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1	Introduction
Emissions	from	traffic	make	tremendous	contributions	to	overall	pollutant	concentrations	in	urban	areas.	The	Particulate	matter,	especially	with	an	aerodynamic	diameter	less	than	ten	(PM10),	 is	one	of	the

pollutants	that	is	majorly	contributed	to	by	road	traffic.	These	small	particles	have	been	shown	to	be	detrimental	to	human	health	and	the	urban	environment	(Anderson	et	al.,	2012;	Lawal	et	al.,	2015;	Brunekreef	et

al.,	2009).	Particulate	matter	also	contributes	to	visibility	impairment	(Yang	et	al.,	2012)	and	often	cause	road	accidents	(Abdel-Aty	et	al.,	2011).	The	EU	directive	on	ambient	air	quality	and	cleaner	air	for	Europe

(2008/50/EC),	puts	a	limit	to	the	level	PM10	that	should	not	be	exceeded	for	the	purpose	of	reducing	its	impact	on	human	health.	The	EU	Directives	state	that	the	daily	and	annual	mean	of	PM10	should	not	exceed

50	μg/m3	and	40	μg/m3	respectively.	The	daily	limit	should	not	be	exceeded	more	than	35	days	a	year.	These	limits	can	be	effectively	controlled	if	the	sources	of	particulate	matter	and	the	factors	affecting	its	levels	are

adequately	characterised	and	quantified.

The	 levels	 of	 particulate	matter	 in	 some	urban	 areas	 in	 the	UK	and	 other	European	 countries	 are	 declining	 due	 to	 improvements	 in	 the	 technology	 of	 vehicles	 and	 the	 implementation	 of	 the	 air	 quality

objectives	and	directives.	However,	emission	in	areas	close	to	major	roads	remained	the	challenge	of	the	regulatory	authorities	due	to	frequent	cases	of	exceedances	of	air	quality	limits	and	objectives.	Particulate

emission	from	roads	can	both	emanate	from	the	vehicle	exhaust	or	non-exhaust	sources	such	as	wear	and	tear	of	vehicle	parts	(e.g.	tyre	and	clutch).	Other	important	sources	of	road	traffic	particulate	emission	are	re-

suspension	of	dust	due	to	vehicles	movement	(Pant	and	Harrison,	2013)	and	brake	pads.	Hence	the	need	for	more	studies	on	the	accurate	characterisation,	estimation	and	prediction	of	road	traffic	contribution	to

particulate	concentrations	in	the	urban	area.	The	information	obtained	from	such	studies	could	be	useful	in	identifying	relevant	and	effective	control	measures	to	the	dominant	sources	of	the	particles	in	a	particular

area	e.g.	proximity	to	major	roads.

Several	studies	have	been	carried	out	on	the	identification	of	sources	of	ambient	pollutants	using	Principal	Component	Analysis	(PCA),	Positive	Matrix	Factorization	(PMF)	and	conditional	Bivariate	probability
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function	(Singh	et	al.,	2013;	Pokorná	et	al.,	2015;	Uria-Tellaetxe	and	Carslaw,	2014).	Pant	and	Harrison	 (2013)	 reviewed	and	discussed	 the	pros	and	cons	of	 the	methodologies	 for	 the	assessment	of	 road	 traffic

emissions	and	the	receptor	modelling	of	particulate	matter.	The	assessment	methods	include	direct	measurements	near	roads/highways	and	tunnels,	twin	studies,	dynamometer	tests	and	tracer	studies	(Gouriou	et	al.,

2004;	Jones	and	Harrison,	2006;	Chiang	et	al.,	2012;	Ketzel	et	al.,	2003).	The	receptor	modelling	methods	discussed	by	Pant	and	Harrison	(2013)	include	multivariate	statistical	methods	(i.e.	PCA,	PMF,	UNMIX,	and

Multilinear	Engine	 (ME)),	and	Chemical	Mass	Balance	 (CMB)	model.	The	multivariate	statistics	and	CMB	methods	are	quite	revealing	and	 informative.	However,	 they	require	 the	use	of	expensive	 instruments	 in

measuring	relevant	tracer	elements	associated	with	the	different	sources	of	the	particles.	These	expenses	make	them	difficult	to	be	applicable	for	a	city-wide	study.	Moreover,	the	twin	studies	are	easy	to	apply,	even

though	Harrison	et	al.	 (2004)	discovered	 that	 the	 site	geometry	and	 the	pattern	of	 the	 circulation	 flow	at	 the	 sites	 affect	 the	estimates	of	 the	ambient	 concentrations	of	particulate	matter.	These	effects	 can	be

effectively	managed	when	the	twin	studies	are	applied	in	conjunction	with	bivariate	polar	plots	to	reduce	the	uncertainty	of	the	estimates	due	to	the	nature	of	air	flows	and	geometry	of	the	sites	(Masiol	and	Harrison,

2015;	Carslaw	and	Beevers,	2013;	Carslaw	et	al.,	2006).	The	main	aim	of	this	paper	is	to	assess	and	quantify	the	impacts	of	some	major	roads	on	the	ambient	concentrations	of	PM10	in	London.	Moreover,	to	develop

artificial	neural	network	based	models	for	predicting	the	contribution	of	the	roads	on	the	roadside	particulate	matter	concentrations.

2	Materials	and	Mmethods
2.1	Monitoring	sites

The	monitoring	sites	selected	 for	 this	study	are	 located	 in	London	and	are	mostly	maintained	by	 the	London	boroughs,	Department	 for	Environment,	Food	and	Rural	Affairs	 (DEFRA),	and	Transport	 for	London	 (TfL).	The

location	of	the	sites	is	shown	in	Fig.	1.	The	sites	are	categorised	into	a	kerb,	roadside,	urban	background,	and	rural	background	sites.	The	roadside	and	kerb	sites	are	located	between	1	toand	10	m	from	the	major	roads.	HK6,	IS2,	KC5,

and	MY1sites	are	situated	in	the	street	canyons.	GR5,	GR8,	KC2,	CR4	and	CD3	sites	are	located	at	junctions	while	BT4	and	GR8	sites	are	situated	in	an	open	area	(see	Table	1).

Table	1	Properties	of	the	London	monitoring	sites.

Site	code Easting Northing Site	name Site	type Distance	to	the	road	(m) Traffic	volume	(veh/h) Average	PM10	(μg/m3) PM10	(%)	available

BL0 530,123 182,014 Camden	-	Bloomsbury Urban	background 21.76 92.1

BT4 520,866 185,169 Brent	-	Ikea Roadside Not	available 4389 43.25 90.4

CD3 530,057 181,285 Camden	-	Shaftesbury	Avenue Roadside 3 1700 34.00 91.4

CR3 532,336 168,934 Croydon	-	Thornton	Heath Suburban 21.13 91.0

CR4 532,583 165,636 Croydon	-	George	Street Roadside 8 2500 25.00 95.0

CT3 533,480 181,186 City	of	London	-	Sir	John	Cass	School Background 27.51 91.5

GR4 543,978 174,655 Greenwich	-	Eltham Suburban 21.91 99.6

Fig.	1	Googlestreet	map	showing	the	locations	of	MY1	and	BL0	sites.



GR5 538,960 177,954 Greenwich	-	Trafalgar	Road Roadside 5 1500 23.37 99.6

GR8 540,200 178,367 Greenwich	-	Woolwich	Flyover Roadside 3 7000 40.00 97.3

HK6 532,947 182,575 Hackney	-	Old	Street Roadside 6 2500 31.83 94.1

IS2 530,698 185,735 Islington	-	Holloway	Road Roadside 3 2000 30.73 98.6

IS6 531,325 186,032 Islington	-	Arsenal Urban	background 22.40 97.5

KC1 524,046 181,750 Kensington	and	Chelsea	-	North	Ken Urban	background 21.11 96.7

KC2 526,527 179,646 Kensington	and	Chelsea	-	Cromwell	Road Roadside 4 2800 33.71 81.4

KC5 525,671 179,080 Kensington	and	Chelsea-Earls	Court	Rd Kerbside Not	available 1600 35.83 98.9

MY1 528,125 182,016 Westminster	-	Marylebone	Road Kerbside 1.5 3327 43.25 97.5

The	hourly	average	traffic	volume	on	these	roads	ranges	between	1500	veh/h	and	7955	veh/h.	The	BL0,	CR3,	CT3,	GR4,	HA1,	IS6	and	KC1sites	are	either	urban	or	rural	background	monitoring	sites.	The	background	sites	are

mostly	located	in	areas	where	there	is	less	influence	of	local	pollution	sources.	The	data	collected	at	the	sites	include	particulate	matter	(PM10,	PM2.5)	and	gaseous	pollutants	(NOx,	NO2,	NO,	SO2,	CO,	and	O3),	traffic	volume	and	speeds.

Others	are	meteorological	variables	(wind	speeds,	wind	direction	in-street	flows,	solar	radiation,	relative	humidity	and	ambient	temperature).	The	instruments	used	for	the	monitoring	of	PM2.5	and	PM10	at	most	of	the	sites	in	London

include	two	similar	Tapered	Element	Oscillating	Microbalances	(TEOM)	Model	1400AB	with	different	sampling	heads	design	(Aurelie	and	Harrison,	2005).	The	filter	dynamics	measurement	system	(FDMS)	have	also	been	installed	at

some	of	the	stations	to	minimise	the	problems	of	loss	associated	with	the	TEOMs.	Some	small	number	of	sites	are	using	β-attenuation	analysers	for	the	measurements.	Data	from	these	monitoring	sites	are	being	measured	according	to

EU	protocols	and	are	undergoing	the	quality	assurance	and	quality	controls	according	to	Automatic	Urban	and	Rural	Network	(AURN)	and	London	Air	Quality	Network	(LAQN)	standards.	The	data	is	openly	accessible	through	the

London	Air	Archives	(LondonAir,	2013)	and	UK	Air	Quality	Archive	(UK-AIR,	2013).	The	meteorological	data	in	London	was	collected	from	London	Heathrow	Airport	Meteorological	station	through	BADC	data	services	(MIDAS	Land

Surface,	2013).

2.2	Data
The	hourly	average	mean	PM10	concentrations	at	the	sites	for	a	period	between	2000	and	2012	were	between	22.7	μg/m3	at	GR5	and	43.33	μg/m3	at	MY1.	In	most	of	the	sites,	the	hourly	average	PM10	concentrations	were

under	the	EU	annual	mean	limit	value	of	40	μg/m3.	The	90.4th	percentile	of	the	PM10	concentrations	at	the	sites	ranged	from	44.1	μg/m3	at	GR5	to	72.4	μg/m3	at	GR8.	The	percentages	of	missing	data	in	all	the	sites	selected	were	less

than	10%	except	at	KC2	where	the	missing	data	was	up	to	19%.	The	hourly	average	wind	speed	measured	at	Heathrow	airport	between	2000	and	2012	was	2.1	m/s	and	the	95th	percentiles,	and	the	maximum	wind	speeds	were	9.9	m/s

and	4.3	m/s	respectively.	The	prevailing	winds	were	from	the	Southwest	and	West	directions.	The	directions	of	the	dominant	winds	at	the	sites	govern	the	location	of	the	air	quality	monitoring	sites.	For	example,	at	Marylebone	Road,

the	air	quality	monitoring	site	is	located	to	the	south	of	the	road	to	take	the	advantage	of	the	effect	of	across	Canyon	vortex	usually	caused	by	the	prevailing	wind.	The	prevailing	wind	makes	the	flow	circulate	within	the	street	canyon

and	deliver	most	of	the	pollutants	to	the	leeward	side	of	the	street	canyon	(Tomlin	et	al.,	2009).

2.3	Quantification	of	upper	limit	of	road	traffic	contribution
The	method	adopted	for	the	estimation	of	the	upper	limit	of	road	traffic	contribution	follows	the	method	developed	by	Carslaw	et	al.	(2006)	to	quantify	the	contribution	of	aircraft	and	other	on	airport	sources	to	ambient	oxides

of	nitrogen.	The	same	method	was	also	applied	by	Masiol	and	Harrison	(2015)	to	estimate	the	impact	of	the	Heathrow	Airport	and	the	M25	and	M4	motorways	on	the	surrounding	air	quality.	The	method	involves	estimation	of	road

PM10	concentration	increment	by	subtracting	the	background	concentration	upwind	of	the	road	site	(i.e.	twin	studies)	and	the	use	of	bivariate	polar	plots	to	locate	the	wind	sectors	related	to	the	source	in	question.	The	contribution	of	a

source	will	then	be	estimated	by	filtering	the	data	by	the	time	of	the	activities	at	the	source,	the	wind	sector,	and	the	wind	speed.	The	Bivariate	polar	plots	describe	the	joint	variation	of	pollutant	concentrations,	wind	speeds	and	wind

direction	on	a	continuous	surface	using	polar	coordinates	(Carslaw	and	Beevers,	2013).	In	their	separate	studies,	Carslaw	et	al.	(2006)	and	Masiol	and	Harrison	(2015)	estimated	the	upper	limit	of	airport	contributions	considering	the

appropriate	wind	sectors	and	wind	speeds	greater	than	3	m/s	 to	eliminate	 the	 influence	of	 local	sources	such	as	roads.	Conversely,	 in	 this	study	we	are	 interested	 in	 the	contributions	of	 the	 local	sources	hence	we	used	the	data

covering	6:00–22:00	associated	with	the	wind	sectors	related	to	the	roads	and	with	wind	speeds	less	than	3	m/s	to	isolate	the	influence	of	other	sources	far	away	from	the	monitoring	units.	The	pollutants,	traffic,	and	meteorological

data	associated	with	the	estimates	obtained	were	used	to	train	Artificial	Neural	Network	(ANN)	models	for	the	prediction	of	the	upper	limit	of	the	contribution	of	the	roads.

2.4	Artificial	Neural	Network	(ANN)	modelling



ANN	models	are	designed	to	mimic	the	behaviour	of	the	human	brain.	The	human	brain	is	made	up	of	interconnected	synaptic	neurons	that	are	capable	of	learning	and	storing	information	about	their	environment	(Bishop,

1995).	A	neuron	model	 is	made	up	of	 three	elements,	 the	connecting	 links	characterised	by	 their	 strength	and	a	 linear	combiner	 that	combines	 the	weighted	 input	 signals.	Moreover,	 it	has	an	activation	 function	 for	 limiting	 the

amplitude	range	of	the	neuron’s	output	to	some	finite	value.	The	commonly	used	ANN	method	is	Multilayer	Perceptron	Network	(MLPN)	trained	using	a	back	propagation	algorithm	(BP).	The	MLPN	method	involves	designing	an

appropriate	neural	network	architecture	consisting	of	serially	interconnected	layers,	training	the	network	on	a	training	data	and	testing	the	network	on	a	test	data	set.	The	network	layers	include	input	layer	where	the	input	variables

are	received	and	the	hidden	layer	where	the	sum	of	the	weighted	inputs	from	the	input	layer	are	received	through	the	connecting	links	of	various	weights.	The	weighted	inputs	are	transformed	into	a	higher	dimension	using	the	hidden

layer	activation	function	(e.g.	sigmoid	function).	The	last	 layer	is	the	output	 layer	where	the	outputs	of	the	hidden	layer	are	received	through	connecting	links,	and	the	final	output	of	the	network	are	estimated	using	output	 layer

activation	functions	usually	linear.	The	network	outputs	are	then	compared	with	the	target	samples,	and	the	errors	are	estimated	and	propagated	back	to	update	the	previously	estimated	network	weights.	This	procedure	is	repeated

until	the	network	with	minimum	error,	and	good	generalisation	is	obtained.	The	main	task	in	the	design	of	the	neural	network	is	the	determination	of	an	appropriate	number	of	hidden	neurons	and	the	selection	of	input	variables	that

will	produce	a	model	with	the	desired	generalisation	and	prediction	accuracy.

The	ANN	methods	have	been	successfully	applied	in	many	air	quality	studies	(Taspinar,	2015;	Ragosta	et	al.,	2015;	Elangasinghe	et	al.,	2014a).	They	were	used	in	studies	involving	predicting	and	forecasting	of	air	pollutants

ranging	from	the	current	hour	to	several	days	in	advance	(Russo	et	al.,	2013;	de	Gennaro	et	al.,	2013).	In	an	attempt	to	tackle	the	challenges	of	training	ANN	models,	many	studies	involving	neural	network	often	used	cross-validation

or	evolutionary	algorithms	such	as	Genetic	algorithm	and	particle	swarm	optimisation	methods	to	derive	an	optimum	architecture	for	the	ANN	models	((Ding	et	al.,	2011a,b;	He	et	al.,	2014).	In	addition,	the	input	selection	methods

often	used	in	air	quality	studies	with	ANN	include	PCA	(Taspinar,	2015;	Ragosta	et	al.,	2015),	stepwise	regression	(Russo	et	al.,	2013;	Lima	et	al.,	2013),	and	cluster	analysis	(Elangasinghe	et	al.,	2014b).

In	this	paper,	the	Multilayer	Perceptron	(MLP)	was	used	to	train	the	ANN	models	for	predicting	the	upper	limit	of	road	traffic	contribution	to	the	roadside	particulate	matter	concentrations.	The	optimum	architecture	of	the

ANN	was	determined	using	a	model	tuning	function	(train)	provided	in	the	caret	package	of	an	R	statistical	software	(R	Development	Core	Team,	2015;	Kuhn,	2012).	The	function	uses	the	resampling	method	specified	(e.g.	bootstrap)

to	hold	out	certain	sample	of	the	training	data	and	then	fit	the	model	on	the	remainder	of	the	samples	over	a	specified	range	of	the	model	parameters	(i.e.	number	of	hidden	layer	neurons	and	weight	decay).	The	hold-out	samples	would

then	be	used	to	test	and	evaluate	the	model	performance.	The	function	uses	RMSE	values	to	determine	the	optimal	model	parameters	and	then	fit	the	final	model	to	all	the	training	data-sets	using	the	optimal	parameters.	The	selected

models	were	then	tested	using	the	test	data	set	and	evaluated	using	statistical	performance	metrics	including	coefficient	of	correlation	R,	mean	bias	and	normalised	mean	bias	(MB,	NMB),	mean	gross	error	and	its	normalised	form

(MGE,	NMGE).	Others	were	 the	 root	mean	squared	error	RMSE,	 the	coefficient	of	efficiency	COE	and	 index	of	agreement	 IA.	The	models	were	also	compared	with	 the	observation	of	a	 time	variation	plots	 to	examine	how	 they

accurately	captured	the	temporal	variations	in	the	original	observations.	The	relative	importance	of	the	input	variables	to	the	outputs	of	the	ANN	models	were	estimated	using	connection	weight	approach	(Olden	and	Jackson,	2002).

The	method	involves	calculating	the	products	of	the	input	–	hidden	and	hidden	–	output	connection	weights	for	each	input	and	output	neurons	and	sum	the	products	across	all	hidden	neurons	(Olden	et	al.,	2004).

3	Results	and	discussion
3.1	Spatial	analysis	of	the	PM10	concentrations	using	Bivariate	Polar	Plots	(BPP)

The	background	sites	selected	for	each	roadside	site	were	located	upwind	to	avoid	the	influence	of	the	road	sources	under	consideration.	The	sites	are	also	located	mostly	in	areas	where	there	is	the	less	likely	influence	of	other

local	PM10	sources.	For	example,	the	background	site	selected	for	MY1	was	BL0	which	is	located	approximately	2	km	to	the	east	of	MY1	in	a	Russel	park	square	London	(see	Fig.	1).

The	Bivariate	polar	plots	of	the	total	roadside	PM10	concentrations	at	most	of	the	sites	show	that	both	local	and	far	distance	sources	have	an	influence	on	the	elevated	PM10	concentrations	at	the	sites	(see	Fig.	2	first	panel	for

MY1	site).	The	plots	revealed	that	the	higher	concentrations	are	associated	with	both	higher	and	lower	winds	from	several	directions.	The	MY1	monitoring	unit	is	located	on	the	southern	side	of	Marylebone	Road	in	a	street	canyon

formed	by	high-rise	buildings	of	different	heights	in	the	city	of	Westminster	London.	The	site	is	situated	few	metres	away	from	the	junctions	connecting	Luxborough	Street	from	the	east	and	Baker	Street	from	the	west.	The	road	which

runs	along	 the	 southwest	 to	 the	northeast	axis	 is	one	of	 the	busiest	 roads	 in	central	London	with	 the	 traffic	 volume	of	over	4000	veh/h	and	 the	hourly	 average	PM10	 concentrations	of	 about	43.25	μg/m3.	 The	 higher	mean	PM10

concentrations	ranging	from	45	to	70	μg/m3	at	the	site	are	more	related	to	the	winds	along	the	road	and	the	recirculating	flows	within	the	canyon	as	shown	in	the	first	panel	of	Fig.	2.



The	BPP	of	 the	background	PM10	 shown	 in	 the	 second	panel	of	Fig.	2	 indicates	 that	 the	higher	PM10	 concentrations	 at	BL0	 site,	 are	more	 related	 to	 the	higher	winds	 coming	 from	east,	 indicating	 the	prevalence	of	 the

concentrations	from	long	range	transport.	The	PM10	road	increments	obtained	as	the	difference	between	the	roadside	and	background	PM10	concentrations	are	more	related	to	the	lower	winds	and	the	concentrations	reduces	with	an

increase	in	wind	speed	as	shown	in	the	third	panel	of	Fig.	2.	The	behaviour	shown	by	the	PM10	road	increment	shown	in	Fig.	2	is	expected	from	the	ground	level	sources	e.g.	traffic.	However,	at	higher	wind	speeds,	say	>3	m/s,	PM10

from	far	distant	sources	might	be	transported	to	the	site.	Therefore,	PM10	increments	associated	with	the	higher	winds	are	isolated	to	obtain	the	upper	limits	of	the	road	contribution	to	the	total	PM10	concentrations	at	the	monitoring

sites.	Although	higher	wind	speeds	could	result	 in	higher	resuspension	of	 the	particles	and	 formation	of	 street	canyon	vortices,	Kassomenos	et	al.	 (2012)	 reported	 that	 the	non-wind	driven	component	of	 the	re-suspended	coarse

particles	(PM2.5–PM10)	dominates	with	around	74–90%	of	the	total	coarse	particle	mass	in	the	three	examined	cities.

Therefore,	the	BPP	for	PM10	concentrations	have	been	drawn	for	each	of	the	ten	roadside	monitoring	sites	to	qualitatively	access	the	behaviour	of	PM10	road	increments	at	the	sites.	For	each	monitoring	site.	four	BPPs	were

derived,	each	for	the	total	concentrations,	the	roadside	increment,	the	roadside	increment	associated	with	wind	speed	less	than	3	m/s	and	the	roadside	increment	related	to	wind	speed	greater	than	3	m/s	as	shown	in	Fig.	3a,	b,	c	and	d

respectively.	The	surface	of	BPP	plots	is	determined	by	the	combination	of	the	wind	speed,	wind	direction	and	the	PM10	concentrations.	The	circles	indicate	the	wind	speeds	and	the	colour	coded	surface	show	the	spread	of	the	PM10

concentrations	at	various	wind	directions.	Fig.	3c	shows	a	complete	surface	indicating	that	at	lower	wind	speed	the	concentration	of	PM10	is	associated	with	all	the	wind	directions.	However,	at	higher	winds	the	PM10	concentrations

are	only	associated	with	the	directions	of	the	prevailing	wind	directions	as	shown	in	Fig.	3d.

The	BPP	of	the	total	PM10	increments	shown	in	Fig.	3b	revealed	that	the	higher	PM10	increment	ranging	from	25	to	45	μg/m3	are	more	related	to	the	winds	coming	from	the	west	and	southwest	indicating	the	prevalence	of	the

canyon	channelling	flows.	This	behaviour	is	more	pronounced	when	the	increments	related	to	the	lower	winds	are	isolated	as	shown	in	Fig.	3c.	However,	at	higher	winds,	the	flows	along	the	canyon	from	the	southwest	might	carry	the

higher	concentrations	from	the	Baker	Street	junction	located	to	the	west	through	the	road	down	to	the	monitoring	unit	as	shown	in	Fig.	3d.

Similarly,	the	BPPs	of	the	total	PM10	increments	for	BT4,	CD3,	and	CR4	sites	indicate	that	the	increments	are	mostly	influenced	by	local	sources	because	they	are	more	related	to	the	lower	wind	speeds	and	decreases	with	an

increase	in	wind	speeds.	Conversely,	at	the	remaining	sites,	the	higher	concentrations	associated	with	both	low	and	high	wind	speeds	indicating	the	effect	of	both	local	and	far	distance	sources.	There	are	two	things	to	consider	at	the

Fig.	2	Bivariate	polar	plots	of	PM10	concentration	showing	the	effect	of	background	sites	on	the	roadside	site.

Fig.	3	Bivariate	polar	plots	of	PM10	concentration	at	the	MY1	monitoring	site	showing	the	changes	in	concentrations	due	to	background	concentrations	and	wind	speed.



sites	where	increments	are	associated	with	both	higher	and	lower	winds.	First,	the	background	concentrations	might	have	been	affected	by	the	influence	of	 local	sources.	Therefore,	 it	 is	not	a	true	representative	of	a	background

concentration.	Second,	the	concentrations	might	have	been	transported	to	the	monitoring	sites	by	the	higher	winds	flowing	along	the	street	and	by	the	circulation	vortices	in	the	case	of	street	canyons.	The	BPPs	obtained	separately	for

higher	winds,	and	lower	winds	indicate	that	most	of	the	higher	concentrations	related	to	the	higher	wind	speeds	are	carried	to	the	monitoring	units	by	the	channelling	flows	and	in	some	cases	by	the	recirculation	flows.	However,	the

concentrations	associated	with	the	lower	winds	shows	that	both	the	channelling	flows	and	the	recirculation	vortices	play	a	vital	role,	and	the	concentrations	are	always	associated	with	the	direction	of	the	location	of	the	roads	and	the

directions	opposite	to	the	road	in	a	case	where	canyon	vortices	are	formed.	Therefore,	the	concentrations	at	lower	winds	that	are	associated	with	the	wind	direction	related	to	the	location	of	roads	were	considered	the	upper	limit

contribution	of	the	road	traffic	on	the	roads.

3.2	Quantification	of	the	road	traffic	contribution	to	the	roadside	PM10	concentrations
The	bivariate	polar	plot	analysis	of	the	PM10	concentrations	presented	in	Section	3.1	provided	us	with	the	qualitative	assessment	of	the	likely	effect	of	the	roads	near	the	monitoring	stations.	This	section	went	further	to	provide

a	quantitative	estimate	of	the	upper	limit	of	the	road	traffic	contribution	using	a	similar	approach	to	that	employed	by	Carslaw	et	al.	(2006)	and	Masiol	and	Harrison	(2015)	for	quantifying	the	upper	limit	contribution	of	Heathrow

airport.	The	method	involved	identifying	the	appropriate	site	pairs	i.e.	roadside	and	background	sites	and	then	estimating	the	roadside	increment	by	subtracting	the	background	concentrations	from	the	roadside	concentrations.	The

concentrations	collected	between	06:00	and	22:00	were	then	extracted	and	divided	according	to	those	associated	with	wind	speed	greater	than	3	m/s	and	less	than	3	m/s.	Furthermore,	the	BPP	of	the	PM10	increment	for	each	wind

speed	class	and	the	combined	data	for	the	period	was	derived.	The	BPPs	were	then	used	to	identify	the	wind	sectors	related	to	the	roads	that	contribute	most	to	the	elevated	concentrations	at	the	sites.	The	data	for	the	selected	wind

sectors	were	then	extracted,	and	their	mean	and	frequency	were	obtained.	The	upper	limit	of	the	road	contribution	was	estimated	as	the	mean	PM10	increment	related	to	the	selected	wind	sectors	and	wind	speed	less	than	3	m/s.	The

period	between	6:00	and	22:00	and	the	wind	speed	less	than	3	m/s	were	chosen	to	maximise	the	road	contribution	and	eliminate	the	influence	of	long	distance	sources	respectively	(Carslaw	et	al.,	2006).	The	results	of	the	estimates	are

shown	in	Table	2.

Table	2	Estimates	of	the	contribution	of	road	traffic	and	other	sources	to	the	concentrations	of	PM10.

Site	pairs Wind	speed	(m/s) Wind	sector	(degrees) Total	mean	PM10	(μg/m3) Total	mean	PM10inc	(μg/m3) Mean	PM10inc	(μg/m3) Percent	road	contribution	(%) Percentage	of	observations	(%)

BT4	–	KC1 Combined 0–140 37.04 14.51 22.79 62% 9%

BT4	–	KC1 >3	m/s 30–130 37.04 14.51 21.76 59% 2%

BT4	–	KC1 <3	m/s 40–230 37.04 14.51 22.07 60% 27%

CD3	–	KC1 Combined 75–200 34.22 11.6 12.16 36% 49%

CD3	–	KC1 >3	m/s 65–200 34.22 11.6 10.52 31% 12%

CD3	–	KC1 <3	m/s 90–255 34.22 11.6 14.86 43% 21%

CR4	–	HA1 Combined 70–255 25.62 8.51 12.16 47% 26%

CR4	–	HA1 >3	m/s 70–240 25.62 8.51 9.27 36% 5%

CR4	–	HA1 <3	m/s 90–180 25.62 8.51 12.81 50% 22%

GR5	–	GR4 Combined 60–90 23.37 1.42 3.69 16% 18%

GR5	–	GR4 >3	m/s 60–90 23.37 1.42 3.37 14% 2%

GR5	–	GR4 <3	m/s 340–90 23.37 1.42 5.5 24% 7%

GR8	–	GR4 Combined 150–310 40.63 18.68 22.86 56% 27%

GR8	–	GR4 >3	m/s 250–330 40.63 18.68 24.36 60% 4%

GR8	–	GR4 <3	m/s 150–310 40.63 18.68 24.15 59% 35%

HK6	–	CT3 Combined 250–340 31.83 4.45 10.82 34% 18%



HK6	–	CT3 >3	m/s 90–250 31.83 4.45 9.21 29% 4%

HK6	–	CT3 <3	m/s 90–320 31.83 4.45 12.48 39% 17%

IS2	–	IS6 Combined 140–330 30.73 8.26 3.04 10% 11%

IS2	–	IS6 >3	m/s 180–335 30.73 8.26 1.66 5% 2%

IS2	–	IS6 <3	m/s 145–330 30.73 8.26 7.76 25% 21%

KC2	–	KC1 Combined 60–300 33.71 11.96 12.52 37% 39%

KC2	–	KC1 >3	m/s 60–300 33.71 11.96 15.59 46% 2%

KC2	–	KC1 <3	m/s 140–280 33.71 11.96 12.71 38% 31%

KC5	–	KC1 Combined 190–270 35.83 14.61 13.62 38% 7%

KC5	–	KC1 >3	m/s 0–90 35.83 14.61 11.95 33% 2%

KC5	–	KC1 <3	m/s 50–140 35.83 21.65 16.39 46% 44%

MY1	–	BL0 Combined 140–270 43.33 21.65 26.89 62% 35%

MY1	–	BL0 >3	m/s 170–270 43.33 21.65 24.34 56% 4%

MY1	–	BL0 <3	m/s 150–270 43.33 25.2 58% 35%

The	first	column	displays	the	site	pairs;	the	second	column	displays	the	wind	speed	classes	while	the	third	column	shows	the	selected	wind	sectors	for	each	wind	speed	class.	The	overall	hourly	mean	PM10	concentrations	and

the	hourly	average	roadside	increment	at	wind	speed/wind	sector	are	shown	in	third	and	fourth	columns	respectively.	The	fifth	column	shows	the	percentage	of	the	mean	increment	at	each	wind	speed/wind	sector	as	a	proportion	of	the

average	PM10	concentrations	for	the	whole	observation	over	the	study	period.	The	sixth	column	is	the	percentage	of	the	observation	for	each	wind	speed/wind	sector	as	a	proportion	of	the	total	observations	at	the	site.

The	upper	limit	of	the	road	contribution	constitutes	between	24%	and	62%	of	the	mean	PM10	concentrations	at	the	sites.	The	sites	with	the	higher	hourly	average	traffic	volume	seem	to	have	higher	contributions	irrespective	of

their	locations.	For	example,	BT4,	GR8,	and	MY1	contributed	about	58–60%	of	the	mean	PM10	concentrations	recorded	at	their	respective	locations	as	shown	in	Table	2.	The	frequency	of	observations	associated	with	the	upper	limit

estimation	constitutes	about	21–44%	of	the	total	observation	at	the	sites.	There	was	no	much	difference	between	the	average	contribution	of	other	sources	and	the	roads	in	terms	of	the	level	of	concentrations.	However,	there	is	an

enormous	difference	in	the	frequency	of	their	respective	observations.	It	was	observed	that	the	frequency	of	observations	associated	with	the	higher	wind	speeds	at	wind	sectors	related	to	the	roads	constitute	only	about	2–12%	of	the

total	observation	as	shown	in	Table	2.	In	the	UK,	the	average	road	transport	contribution	to	the	overall	PM10	emission	is	about	27%	(DEFRA,	2013),	however	in	London,	road	transport	contributes	about	49%	of	the	total	PM10	emission

(TfL,	2014).	The	hourly	average	upper	limit	of	the	PM10	 increment	estimated	in	this	study	was	about	15.39	μg/m3	which	is	about	46%	of	the	average	PM10	concentrations	observed	at	the	sites.	This	nearly	corresponds	to	the	49%

estimated	actual	road	transport	contribution	by	the	London	Atmospheric	Emissions	Inventory	(LAEI)	(TfL,	2014).	Although	the	results	obtained	in	this	study	is	comparable	to	LAEI	estimates,	the	actual	road	traffic	contribution	is	not

known.	Also,	the	assumptions	about	the	wind	speed	and	wind	direction	dependencies	of	the	PM10	concentrations,	though,	shown	to	be	robust,	might	affect	the	accuracy	of	the	estimates	since	the	boundaries	of	the	wind	parameters	are

just	estimates.

3.3	ANN	modelling
The	input	data	selected	for	the	ANN	modelling	comprises	of	the	background	PM10,	roadside	NOx,	NO2	and	SO2.	The	traffic	variables	included	are	the	PM10	emission	rates	of	the	eight	categories	of	traffic	composition	i.e.	petrol

cars,	diesel	cars,	taxi,	LGV,	Rigid	HGV,	articulated	HGV,	Bus	and	Coach	and	motorcycle.	Others	are	the	meteorological	variables	including	Rainfall,	Relative	humidity,	solar	radiation,	Temperature,	Barometric	Pressure,	Wind	Speed	and

Wind	directions.	The	input	variables	to	the	ANN	models	were	first	processed	using	Principal	Component	Analysis	(PCA).	Pre-processing	the	data	in	this	way,	allows	for	the	derivation	of	uncorrelated	variables	(i.e.	PCs)	to	reduce	the

dimensionality	of	the	input	space	which	will	enhance	the	performance	of	the	ANN	models	to	be	developed.	The	first	PCs	that	explained	99%	of	the	variance	in	the	data	were	selected	as	the	model’s	inputs.	The	first	two	PCs	contributed

about	57%	of	the	total	variation	in



the	data	(see	Table	3).	The	first	PC	is	dominated	by	the	contribution	of	traffic	variables	and	has	highlighted	the	positive	correlation	between	the	traffic	variables	and	the	pollutant	concentrations.	The	second	PC	show	high

correlation	with	the	pollutant	and	meteorological	variables	in	the	data.	Most	importantly,	the	second	PC	displays	the	negative	correlation	between	the	wind	speed,	solar	radiation	and	temperature	on	one	side	and	the	pollutant	variables

on	the	other	side.

Table	3	Results	of	the	principal	component	analysis	of	the	input	data.

Principal	components Eigenvalue Percentage	of	variance Cumulative	percentage	of	variance

Comp	1 7.93 41.73 41.73

Comp	2 2.99 15.72 57.45

Comp	3 2.11 11.10 68.55

Comp	4 1.13 5.92 74.47

Comp	5 1.07 5.61 80.07

Comp	6 0.87 4.60 84.67

Comp	7 0.71 3.71 88.39

Comp	8 0.66 3.46 91.85

Comp	9 0.53 2.78 94.63

Comp	10 0.38 1.98 96.61

Comp	11 0.31 1.63 98.23

Comp	12 0.19 1.02 99.26

Comp	13 0.10 0.51 99.77

Comp	14 0.03 0.15 99.92

Comp	15 0.01 0.07 99.99

The	negative	correlation	shows	that	when	the	temperature	is	low,	the	pollution	level	tends	to	rise,	and	also	the	pollution	levels	reduces	with	an	increase	in	the	ventilation	of	the	urban	area.	Low	temperatures	contribute	to	high

PM10	concentrations	through	condensation	of	volatile	compounds	and	possibly	because	of	residential	heating.	Moreover,	low	temperature	can	act	as	a	proxy	for	stable	boundary	layer	and	low	vertical	mixing	(Barmpadimos	et	al.,	2011).

3.4	Performance	of	the	ANN	model
The	ANN	models	were	trained	to	predict	the	upper	limit	of	the	hourly	road	contributions	to	PM10	concentrations,	and	after	training,	they	were	tested	for	the	prediction	on	the	test	data.	The	test	performance	of	the	models	was

evaluated,	 and	 the	 results	 show	 that	 the	models	performed	very	well	 on	 the	 test	data.	Table	4	 shows	 the	 statistical	 performance	 of	 the	models	 for	 each	 site.	 The	 predicted	PM10	 concentrations	 show	good	 correlation	with	 their

corresponding	observations.

Table	4	Performance	statistics	of	the	ANN	predictions.

Site FAC2 NMB RMSE R COE IOA

BT4 0.83 0.02 11.40 0.75 0.39 0.70

CD3 0.73 0.07 11.39 0.63 0.22 0.61

CR4 0.57 −0.01 12.51 0.60 0.28 0.64



CR4 0.57 −0.01 12.51 0.60 0.28 0.64

GR5 0.40 0.11 6.97 0.77 0.29 0.65

GR8 0.83 0.01 21.73 0.68 0.34 0.67

HK6 0.57 −0.02 9.09 0.70 0.28 0.64

IS2 0.73 0.01 9.97 0.86 0.50 0.75

KC2 0.94 −0.01 7.70 0.78 0.41 0.71

KC5 0.80 0.02 7.57 0.61 0.19 0.59

MY1 0.95 −0.01 11.79 0.76 0.38 0.69

The	ANN	models	performed	well	on	the	test	data	with	57%–95%	of	their	predictions	falling	within	the	factor	of	two	of	the	estimated	upper	limit	of	road	contributions	of	PM10	as	shown	by	the	FAC2	values	in	Table	4.	Only	at	GR5

that	about	40%	of	the	predictions	are	within	the	factor	of	two	of	the	road	PM10	contributions.	This	low	performance	might	be	attributed	to	the	averaging	period	used	in	collecting	the	data	at	this	site	which	is	twenty-four-hour	average

instead	of	hourly	averages	as	it	was	obtained	at	the	remaining	sites.	The	daily	averages	are	repeated	for	the	24	h	of	the	day	to	get	the	hourly	values.	Therefore,	the	models	tried	to	estimate	the	hourly	variations	within	the	predictors

that	did	not	exist	in	the	response	variable	hence	the	low	performance.	The	FAC2	values	are	well	above	the	minimum	of	50%	recommended	to	the	DEFRA	UK	(Derwent	et	al.,	2010)	for	the	acceptance	of	an	air	quality	model.	The	models

showed	low	bias	in	their	predictions.	However,	there	is	slight	under-prediction	of	the	road	contributions	at	some	of	the	sites,	as	indicated	by	the	negative	sign	of	the	NMB	values.

Derwent	et	al.	(2010)	recommended	that	for	an	air	quality	model	to	be	accepted	it	should	satisfy	the	minimum	requirement	of	NMB	values	in	the	range	between	−0.2	and	+0.2.	The	NMB	values	obtained	here	for	all	the	sites

are	nearly	zero	which	shows	that	 they	performed	way	above	the	minimum	requirement.	Also	as	 in	 the	case	of	FAC2	values,	 the	NMB	value	 for	 the	GR5	site	 is	slightly	higher	than	the	corresponding	values	at	 the	other	sites.	The

coefficient	of	correlation	between	them	is	between	0.61	and	0.86	showing	good	agreement	between	the	model	predictions	and	the	observations	of	the	road	contributions.	The	models	can	estimate	the	road	contributions	with	about

20–50%	more	accuracy	than	the	mean	of	the	road	contributions	as	indicated	by	the	Coefficient	of	Efficiency	(COE)	values.	The	RMSE	values	range	between	6.97	and–	21.73	μg/m3	depending	on	the	hourly	average	PM10	concentrations

at	the	sites.	However,	a	perfect	model	should	have	0	RMSE	value,	while	the	higher	the	RMSE	values	shown	by	the	model,	the	less	accurate	its	predictions	will	be.	Although	the	RMSE	is	sensitive	to	extreme	values,	it	reveals	the	actual

size	of	the	error	produced	by	the	model	(Willmott,	1982,	1981).

Also,	the	index	of	the	agreement	shows	that	the	prediction	of	the	models	is	in	good	agreement	with	the	observed	data	with	values	ranging	between	60	and	75%.	The	relationships	between	the	predicted	and	observed	values

were	further	analysed	using	time	variation	plots	as	to	ascertain	how	well	the	models	captured	the	temporal	variations	in	the	observations	as	shown	in	Fig.	4.	The	hourly	variation	plots	demonstrate	that	the	models	perform	extremely

well	in	capturing	the	hourly	variation	of	the	PM10	observations	at	the	sites	and	all	the	predictions	are	within	the	95%	confidence	intervals	of	the	observation	as	shown	in	Fig.	4.



The	predictions	of	the	average	daily	traffic	contributions	also	followed	the	observations	closely	and	were	all	within	the	95%	confidence	intervals.	Although	there	is	no	much	difference	in	the	daily	contributions,	there	are	days

with	higher	and	lower	contributions	at	some	sites.	For	example	at	BT4	and	GR8	sites,	Thursdays	show	higher	and	lower	contributions	respectively.	At	MY1	site,	Wednesdays	and	Saturdays	show	lower	contributions	than	the	remaining

days.	At	CD3	the	models	overestimated	the	weekend	contributions	while	they	underestimated	Friday	contributions	at	CR4	site	(see	Fig.	5).

The	scatter	plots	in	Fig.	6	show	the	graphical	correlation	between	the	observed	and	predicted	road	contributions.	It	could	be	seen	that	the	models	over	predicted	the	lower	contributions	at	most	of	the	sites.	However	they

predicted	the	medium	to	higher	contributions	more	accurately.	Also,	there	is	slight	underestimation	at	HK6	and	CR4.	The	models	performed	better	at	BT4,	IS2,	KC2,	and	MY1	where	most	of	the	predictions	at	these	sites	fall	within	the

FAC2	boundaries	demarcated	by	the	two	dashed	lines	in	each	of	the	plots	in	Fig.	6.

Fig.	4	Hourly	time	variation	plots	comparing	the	predicted	and	observed	upper	limit	of	road	traffic	contribution	to	the	PM10	concentrations	at	10	sites.

Fig.	5	Daily	time	variation	plots	comparing	the	predicted	and	observed	upper	limit	of	road	traffic	contribution	to	the	PM10	concentrations	at	10	sites.



The	 boxplots	 in	 Fig.	 7	 show	 that	 the	ANN	models	 predicted	 the	 statistical	 values	 of	 the	 contributions	 i.e.	minimum,	mean	 and	maximum	 values,	 the	 lower	 and	 upper	 quantiles	 of	 the	 observed	 road	 traffic	 contributions

accurately.	Although	these	statistics	are	conservative,	they	give	information	on	how	the	models	captured	the	distribution	of	the	observed	contribution	of	road	traffic	to	the	PM10	concentrations	(see	Fig.	8 (This	should	be	Fig.	7	or	be

removed	if	the	first	reference	is	sufficient)).

Fig.	6	Scatter	plots	comparing	the	predicted	and	observed	upper	limit	of	road	traffic	contribution	to	the	PM10	concentrations	at	10	sites.

Fig.	7	Box	and	whisker	plot	comparing	the	predicted	(mod.PM10)	and	observed	(obs.PM10)	upper	limit	of	road	traffic	contribution	to	the	PM10	concentrations	at	10	sites.

Fig.	8	Variable	importance	in	the	ANN	models.



The	contribution	of	the	input	variables	to	the	output	of	the	models	was	estimated	using	the	connection	weight	approach	(Olden	et	al.,	2004).	The	results	obtained	for	the	MY1	site	is	shown	in	Fig.	6 (This	should	be	Fig.	8).	It	could

be	seen	that	the	most	contributing	variables	are	the	hourly	PM10	emission	rates	of	the	vehicles	among	which	the	London	taxi,	diesel	car,	LGV	and	the	HGVs	contributed	the	most.	This	relationship	is	expected	since	these	vehicles	are

known	to	have	higher	particle	emissions. (Fig	8	should	be	inserted	here	if	possible)	The	results	agree	with	the	PCA	analysis	carried	out	during	the	preprocessing	of	the	model	inputs	where	the	PCs	with	higher	variability	in	the	data	set

correlated	very	well	with	the	traffic	variables.	The	second	most	important	variables	are	the	background	PM10	and	oxides	of	nitrogen	and	lastly	the	meteorological	variables.	The	background	PM10	should	have	direct	relationships	with

the	roadside	PM10	since	the	later	is	just	an	addition	over	the	former	due	to	the	engine	emissions,	wear	and	tear	of	the	vehicle	parts,	brakes	and	road	dust.	The	meteorological	variables	play	a	vital	role	in	the	dispersion	of	the	PM10

within	the	urban	environment.	Stability	of	boundary	layer,	street	canyon	recirculation,	resuspension	of	particles,	deposition,	and	chemical	transformations	of	the	emitted	particles	are	all	controlled	by	the	meteorological	variables	such

as	temperature,	wind	speeds	and	directions,	rainfall	and	relative	humidity	to	mention	a	few.	Therefore,	the	result	of	the	variable	contribution	in	the	ANN	model	development	boosted	our	confidence	on	its	estimates	since	it	describes

the	underlaying	relationships	between	the	variable	involved	in	the	prediction.	Also,	this	result	could	help	in	identifying	the	vehicles	that	emit	higher	particles	for	the	purpose	of	emission	managements	and	control	and	in	turn	the	ANN

models	could	be	considered	as	the	air	quality	management	tools.	Although	the	result	of	this	study	in	using	ANN	methods	to	predict	road	traffic	contribution	to	particulate	matter	is	promising,	its	accuracy	will	largely	depend	on	the

assumptions	on	the	period	of	traffic	activity,	wind	speed	threshold	at	which	the	PM10	concentration	is	considered	to	be	dominated	by	traffic	sources	and	the	wind	sectors	related	to	the	roads.

4	Conclusions
The	method	for	estimating	and	predicting	the	upper	limit	of	road	traffic	contribution	to	the	urban	particulate	matter	has	been	demonstrated	and	shows	that	the	use	of	twin	studies	in	conjunction	with	the

bivariate	polar	plots	could	 lead	 to	more	accurate	estimates	of	 the	contribution	of	 road	 traffic	 to	 the	roadside	concentrations	of	particulate	matter.	The	 influence	of	 local	and	 far	distance	emission	sources	on	 the

concentration	was	also	highlighted.	The	results	showed	that	using	twin	studies	without	filtering	the	data	based	on	the	polar	plot	analysis	underestimates	the	road	contribution	by	almost	50%.	It	was	also	found	out	the

there	was	not	much	variation	in	the	magnitudes	of	the	contribution	of	road	traffic	and	other	sources.	However	the	frequency	of	observations	of	low	winds	and	wind	direction	related	to	the	roads	is	much	higher	than

the	frequency	of	observations	under	higher	winds	and	other	wind	directions.	For	example	at	lower	winds	the	frequency	of	observations	was	found	to	be	between	27%	toand	44%	of	the	total	observation	at	the	sites,

while	the	frequency	of	the	PM10	observation	due	to	other	sources	constitutes	only	between	2%	toand	4%.	The	percentage	mean	upper	limit	contribution	of	the	road	traffic	to	the	hourly	average	roadside	concentrations

was	estimated	to	be	between	24%	toand	64%.	The	ANN	models	performed	extremely	well	 in	predicting	the	hourly	road	traffic	contributions,	and	the	predictions	agreed	well	with	the	observations.	The	analysis	of

variable	importance	confirmed	the	earlier	results	obtained	by	the	use	of	principal	component	analysis.	It	shows	that	the	traffic	emission	variables	were	found	to	have	contributed	immensely	to	the	accuracy	of	the

models.	The	results	of	analysis	of	variable	importance	demonstrates	that	the	traffic	emission	variables	are	the	most	influential	variables	in	the	prediction,	therefore	it	provides	an	opportunity	for	the	models	to	be	used

as	 air	 quality	management	 tools	where	 the	 sensitivity	 of	 the	models	 to	 the	 changes	 in	 the	 emission	 could	 be	 used	 to	 test	 the	 effectiveness	 of	 an	 air	 quality	management	 scenario	 related	 to	 traffic	 technology,

composition	or	volume.
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