(m0+w0α+m0(α−1)γ)4

A
−m0w0(m0+w0)woptα(m0(1+α(γ−2)−γ)(1+γ(α−1))+w0α(α−2+2γ−2αγ))

(m0+w0α+m0(α−1)γ)4

m2
0(m0+w0)woptα(m0(1+γ(α−1))2+w0α(4−3α+4γ(α−1)))

(m0+w0α+m0(α−1)γ)4

B 1
ατ

−m0
w0ατ

−3m2
0

w2
0ατ

C
woptατ

(1+ατ)2

−m0woptατ

w0(1+ατ)2

−3m2
0woptατ

(w0+w0ατ)
2

D 0 0 0

E
w2

0(w0α
2+αmm0(4α−3αm)

(αw0+αmm0)3τ

m0w0(2ααm(m0+w0)−w0α
2−m0α

2
m)

(αw0+αmm0)3τ

m2
0(m0α

2
m+αw0(4αm−3α)

(αw0+αmm0)3τ

F ατ
−m0ατ
w0

−3m2
0ατ

w2
0

G wopt
−m0wopt

w0

−3m2
0wopt

w2
0

Control Time coefficient of 〈ξ2w〉 Time coefficient of 〈ξwξm〉 Time coefficient of 〈ξ2m〉

A
2m0w0(m0+w0)woptα(1+(α−1)γ)2

(m0+w0α+m0(α−1)γ)3τ

−2m0w0(m0+w0)woptα
2(1+(α−1)γ)

(m0+w0α+m0(α−1)γ)3τ

2m0w0(m0+w0)woptα
3

(m0+w0α+m0(α−1)γ)3τ

B 0 0
2m0(m0+w0)(woptατ−1)

w2
0ατ

2

C 0 0
2m0(m0+w0)woptα

w2
0(1+ατ)

D 2w0/τ 0 2m0/τ

E
2m0w0(m0+w0)α2

m(woptατ−1)

(w0α+m0αm)3τ2

−2m0w0(m0+w0)ααm(woptατ−1)

(w0α+m0αm)3τ2

2m0w0(m0+w0)α2(woptατ−1)

(w0α+m0αm)3τ2

F 0 0
2m0(m0+w0)α

w2
0

G 0 0
2m0(m0+w0)wopt

w2
0τ

Control Time coefficient of 〈h2〉 increase

A
2m0w0(αw0+m0+γ(α−1)m0)

(m0+w0)3woptατ

B
2m0w

2
0α

(m0+w0)3(woptατ−1)

C
2m0w

2
0(1+ατ)

(m0+w0)3woptατ
2

D
2m0w0

(m0+w0)3τ

E
2m0w0(w0α+m0αm)

(m0+w0)3(woptατ−1)

F
2m0w

2
0

(m0+w0)3ατ2

G
2m0w

2
0

(m0+w0)3woptτ

Table 2: Post-transient time behaviour of copy number and heteroplasmy variances in control strate-
gies A-G.
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2wss(β0 + κm〈ξwξm〉+ κw〈ξ2
w〉) = 0 (46)

wssκm〈ξ2
m〉+mssκw〈ξ2

w〉+ (mssκm + wssκw)〈ξwξm〉 = 0 (47)

2mss(β0 + κm〈ξ2
m〉+ κw〈ξwξm〉) = 0 (48)

Attempting to solve these equations for 〈ξ2
w〉, then 〈ξwξm〉, then 〈ξ2

m〉 first gives 〈ξ2
w〉 = (−β0 − κm〈ξwξm〉)/κw,

then 〈ξwξm〉 = (β0mss − κmwss〈ξ2
m〉)/(wssκw), leaving Eqn. 47 reduced to

2β0mss(mss + wss)

wss
= 0, (49)

a condition only fulfilled (due to the non-negativity of mss and wss) if mss = 0. If one proceeds through the
analysis by first solving for 〈ξ2

m〉, then 〈ξwξm〉, then 〈ξ2
w〉, a symmetric expression is obtained

2β0wss(mss + wss)

mss
= 0. (50)

Eqns. 49-50 illustrate the symmetry in the system: if the copy number of either species is zero then a situation
where variance does not increase is supported (but not inevitable: compare the behaviour of relaxed replication
model (A, fixed variance) and the birth-death model (D, increasing variance) in the case of zero mutant population).

The effect of selection, mutations, and replicative errors on mtDNA variances can straightforwardly be included
in this analysis. In this general case, we replace Eqns. 1-4 in the Main Text with:

{w,m} ε1+(1+ε2)wλ(w,m)−−−−−−−−−−−−→ {w + 1,m} (51)

{w,m} ε3+(1+ε4)mλ(w,m)−−−−−−−−−−−−−→ {w,m+ 1} (52)

{w,m} ε5+(1+ε6)wν(w,m)−−−−−−−−−−−−→ {w − 1,m} (53)

{w,m} ε7+(1+ε8)mν(w,m)−−−−−−−−−−−−→ {w,m− 1} (54)

{w,m} wµ1−−−→ {w − 1,m+ 1} (55)

{w,m} wµ2−−−→ {w,m+ 1} (56)

{w,m} wµ3−−−→ {w − 1,m+ 2}. (57)

Here, we have added processes corresponding to spontaneous mutation of a given wildtype mtDNA (µ1), and two
types of replicative error affecting wildtype mtDNA, giving rise to one (µ2; original molecule remains intact, new
molecule is mutated) and two (µ3; both original and new molecules are mutated) mutant mtDNAs respectively.
Differences manifest either through replicative or degradation advantages (or both) are incorporated with even-
indexed εi (providing multiplicative changes to the bare rates) and odd-indexed εi (providing additive changes).
We thus have two ways of provoking selective advantages in each case: increasing wildtype biogenesis, increasing
mutant biogenesis, increasing wildtype degradation, and increasing mutant degradation.

Fig. 9 shows example trajectories arising from each of our control mechanisms in the presence of the mutation
processes above, and the selective pressures (ε3, ε4, ε5, ε6) that favour mutant mtDNA. An excellent agreement
between ODE theory and stochastic simulation is again illustrated, and there is substantial similarity between
the behaviours caused by selection (favouring mutant mtDNA) and mutation (producing mutant mtDNA). In
several cases (mechanisms B, C, F, G), 〈m〉 and 〈m2〉 simply increase exponentially with time under favourable
selective or mutational pressures; this situation straightforwardly gives rise to a sigmoidal change in heteroplasmy
〈h〉 ∼ 1/(1 + e−∆ft(1 − h0)/h0), with ∆f an effective selective difference, as used in previous work [45, 23]. In
mechanisms coupling wildtype and mutant content (A and E), mutant increase is slower and accompanied by a
decrease in wildtype, attempting to keep total copy number constant. In these circumstances, variance behaviour
can be more complex: for example, under relaxed replication with pressure favouring mutant mtDNA, 〈w2〉 initially
increases then subsequently decreases as 〈w〉 decreases in magnitude. Mechanism D, where control does not couple
mutant and wildtype, has correspondingly perpendicular trajectories in (〈w〉, 〈m〉) space under different selective
pressures, but the coupling action of the mutation operations lead to curved trajectories under mutational influence.

18



A1

A3

A4

A5

A6

B1

B3

B4

B5

B6

C1

C3

C4

C5

C6

D1

D3

D4

D5D6

E1

E3

E4

E5

E6

F1

F3

F4

F5

F6

G1

G3

G4

G5

G6

i

1.0 1.5 2.0 2.5 3.0 3.5

log₁₀

〈 w〉

2.0

2.5

3.0

3.5

4.0

log₁₀

〈 m〉

A1
A2

A3

B1

B2

B3

C1

C2

C3

D1

D2

D3
E1

E2

E3

F1

F2

F3

G1

G2

G3

ii

1.5 2.0 2.5 3.0

log₁₀

〈 w〉

2.0

2.5

3.0

3.5

4.0

4.5

5.0

log₁₀

〈 m〉

A1

A3

A4

A5A6
B1

B3

B4

B5

B6

C1

C3

C4

C5

C6

D1

D3

D4

D5D6 E1

E3
E4

E5

E6

F1

F3

F4

F5

F6

G1

G3

G4

G5

G6

1.01.52.02.53.03.54.0

log₁₀

〈 w²〉

2

3

4

5

6

7

log₁₀

〈 m²〉

A1
A2

A3

B1

B2

B3C1

C2

C3

D1

D2

D3

E1

E2

E3

F1

F2

F3
G1

G2

G3

1.0 1.5 2.0 2.5 3.0 3.5 4.0

log₁₀

〈 w²〉
2

3

4

5

6

log₁₀

〈 m²〉

A1

A3

A4

A5

A6

B1

B3

B4

B5

B6

C1

C3

C4

C5

C6

D1

D3

D4

D5

D6

E1

E3

E4

E5

E6

F1

F3

F4

F5

F6

G1

G3

G4

G5

G6

0.00 0.05 0.10 0.15
CV w0.0

0.1

0.2

0.3

0.4
CV m

A1A2

A3

B1

B2

B3

C1

C2

C3

D1
D2

D3

E1

E2

E3

F1

F2

F3

G1

G2

G3

0.00 0.05 0.10 0.15
CV w

0.00

0.05

0.10

0.15

0.20

CV m

Figure 9: MtDNA copy number and variability under mutational and selective advantages for mutant
mtDNA. Mean, variance, and CV trajectories with (i) selection pressures, and (ii) mutation rates favouring mutant
mtDNA, under models A-G from the text. Some control strategies (A, E) keep mutant relatively bound but sacrifice
wildtype and provoke large increases in variability; others (B, C, F, G) focus on wildtype stability, allowing mutant
to grow unbound. Labels give the control model (letter) and the parameter varied (ε3 = 20; ε4 = 1; ε5 = 20; ε6 = 1
for (i); µ1 = 0.1;µ2 = 0.1;µ3 = 0.1 for (ii)); all other ε, µ parameters are set to zero. Results are shown for theory
(lines) and stochastic simulation (points), progressing from an initial condition with w0 = 900,m0 = 100 with the
parameterisations in Fig. 2 .

19



S5. Heteroplasmy.

For a general function h = h(x, y),

〈h2〉 = 〈(h− 〈h〉)2〉. (58)

We will consider an expansion about (x0, y0), a state such that h(x0, y0) = 〈h〉. Using the first-order Taylor
expansion of h(x, y) around (x0, y0):

〈h2〉 = 〈(h− 〈h〉)2〉 (59)

'

〈(
h(x0, y0) + (x− x0)

∂h

∂x

∣∣∣∣
(x0,y0)

+ (y − y0)
∂h

∂y

∣∣∣∣
(x0,y0)

− h(x0, y0)

)2〉
(60)

=

〈
(x− x0)2

(
∂h

∂x

)2

(x0,y0)

+ (y − y0)2

(
∂h

∂y

)2

(x0,y0)

+ 2(x− x0)(y − y0)

(
∂h

∂x

∂h

∂y

)
(x0,y0)

〉
(61)

= 〈x2〉
(
∂h

∂x

)2

(x0,y0)

+ 〈y2〉
(
∂h

∂y

)2

(x0,y0)

+ 2〈xy〉
(
∂h

∂x

∂h

∂y

)
(x0,y0)

. (62)

We now consider h(x, y) = x/y, so that

〈h2〉 '
(
〈x2〉 1

y2
+ 〈y2〉x

2

y4
− 2〈xy〉 x

y3

)
(x0,y0)

(63)

=

(
x2

y2

(
〈x2〉
x2

+
〈y2〉
y2
− 2〈xy〉

xy

))
(x0,y0)

. (64)

Finally, given that x0 = 〈x〉 and y0 = 〈y〉, and setting x ≡ m and y ≡ w +m, we obtain

〈h2〉 ' 〈m〉2

〈w +m〉2

(
〈m2〉
〈m〉2

+
〈(w +m)2〉
〈w +m〉2

− 2〈m(w +m)〉
〈m〉〈w +m〉

)
(65)

To see that exponential growth or decay in one mtDNA type while the other remains constant gives rise to
sigmoidal heteroplasmy dynamics, consider (without loss of generality) m = h0n0e

βt, w = (1 − h0)n0, where n0 is
an initial population size which will cancel. Then, as m (and hence n = m+ w) increases with time,

h =
m

m+ w
=

h0n0e
βt

n0(h0eβt + (1− h0))
=

1

1 + 1−h0

h0
e−βt

, (66)

as used in Refs. [6] and [14], with β corresponding to a selective pressure (in this derivation, positive β favours
mutant mtDNA).

S6. Fokker-Planck terms for nonequilibrium regimes.

The system size expansion approach above can be applied to the general system without employing an expansion
of the control strategy about a steady state, by considering the processes

f1 = wλw(w,m) (67)

f2 = mλm(w,m) (68)

f3 = wνw(w,m) (69)

f4 = mνm(w,m) (70)

If the expansion about steady state is not used, the corresponding terms are
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A11 = λw(φw, φm)− νw(φw, φm) + φw(∂wλw(φw, φm)− ∂wνw(φw, φm)) (71)

A12 = φw(∂mλw(φw, φm)− ∂mνw(φw, φm)) (72)

A21 = φm(∂wλm(φw, φm)− ∂wνm(φw, φm)) (73)

A22 = λm(φw, φm)− νm(φw, φm) + φm(∂mλm(φw, φm)− ∂mνm(φw, φm)) (74)

B11 = φw(λw(φw, φm) + νw(φw, φm)) (75)

B22 = φm(λw(φw, φm) + νw(φw, φm)) (76)

B12 = B21 = 0, (77)

where ∂xf(φi, φj) means ∂f
∂x

∣∣∣
φi,φj

. We include the mutational processes in the text by adding f5 = µ1w, f6 =

µ2w, f7 = µ3w and setting the corresponding stoichiometry matrix to

S = ((1, 0), (0, 1), (−1, 0), (0,−1), (−1, 1), (0, 1), (−1, 2))T . (78)

If λw = λm = λ and νw = νm = ν (no selective differences between mtDNA types), the Fokker-Planck terms
become

A11 = −µ1 − µ3 + λ(φw, φm)− ν(φw, φm) + φw(∂wλ(φw, φm)− ∂wν(φw, φm)) (79)

A12 = φw(∂mλ(φw, φm)− ∂mν(φw, φm)) (80)

A21 = µ1 + µ2 + 2µ3 + φm(∂wλ(φw, φm)− ∂wν(φw, φm)) (81)

A22 = λ(φw, φm)− ν(φw, φm) + φm(∂mλ(φw, φm)− ∂mν(φw, φm)) (82)

B11 = φw(µ1 + µ3 + λ(φw, φm) + ν(φw, φm)) (83)

B22 = (µ1 + µ2 + 4µ3) + φm(λ(φw, φm) + ν(φw, φm)) (84)

B12 = B21 = −(µ1 + 2µ3)φw. (85)

Including selection terms (without mutation) requires no change to the original structure of reactions and stoi-
chiometries and immediately gives

A11 = (1 + ε2)λ(φw, φm)− (1 + ε6)ν(φw, φm) + φw((1 + ε2)∂wλ(φw, φm)− (1 + ε6)∂wν(φw, φm)) (86)

A12 = φw((1 + ε2)∂mλ(φw, φm)− (1 + ε6)∂mν(φw, φm)) (87)

A21 = φm((1 + ε4)∂wλ(φw, φm)− (1 + ε8)∂wν(φw, φm)) (88)

A22 = (1 + ε4)λ(φw, φm)− (1 + ε8)ν(φw, φm) + φm((1 + ε4)∂mλ(φw, φm)− (1 + ε8)∂mν(φw, φm)) (89)

B11 = ε1 + ε5 + φw((1 + ε2)λ(φw, φm) + (1 + ε6)ν(φw, φm)) (90)

B22 = ε3 + ε7 + φm((1 + ε4)λ(φw, φm) + (1 + ε8)ν(φw, φm)) (91)

B12 = B21 = 0, (92)

The same approach as above can be used to obtain Eqns. 34-36 for the time evolution of fluctuation moments,
this time valid for a full temporal trajectory of the system.

S7. Experimental observations to distinguish mechanisms.

Our theoretical results suggest measurements to further elucidate the control mechanisms underlying mtDNA
evolution within cells, without using heteroplasmy variance 〈h2〉 (the shortcomings of which are manifest because
seven different feedback controls all yield the same dynamics in 〈h2〉′ – Fig. 2 ), and in conjunction with further
molecular elucidation of processes governing mtDNA [46, 2] which providing bounds on the types and rates of
molecular processes involved (for example, disallowing unphysically high rates of mtDNA replication).

If 〈w2〉 increases with time, mechanisms with weaker constraints on wildtype copy number are more likely (in-
cluding relaxed replication (A), mechanisms sensing a combination of mutant and wildtype copy number (E), and
the case with no feedback (D)). If 〈w2〉 is low and constant, mechanisms involving differential (B) or ratiometric
(C) control are likely. If 〈w2〉 is high and constant (of the order of 〈w〉), mechanisms resembling immigration-death
processes (with propagation scaled by inverse copy number, F and G) are more likely. The behaviour of 〈wm〉 can
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be used to further distinguish mechanisms which strongly couple wildtype and mutant (including relaxed replication
and total copy number control) from those with less coupling.

In all these cases, the likelihood functions associated with specific biological observations will be complicated.
Model selection and inference in this case could be performed through comparison to simulation, or using likelihood-
free inference [47] for the mean and variance of mtDNA populations [40].

S8. Back-of-the-envelope calculations for leukocyte heteroplasmy measurements.

Average cellular mtDNA copy number measurements in Ref. [38] are made by normalising the signal from the
mtDNA-encoded ND1 gene by that from the nuclear-encoded GADPH genes using real-time PCR using iQ Sybr
Green on the BioRad ICycler. The published protocol [48] for this technique suggests using 50ng-5pg of genomic
DNA. Diploid human cells contain ∼ 6pg of genomic DNA; the mass of several hundred (much smaller) mtDNA
genomes is negligible by comparison. The protocol thus implies the presence of 1-10000 cells’ genomic DNA content;
we assume 1000 as an estimate consistent with qPCR standards (Joerg Burgstaller, personal communication).

In our analysis of the data from Ref. [38] we use τ = 5 days and the processes:

{w,m} wλ−−→ {w + 1,m} (93)

{w,m} mλ−−→ {w,m+ 1} (94)

{w,m} wν−−→ {w − 1,m} (95)

{w,m} (1+ε8)mν−−−−−−→ {w,m− 1} (96)

with λ = ν = 1/τ , and ε8 a selective difference acting to increase degradation of the mutant mtDNA species. We
first estimate a value for ε8 consistent with the heteroplasmy changes involved. Using the transformation

βt = log

(
h(h0 − 1)

h0(h− 1)

)
, (97)

from Eqn. 66 above, where h0 is initial heteroplasmy and h is heteroplasmy at time t, we obtain an estimate
β̄ = −1.2 × 10−4 day−1. We thus set ε8 = 1.2 × 10−4 day−1, to produce the required selective difference manifest
through mutant degradation.

Solving the ODEs arising from our theoretical approach (Eqns. 34-36) then give values for 〈w2〉 and 〈m2〉 over
time for a given initial condition. Assuming that each datapoint consists of a sample of 103 cells, we divide these
values by 103 to obtain an estimated distribution for each later w,m pair, given the paired initial w,m state. We
combine these distrbutions to build an overall distribution over later results, and use the Kolmogorov-Smirnov test
to test the alternative hypothesis that the later results were incompatible with draws from this distribution. The
results were p = 0.054 for wildtype mtDNA copy number and p = 0.861 for mutant mtDNA copy number. As
highlighted in the text, the absence of a p < 0.05 result cannot be interpreted as support for the null hypothesis,
but this analysis suggests that the available data is not incompatible with the predictions of our model.
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