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Abstract  
A series of tribological experiments have been conducted to characterise and study the formation 
of tribofilms derived from TiF3 and FeF3 catalysts impregnated in soot-contaminated lubricants.   
Tests were conducted with a Titanium and an Iron inorganic floride based additives on an end-face 
tribometer. A systematic approach was used to establish basic wear data producing a detailed 
design methodology for the development of optimized engine oil that is resilient to soot 
contamination.  Results showed that inorganic fluorides reduced friction and wear in the 
specimen contaminated lubricants.  With the best results observed when TiF3 was used. There 
were also indications that the frictional process, when coupled with the fluorides induced a 
structural change in the soot particles within the contact zones, contributing to the improved 
tribological performance.  The key contributors to the formation of robust tribofilms were 
adsorption and tribo-chemical reactions.  The better tribological response leads to a method for 
the design of engine lubricants to mitigate against the effects of soot contamination.  
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Research Highlights 
• Tribological properties of inorganic fluoride derived additives investigated 
• TiF3 and FeF3 dispersed in a liquid paraffin base Oil and formulated lubricant 
• Additives reduced friction and wear in soot contaminated lubricant  
• Fluorides assisted in the formation of robust tribofilms, TiF3 produced best results 
• Friction coupled with additives changed the structure of the soot particles 
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1. Introduction 

Biomass pyrolysis fuel is receiving increasingly more attention because of several 

potentially beneficial characteristics that include a low sulfur content and 

environmental-friendliness. Refined biomass can be used to prepare emulsified biomass fuel 

(biofuel), which has been used in diesel engines [1-3]. When used as a combustible fuel, soot is 

generated, and this can have a negative effect on the tribological surfaces within the engine.  

Eliminating biomass fuel soot particles (biofuel soot, BS) in diesel engines is extremely difficult. 

Soot particles can contaminate lubricating oils within the sump through blow-by gases, which can 

be further worsened by exhaust recirculation systems [4, 5]. Engine soot particulates can increase 

the kinematic viscosity and acid number of a lubricant, as well as promote the appearance of oily 

slurry in the engine sump, which combined leads to a shortened oil life [6, 7]. Moreover, soot 

particulates can result in an increased wear of critical components, thus indicating the importance 

of investigating the tribological impact of BS contamination of lubricating oils. 

Soot contamination is a serious issue that has been extensively investigated the engine and 

lubricant industry and academia. Studying soot however is challenging not least because the 

collection of soot particles from the engine sump is a time-consuming and laborious task.  

Researchers therefore tend to simulate the soot by using simulated particulates generated from, for 

example, a diffusion flame or carbon black.  These substitute engine soot particles can then be 

used to study the effects of contamination on the lubrication properties of lubricating oils. 

However, the differences in the nanostructure, composition and surface functional groups among 

engine soot [8], carbon black [9] and flame soot [10, 11] are likely to result in morphological 

changes in a state of agglomerates in a lubricant [12], and so may result in a different tribological 

response of lubricating oils [13]. For example, in previous research, the graphite degree, 

composition and surface function group (-OH) content of BS particles were higher than those of 

commercial carbon black [14]. 

There have been many studies of the tribological mechanisms of soot particles in 

lubricating oils that have been conducted on a variety of different tribometers, with a variety of 

lubricants, soot contents and soot types. Green and Lewis [15, 16] used carbon black particles as a 

substitute for engine soot and presented abrasion effects and variations in the lubrication 



conditions that determined the wear mechanism dominating in specific situations. Others studies 

also indicated that carbon black rapidly removed tribological films by abrasion [17]. Rounds et al. 

[18] postulated that the adsorption role mechanism of carbon black resulted in reducing antiwear 

components in lubricants. These studies indicate that a large number of different wear mechanisms 

can be observed when carbon black is as a substitute for engine soot when investigating the 

tribological behaviors of lubricating oils,. Antusch et al. [19] measured the mechanical properties 

of different soot particles and found that they were closely related to their reactivity and the 

amount of defect sites. George et al. [20] indicated that base stock and soot content were the most 

significant variables affecting wear. However, interestingly some researchers have found that low 

levels of soot particles can have a beneficial effect on the tribological performance of lubricating 

oils. Hu et al. [21] revealed that low levels (1 wt.%) of carbon black enhanced the antifriction 

properties of engine lubricating oils using a four-ball tribometer. Liu et al. [22] also indicated that 

soot (3 wt.%) in certain engine oils appeared to act as a friction modifier. Wei et al.[23] prepared 

candle soot and obtained similarly beneficial tribological results.  

The structure and composition of BS particles are different to traditional diesel engine-derived 

soot particles because of the complicated composition of biomass fuels. There have been few 

studies to date that have investigated the tribological effect of self-prepared BS and low BS 

contamination levels on the tribological behaviors of engine oils.  The effects of TiF3 and FeF3 

catalyzing tribofilms in contacts lubricated with different lubricants has been investigated by 

Nehme [24-26]. They focused on the investigation of the effacacy of TiF3 and FeF3 particles, 

along with polytetrafluoroethylene to zinc dialkyldithiophosphates (often referred to as ZDDP), in 

promoting the formation of robust anti-wear films, using a sliding ball-on-ring tribometer. Robust 

material transfer layers and tribochemically formed films are responsible for improving the wear 

resistance and friction reduction of engine lubricating oils [27]. Mourhatch and Swathe [28, 29] 

used different contact loads and performed several chemical characterization studies to 

differentiate between tribofilms of lubrication oils with and without FeF3. Parekh et al. [30] 

examined the chemical interactions between ZDDP and FeF3.  A new chemical species was 

detected and was shown to be responsible for improved wear performance.  TiF3 and FeF3 

catalysts are both known to reduce gas emissions and promote ZDDP degradation [31], which could 

improve the antiwear and antifriction properties of engine oils, as well as reduce sulfur and 



phosphorous levels.  

At present, studies on the use of inorganic fluorides with low content BS contaminated Liquid 

Parafin (BS-LP) and fully formulated engine oil are limited. Previous work [32] has shown that TiF3 

can promote anti-wear and anti-friction properties of carbon black contaminated-LP and CD SAE 

15W-40 using a four-ball tribometer. This paper describes a study on the formation and 

characterization of tribofilms from TiF3 and FeF3 catalysts (0.5 wt.%) on the tribological behaviors 

of low-content (3 wt.%) BS contaminated LP and fully formulated engine oil (CD SAE 15W-40). A 

series of tribological experiments were conducted using an end-face tribometer to assess the 

tribological properties of 3 wt.% BS-contaminated LP and CD SAE15W-40 with and without 0.5 

wt.% TiF3 or FeF3. A systematic approach was used to establish basic wear data and then a detailed 

design methodology for the development of optimized engine oil that is resilient to soot 

contamination.  

 

2. Experimental  

2.1 Materials and sample preparation 

Commercial diesel (number 0) was purchased from China Sinopec Corp. Crude biomass 

pyrolysis fuel was produced by a rapid pyrolysis process with rice husks, which were provided by 

the Key Laboratory for Biomass Clean Energy of Anhui Province, China. The composition and 

physicochemical properties of crude biomass pyrolysis fuel were analyzed, as shown in [33]. The 

main components include acids, alcohols, esters and aldehydes, ketones, sugars, and furans.  

Emulsified biomass fuel was prepared by mixing refined biomass fuel (5 wt.%), diesel (93 

wt.%), and Sp-80 emulsifier (2 wt.%) at a stirring speed of 1500 rpm and at 65 °C for 60 min. The 

BS was prepared using a soot trap, in which emulsified biomass fuel was burned at room 

temperature (approximately 25 °C)[14]. Fig. 1 shows the morphology and distribution diagram of 

the average particle diameter (APD) of the BS particles. In Fig. 1(a) the BS is agglomerated. 

Single particles presented graphite debris at their edges, as shown in Fig. 1(b) (red triangle). The 

inset diffraction pattern of the carbonaceous material also indicated the presence of a large amount 

of amorphous carbon. BS particles possess virtually indistinguishable perturbed graphitic or 

turbostratic internal structures [34, 35]. The distribution diagram revealed that the APD was 

approximate 37 nm. 



 Commercially available LP (Hengshui Diyi Petro-Chemical Co., Ltd.) and fully formulated 

engine oil (CD SAE 15W-40, China Sinopec Corp.) were used for this investigation. The LP with 

a simple composition was chosen in order to better analyze the tribological behaviorial differences 

between the TiF3 and FeF3. The CD SAE15W-40 oil was a low-grade engine lubricating oil that is 

frequently used in farmland tractors under extreme conditions in China. CD SAE 15W-40 oil was 

formulated including some additives such as Zinc Dialkyl Dithiophosphates (ZDDP), 

anti-oxidants, dispersants and so on. The physicochemical properties of the lubricants are shown 

in Table 1.    

Commercially available TiF3 and FeF3 catalysts were both purchased from Alfa-Asia Tianjin 

Chemical Co. Ltd. The other reagents were all of analytical grade. LP oil samples were prepared 

with 3 wt.% BS, 0.5 wt.% TiF3, 3 wt.% BS + 0.5 wt.% TiF3, 0.5 wt.% FeF3, and 3 wt.% BS + 0.5 

wt.% FeF3. The 3 wt.% BS was close to actual maximum engine soot contaminated lubricating oil. 

The BS and catalysts were dispersed uniformly with vigorous stirring for 2 hours assisted by 

ultrasonication for 30 min to reduce experimental deviation. The CD SAE15W-40 oil samples 

were prepared in the same manner. 

 
2.2 Tribological and Analytical methods 

Tribological tests were conducted on an end-face tribometer (HDM-20) manufactured by the 

Institute of Tribology, Hefei University and Technology, at ambient temperatures. The schematic 

diagrams of the friction pair of end-face tribometer are shown in Fig. 2. The top sample was a 

commercially available ductile cast iron (ASTM A536, HB = 164), which is commonly used to in 

piston rings and bearings parts. The inside and outside diameters of top samples were 30 mm and 

22 mm, respectively. The disk sample was prepared using a grey cast iron (ASTM A48, Ra = 0.385 

µm and HB = 174), again commonly used as cylinder liners and bearings parts, the diameter and 

thickness were 53 mm and 4 mm, respectively.  

Prior to the tribological tests, the top sample was polished in order to obtain a surface 

roughness (Ra) of 0.345μm and to reduce experimental deviation. The test conditions were as 

follows, initially 50 N for 2 min then the friction and wear properties of the oil samples were 

analyzed at 1500 N and with a rotation speed of 294 rpm for 60 min. The contact pressure was 

approximately 1.12 MPa. All tribological tests were replicated three times to reduce experimental 



deviations. For each test new samples were used. Qualitative and quantitative analysis focused 

mainly on the lower disk samples because of the complicated geometry of the top sample, as well 

as the mitigating the time-consuming preparation and machining processes required to prepare the 

upper sample for analysis. The tribological behaviors of the oil samples were assessed by 

variations in mass loss of the disk sample and friction coefficient, respectively. Mass loss was 

calculated as follows: 

△m = m0 – m1  

where △m is the wear mass loss (mg); m0 is the initial mass of the disk sample (mg); and m1 is the 

mass of the disk sample after the rubbing process (mg).  

Scanning electronic microscopy coupled with energy dispersive spectroscopy (SEM/EDS, 

JSM-6490LV) was employed to investigate the morphologies and elements of the wear traces after 

the rubbing process. A surface profiler (Taylor-Hobson-6) was used to measure surface roughness 

(Ra) with appropriate magnification. To sufficiently clarify the wear and friction mechanisms of 

TiF3 and FeF3 catalyst materials in 3 wt.% BS-contaminated lubricants, X-ray photoelectron 

energy spectroscopy (XPS, ESCALAB259) was utilized to analyze the chemical element state of 

the tribofilm after the rubbing process. Raman spectroscopy (RS, LabRAM-HR; resolution = 0.6 

cm–1, scanning repeatability = ±0.2 cm–1, λ0 = 514 nm) was conducted to study the carbon species 

of wear traces. Finally, the disk samples were immersed into the lubrication oils with and without 

3 wt% BS containing 0.5 wt% FeF3 or TiF3 at 70 ºC for 2 h.  The surface elemental contents of 

the disks were detected by EDS analysis.  These tests were aimed at clarifing the role of physical 

adsorption when FeF3 or TiF3 was added into both the LP and CD SAE 15W40.  

 

3. Results and Discussion 

3.1 Wear resistance and friction reduction 

Fig. 3 shows the mass loss and average friction coefficient variations of 3 wt.% BS 

contaminated LP and CD SAE 15W-40 with and without 0.5 wt.% TiF3 or FeF3. The mass loss of 

pure LP was 19.8 mg in Fig. 3(a). For 3 wt.% BS contaminated LP, mass loss was 30 mg, which 

indicated that BS promoted wear a trend in common with [15,16]. However, when 0.5 wt.% of the 

catalysts (TiF3 or FeF3) were added, mass losses decreased to 0.99 and 0.20 mg, respectively, 

which indicated that the fluoride catalysts enhanced the antiwear properties of 3 wt.% BS 



contaminated LP. The addition of TiF3 and FeF3 in uncontaminated LP was also investigated. Mass 

loss was evidently decreased, which showed that TiF3 and FeF3 perform important functions in 

improving the antiwear properties of BS contaminated LP. Nehme also found that a TiF3 /FeF3 

mixture was both beneficial in promoting anti-wear and friction reduction properties of lubricating 

oils including PTFE particles [31]. The results indicated TiF3 and FeF3 had positive role in 

restraining the degradation of BS contaminated engine oils.  

Fig. 3(b) shows the variations in the mass loss of the disk samples lubricated with the CD 

SAE 15W-40 lubricant containing 3 wt.% BS with and without 0.5 wt.% TiF3 or FeF3. The mass 

of the pure CD SAE15W-40 was 2 mg. As for the 3 wt.% BS contaminated lubricant, the obtained 

mass loss was 3.5 mg, an approximate 75% increase in comparison with that of pure lubricant. 

This finding indicated that BS degraded the antiwear property of CD SAE 15W-40. With the 

addition of 0.5 wt.% TiF3 or FeF3 in the lubricant, mass loss decreased to 0.7 and 0.9 mg, 

respectively. The addition of TiF3 or FeF3 into uncontaminated CD SAE 15W-40 was also 

investigated. In general, these results again proved that TiF3 and FeF3 catalyst materials 

contributed to improving the wear resistance of BS contaminated CD SAE 15W-40. 

The average friction coefficient of LP with 3wt.% BS and 0.5.wt% TiF3 was slightly lower 

than that of pure LP or LP+3 wt.% BS as show in Fig. 3(c). This indicated that TiF3 can modify 

the antifriction property of LP. This result also can be proved by the average friction coefficient of 

CD SAE 15W-40 including 3 wt.% BS and 0.5 wt.% TiF3 in Fig. 3(d). However, the FeF3 did not 

contribute significantly to the improvement of the antifriction properties of CD SAE 15W-40, 

which was possibly ascribed to the final frictional products such as the iron oxides. It indicated 

that the TiF3 was better than FeF3 in the friction reduction property of lubricating oil contaminated 

3wt% BS. 

 
3.2 Surface analysis  

The morphologies of the wear traces on the disk samples were analyzed using SEM/EDS to 

investigate how the BS particles promote wear. The surface roughness variations of wear zones 

lubricated with 3 wt.% BS-contaminated LP and CD SAE 15W-40 with and without TiF3 or FeF3 

were characterized with the surface profiler. Fig. 4 shows the SEM images and surface roughness 

of the wear zones of disk samples lubricated with LP and CD SAE 15W-40. The initial surface 



morphology of grey cast iron is shown in Fig. 4(a). Multiple textures, which were caused by the 

machining procedure, were observed on the surface. The initial surface roughness (Ra) of grey cast 

iron was 0.385 µm. For the samples lubricated with pure LP,, debris appeared within the worn 

region. The White arrows shown in Fig. 4(b) represent small pits and delaminated regions. The Ra 

for the sample shown was 0.851 µm, suggesting that severe wear had occurred when lubricated 

with pure LP. For LP contaminated with 3 wt.% BS (Fig. 4(c)), numerous pits were observed and 

were ascribed to material ‘peel off’. Debris and delaminated regions also existed, and the Ra was 

0.712 µm. In the case of added 3 wt.% BS + 0.5 wt.% TiF3, the pitting and delaminated regions 

disappeared (Fig. 4(d)), and a smoother surface was observed (Ra = 0.398 µm), which was caused 

by the formation of a tribofilm [36]. With the addition of 3 wt.% BS + 0.5 wt.% FeF3 into LP, a 

smooth surface was observed, including smaller pits (Fig. 4(e)) that were filled with BS particles 

(Ra = 0.335 µm).  

Fig. 4(f) shows the surface morphologies of the disk samples lubricated with pure CD SAE 

15W-40. Although numerous additives were included in CD SAE 15W-40, numerous pits, and 

debris were still observed, indicating that the wear for the CD SAE 15W-40 was severe. 

Machining textures also disappeared, suggesting the surface was polished, resulting in lower 

surface roughness (Ra = 0.162 µm) than that of the initial disk sample. With the addition of 3 wt.% 

BS in CD SAE 15W-40, numerous pits and debris, as well as plastic deformation and 

delamination regions (Fig. 4(g)), appeared, suggesting that BS particles promoted wear. When 3 

wt.% BS + 0.5 wt.% TiF3 or with 3 wt.% BS + 0.5 wt.% FeF3 were added, machining textures and 

numerous smaller pits were observed (Ra = 0.091 µm), as shown in Fig. 4(h). Furthermore, 

evidence of the formation of a tribofilm (Fig.. 4(i)) was also observed, as shown by the red oval 

(Ra = 0.357 µm). These results reveal that TiF3 and FeF3 provide an important contribution to the 

protection of frictional surfaces.  

Table 2 shows the elemental composition of the worn areas lubricated with LP and CD SAE 

15W-40. The carbon content of the wear zone lubricated with pure LP was 0.74% (Table 2(b)), 

induced most likely by contamination. Carbon content was increased to 21.49 wt.% (Table 2(c)), 

which indicated the participation of carbon in the tribofilm formation. When LP was added with 3 

wt.% BS + 0.5 wt.% TiF3, carbon and titanium were both detected (Table 2(d)). This finding 

reveals that carbon and titanium again were an integral part of the tribofilm formation, which 



supports a low friction coefficient. However, fluorine was not detected in BS-LP with 0.5 wt.% 

FeF3, which may be due to the fact that the Fe peak closely approximates the F peak, which was 

also observed in EDS analysis [32]. 

With regard to the CD SAE 15W-40 with 3 wt.% BS + 0.5 wt.% TiF3, in addition to 

phosphorus and sulfur, carbon and titanium were also detected as shown in Table 2(h), which 

again reveals that these elements participated in tribofilm formation.  

Fig. 5 shows the Raman spectrum obtained at λ0 = 514 nm from the wear regions of disk 

samples lubricated with LP and CD SAE 15W-40, with the test conditions all the same as Brunetto 

et al.’s [37]. The first-order carbon spectra generally exhibited two broad and strongly overlapping 

peaks with the intensity maxima at 1350 (D peak) and 1580 cm–1 (G peak). The D peak (1350 

cm–1) was attributed to the disordered graphitic lattices, whereas the G peak (1580 cm–1) to the 

ideal graphitic lattices [38]. Both peaks were not observed in the wear zones of LP and CD 

SAE15W-40 without 3 wt.% BS. However, both peaks were present when the lubricants were 

contaminated with 3 wt.% BS, and the location and ID/IG was different (not listed here). These 

results indicate that the BS particles had a role in reducing the both wear and friction reduction. 

The variations in location (Raman shift) and intensity of ID/IG suggest changes in the carbon 

structure of BS particles.  

 
 

3.3 Characterization of the tribofilms 

XPS was used to investigate the elemental chemical state of wear traces lubricated with 

different oil samples in order to sufficiently clarify the compositions of tribofilm of BS 

contaminated lubricants with TiF3 or FeF3.  

Fig. 6 shows the elemental chemical valence state of the wear traces of the disk samples 

lubricated with 3 wt.% BS-LP with and without 0.5 wt.% TiF3 or FeF3. Fig. 6(a-c) shows the C1s 

spectrum of the wear zones. In general, the peaks at 284.8 and 285.5 eV were attributed to Csp
2 

and Csp
3, respectively, and the peak at 288.9 eV belonged to C=O or O-C-O [39]. The Csp

2 content 

(43.48%) of the wear zone lubricated with BS-LP was higher than that of the wear zones with TiF3 

(36.51%) or FeF3 (16.67%). However, Csp
3 (15.38%) and C=O or O-C-O (1.92%) content were 

lower [40]. The variation in ICsp2/ICsp3 of wear zones lubricated with different oil samples are 



shown in Table 2. The ICsp2/ICsp3 of the initial BS particles was 3.83. The ICsp2/ICsp3 of carbon on 

wear zones lubricated with BS-LP with and without TiF3 or FeF3 were 2.82, 1.85, and 0.41, 

respectively, which indicated that the tribofilm included some BS particles. The O1s spectrum (Fig. 

6(d-f)) of wear zones showed three peaks at 530.1, 531.3, and 532.5 eV, which belonged to metal 

oxide (labeled O1), C-O (labeled O2), and C=O (labeled O3), respectively. The metal oxide 

(12.91%) and C-O (15.21%) contents of the wear zone lubricated with BS-LP were higher than 

those of wear zones with TiF3 (11.70% and 14.50% ) or FeF3 (3.84% and 8.25%). However, the 

C=O content (4.09%) was lower. 

The Fe2p spectra (Fig. 6(g, h)) of wear zones lubricated with BS-LP with and without TiF3 

were similar, showing two peaks at 710.9 and 724.6 eV. The first peak belongs to Fe2p3/2, whereas 

the second peak belongs to Fe2p1/2, indicating that Fe2O3 and Fe3O4` were present. The Fe2p 

spectrum (Fig. 6(i)) of the wear zone lubricated with BS-LP with FeF3 showed four peaks at 707, 

710.9, 712.5, and 724.6 eV. The first peak was attributed to Fe atom, and the third peak was 

attributed to FeF3 or FeF2 [41], which is supported by the F1s spectrum in Fig. 6(l). The peak at 

684.9 eV was attributed to fluoride. The Ti2p spectrum (Fig. 6(j)) of the wear zone lubricated with 

BS-LP with TiF3 shows that the binding energies at 457.8 and 463.5 eV were the characteristic 

peaks of TiO2. The F1s spectrum (Fig. 6(k)) shows that fluoride (684.9 eV) was present.  

For the CD SAE 15W-40 tests, the C1s and O1s spectra of wear zones lubricated with different 

oil samples are shown in Fig. 7(a-f). Both Csp
2 and Csp

3 and group C=O or O-C-O content, as well 

as the contents of the oxygenated species on the surface of wear zones, show no regularity. These 

results were ascribed to the additives, which increased the species in the tribofilm. The ICsp2/ICsp3 

of carbon on wear zones lubricated with BS contaminated CD SAE15W-40 with and without TiF3 

or FeF3 were 1.60, 3.51, and 1.13, respectively, which again indicated a friction induced reaction 

that included BS contributing to the formation of the tribofilms [42]. 

Sulfur, phosphorus, titanium, and fluorine were detected when TiF3 was added to BS 

contaminated CD SAE 15W-40. The S 2p spectrum (Fig. 7(k)) shows three peaks at 161.3, 162.5, 

and 168.7 eV. The binding energy at 161.3 eV belonged to FeS, whereas the binding energies at 

162.5 and 168.7 eV belonged to FeS2 [41]. The P2p spectrum (Fig. 7(n)) showed only one peak at 

133.2 eV, which was attributed to phosphate, derived from the antiwear additive. The Ti2p 

spectrum (Fig. 7(m)) showed that the two peaks at 457.8 and 463.5 eV were the characteristic 



peaks of TiO2.  

Sulfur and fluorine were detected when FeF3 was added to BS-CD SAE15W-40. The F1s 

spectrum (Fig. 7(o)) shows that fluoride (684.9 eV) was present. The S2p spectrum (Fig. 7(l)) 

showed only one peak at 169.1 eV, which belonged to the sulfates group. The antiwear and 

antifriction effects of BS-LP and engine lubricating oil were ascribed to the formation of a 

tribofilm that contained by carbon and fluorine. 

 

3.4 Friction and wear mechanisms  

In general, the formation of a lubrication film is determined by the composition and 

properties of the oil, and how these changes during the friction process. The active components in 

the oils can be physically adsorbed on the rubbing surfaces, and then these can be catalyzed to 

form a film. There will also be a physical adsorption role that can be proved indirectly via the 

variations in the elemental composition of the material on the frictional surfaces.  This was the 

case when the upper and lower samples were immersed in the LP and CD SAE -15W-40 at 70 ºC 

for 2 h. Table 4 includes both the elements of Ti and F that were detected on the surface of the 

frictional pairs when TiF3 was added into LP with and without BS particles.  This supports the 

argument that TiF3 was physically adsorbed on to the surfaces. For the CD SAE 15W-40, neither P 

or Zn was detected, only S on the surface of disk friction pair material when 3% BS was added 

into CD SAE 15W-40. However, the elements of S, P and F were detected when TiF3 were added 

into lubricant. These results also indicated TiF3 was easily adsorbed on the frictional surfaces. 

XPS results indicated that the different compounds (such as TiO2 and iron oxides) were 

detected on the surface of frictional pairs, which was ascribed to the frictional driven chemical 

reactions. During the rubbing process, the tribo-chemical reactions associated with wear were 

critical to film formation as shown in Fig. 4(d) and lots of chemical bonds formed on the wear 

regions as described in Antusch’s work [19]. This phenomenon can be used to explain the antiwear 

and antifriction mechanisms of BS-LP and TiF3. The appearance of TiO2 and fluoride on the 

surface of wear zones of the disks indicated that the decomposition of TiF3 resulted in a low 

friction coefficient [32]. Regarding BS-LP with FeF3, although the tribofilm contained fluoride, 

BS agglomeration and iron oxides resulted in a high friction coefficient, similar to the mechanisms 

observed in [43].  



In the fully formulated CD SAE 5W-40, the various additives including ZDDP contributed 

to the formation of more robust tribofilms than those that were formed with LP, resulting in lower 

mass loss due to wear and lower friction coefficient. It is well know that ZDDP contributes to  

the formation of protective films, however the addition of the TiF3, and FeF3 has also been shown 

to adsorb on to the tribo-surfaces, forming a protective film and preventing the BS from contacting 

these surfaces. The increased friction coefficient of lubrication with 0.5 wt.% FeF3 was ascribed to 

the formation of iron oxides (Fig. 7 (i)) and sulfates (Fig. 7 (l)),  forming agglomerates with the 

BS particles. There was also some evidence that the FeF3 derived tribological film of was 

incomplete.  

In all, adsorption and tribo-chemical reactions were two very important factors leading to the 

reduction of both friction and wear in BS contaminated LP and CD SAE 15W-40 when catalyzed 

by TiF3 and FeF3 particles. The simple schematic diagram of wear and friction mechanisms when 

TiF3 and FeF3 are used is shown in Fig.8. However, tribofilms containing carbon, titanium and 

fluorine from the TiF3 and BS particles were more robust than those of the tribofilms formed from 

the FeF3 and BS particles in lubricating oils.  The reason for this being that  TiO2 was better 

than iron oxides for reducing wear [44].  

 

4 Conclusions  

A systematic series of tribological experiments have been conducted with the goal of 

establishing a method for the design of engine lubricants to mitigate against the effects of soot 

contamination.  A Titanium and an Iron inorganic floride based additive system, was developed 

and added to both a base oil (liquid paraffin) and a fully formulated engine lubricant (CD SAE 

15W-40), both when contaminated with soot derived from bio-fuel.  The resulting tribofilms were 

characterized and the formation mechanisms discerned.  The following conclusions can be drawn:  

(1) Both TiF3 and FeF3 efficiently enhanced the antiwear properties of LP and CD SAE 15W-40 

lubricants when contaminated with biofuel soot of 3 wt% BS. Using TiF3 as the catalyst led 

to a larger friction reduction compared to FeF3. 

(2) The tribofilms were formed of carbon, titanium, iron, and fluorine, once the inorganic 

fluorides had been added into the BS contaminated lubricating oils. 

(3) The structure of the BS particles within the observed wear zones was modified, as a result of 



frictional rubbing.   

(4) The formation of robust tribofilms for the BS contaminated LP and CD SAE 15W-40 with 

TiF3 or FeF3 particles was driven by adsorption and tribo-chemical reactions.  
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Tables  

Table 1 Physicochemical properties of liquid paraffin and CD SAE 15W-40 



Item Liquid paraffin CD SAE15W-40 Methods 

Density (kg/m3, 20 oC) 880 850 ASTM D4052 

Kinematical viscosity (mm2/s, 40 oC) 100 110.6 ASTM D445 

Viscosity index 98 142 ASTM D2270 

Sulfur content (wt%) No 2.5% ASTM D4294 

Phosphorus content (wt%) No 0.1% ASTM D1091 

Water (m/m) % Trace  Trace ASTM D6304 

Pour point (oC)  −15 −24 ASTM D9 

Flash point (oC)  210 220 ASTM D93 

Acid number (mgKOH g−1)  0.014 0.035 ASTM D664 

 
Table 2 EDS analysis of wear zones of bottom samples lubricated with LP and CD SAE 15W-40 

Symbol 
Element contents (wt%) 

C O Fe Zn Ti Mg Si S P Mn Cr 
a - 7.99 88.29 - - - 2.63 - - 1.10 - 
b 0.74 - 94.83 - - - 3.52 - - 0.91 - 
c 21.49 9.35 64.95 - - - 3.14 - - 1.06 - 
d 1.22 5.85 85.44 - 0.87 - 4.78 - - 0.57 1.28 
e 1.26 8.43 85.56 - - - 4.57 - - 0.27 - 
f 0.31 7.83 85.33 0.46 - 1.65 2.19 0.86 0.61 0.75 - 
g 0.56 5.85 88.19 - - - 3.59 0.28 0.13 0.94 0.26 
h 0.98 9.31 84.20 - 0.02 0.64 4.45 0.36 0.10 - - 
i 1.05 4.23 90.04 0.09 - - 3.84 0.08 0.67 - - 

Note：(a) Initial, (b) LP, (c) LP+3 wt%BS, (d) LP+3 wt%BS+0.5 wt% TiF3, (e) LP+3 wt%BS+0.5 wt%FeF3, (f) CD 

SAE 15W-40,  (g) CD SAE 15W-40+3 wt%BS, (h) CD SAE 15W-40+3 wt%BS+0.5 wt%TiF3, (i) CD SAE 

15W-40+3 wt%BS+0.5 wt% FeF 

 
 
 
 
 

Table 3 Carbon atom contents of wear zones lubricated with LP and fully formulated engine oil 

Item Element atom content (at%) 

C(sp2) C(sp3) C=O (O-C-O) Isp2/Isp3 

BS 46.79 12.23 1.97 3.83 

LP+3wt% BS 43.48 15.38 1.92 2.82 

LP+3wt% BS+0.5wt% TiF3 36.51 19.72 2.82 1.85 

LP+3wt% BS+0.5wt% FeF3 16.67 39.81 6.39 0.41 



CD SAE 15W-40+3wt% BS 34.10 21.22 3.66 1.60 

CD SAE 15W-40+3wt% BS+0.5wt% TiF3 41.36 11.78 1.98 3.51 

CD SAE 15W-40+3wt% BS+0.5wt FeF3 31.90 24.23 2.1 1.31 

 

Table 4 The surface active element contents of bottom material after static immersion at 70 ºC for 2 h 

Items Element content (wt%) 

C O Fe Cr Mn Si P S Ti F 

a 0.36 - 94.06 0.27 1.31 4.0 - - - - 

a+0.5wt%TiF3 1.01 13.75 11.90 - - 1.33 - - 18.01 54.0 

a+3wt%BS 2.57 6.46 85.12 - - 5.85 - - - - 

a+3wt%BS+0.5

wt%TiF3 

- 9.90 53.81 - - 2.77 - - 5.32 28.2 

b 1.27 6.84 86.31 0.43 1.42 3.14 0.6 - - - 

b+3wt%BS 14.57 1.47 79.3 0.66 1.53 1.99 0.57 - - - 

b+0.5wt%TiF3 0.46 - 47.71 0.54 23.9 1.10 1.84 15.4  2.20 

b+3wt%BS+0.5

wt% TiF3 

0.71 - 93.06 0.17 0.93 4.17 0.24 0.71 - - 

a: LP； b: CD SAE 15W-40 



Figures  
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Fig. 1. Morphology and distribution diagram of BS average particle diameter: (a) morphology, (b) diffraction 

pattern, and (c) distribution diagram of BS particles 
 
 
 

 
Fig. 2. Schematic diagrams of friction pairs of end-face tribometer 
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Fig. 3. Mass loss and average friction coefficient variations of 3 wt.% BS contaminated LP and CD SAE 15W-40 

with and without 0.5 wt.% TiF3 or FeF3 at 1500 N and rotation speed of 294 rpm for 60 min:  (a) &(c) LP, and 

(b)&(d)  CD SAE-15W-40 
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Ra=0.357µm 
Fig. 4. SEM images and variations of the wear zones of bottom samples lubricated with LP and CD SAE 15W-40: (a) 

initial, (b) LP, (c) LP + 3 wt.% BS, (d) LP + 3 wt.% BS + 0.5 wt.% TiF3, (e) LP + 3 wt.% BS + 0.5 wt.% FeF3, (f) CD 

SAE 15W-40, (g) CD SAE 15W-40+3 wt.% BS, (h) CD SAE 15W-40 + 3 wt.% BS + 0.5 wt.% TiF3, and (i) CD SAE 

15W-40 + 3 wt.% BS + 0.5 wt.% FeF3 
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Fig. 5. Raman spectroscopy of wear zones lubricated with LP and CD SAE 15W-40: (a) LP, and (b) CD 15W-40 
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Fig. 6. Elemental chemical valence state of wear regions lubricated with 3 wt.% BS-contaminated LP with and 

without 0.5 wt.% TiF3 or FeF3 



 

 

Fig.7. Element chemical valence state of wear regions lubricated with 3wt% BS contaminated CD SAE 15W-40 with 

and without 0.5 wt.% TiF3 or FeF3 
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Fig. 8. Schematic diagrams of wear and friction mechanisms of TiF3 and FeF3 particles 
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