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Existence of spanning F -free subgraphs with large minimum degree

Guillem Perarnau∗ Bruce Reed†

November 25, 2016

Abstract

Let F be a family of graphs and let d be large enough. For every d-regular graph G, we study

the existence of a spanning F-free subgraph of G with large minimum degree. This problem is well-

understood if F does not contain bipartite graphs. Here we provide asymptotically tight results

for many families of bipartite graphs such as cycles or complete bipartite graphs. To prove these

results, we study a locally injective analogue of the question.

1 Introduction

Let G = (V,E) be a d-regular graph on n vertices. It is well-known that every d-regular graph has

a spanning triangle-free subgraph H with minimum degree at least d/2. Let F denote a family of

graphs. We say that G is F-free if for every F ∈ F , G does not contain any subgraph isomorphic to

F . In this paper we study the which is the largest minimum degree of a spanning F-free subgraph H

of a d-regular graph G.

Let ex(n,F) be the maximum number of edges in an F-free graph on n vertices. Since the complete

graph Kn on n = d + 1 vertices is d-regular, the minimum degree of a spanning F-free subgraph H

of Kd+1 is at most 2ex(d+ 1,F)/(d+ 1). In [11], Foucaud, Krivelevich and Perarnau conjectured the

following.

Conjecture 1 ([11]). For every family F there exists a constant cF > 0 such that for every d ≥ 1

and every d-regular graph G, there exists a spanning F-free subgraph H of G with minimum degree

δ(H) ≥ cF · ex(d,F)
d .

Here and throughout the paper, for any two functions f, g that depend on several variables, including

d, we will use the standard asymptotic notation g = Ω(f) to denote the following: given that all

variables apart from d are fixed, we have lim infd→∞(g/f) > 0. We also use g = O(f) to denote

f = Ω(g), and g = Θ(f) if both g = Ω(f) and g = O(f) hold. For instance, Conjecture 1 can be

written as: given a family F , for every d and every d-regular graph G, there exists a spanning F-free

subgraph H of G with minimum degree δ(H) = Ω(ex(d,F)/d).

∗School of Mathematics, University of Birmingham, Montreal, Quebec, Canada. g.perarnau@bham.ac.uk.
†Kawarabayashi Large Graph Project, National Institute of Informatics, Japan. breed@mcgill.ca.
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If the chromatic number of F1 is at least 3 (i.e., there are no bipartite graphs in F) it is easy to verify

the conjecture (see Proposition 1 in [11] for a precise result).

The family Fg = {C3, . . . , Cg−1} is of special interest since a graph H is Fg-free if and only if H has

girth at least g. Even if the order of ex(d,Fg) is not known in general, there are some partial results

towards Conjecture 1 for Fg. Kun [16] showed that for every g ≥ 4, every d-regular graph G admits

a spanning Fg-free subgraph with minimum degree Ω(d1/g). Foucaud, Krivelevich and Perarnau [11]

improved the lower bound on the minimum degree to Ω
(

ex(d,Fg)
d log d

)
. This shows that Conjecture 1

holds up to a logarithmic factor for Fg.

In this paper we prove Conjecture 1 for a large number of families F with chromatic number 2, which

in particular includes Fg.

Before stating our main result we need to introduce some definitions. For any two graphs F and J ,

we say that ϕ : V (F )→ V (J) is an homomorphism if for every uv ∈ E(F ) we have ϕ(u)ϕ(v) ∈ E(J).

We say that ϕ is locally injective if, for every v ∈ F , the restriction of ϕ onto the neighbors of

v in F is injective. In other words, if u1 and u2 are neighbors of v in F , then ϕ(u1) 6= ϕ(u2). Let

hom∗(F, J) be the number of locally injective homomorphisms from F to J . Observe that the condition

hom∗(F, J) = 0, for every F ∈ F , is stronger than F-freeness. Any copy of F in J induces an injective

homomorphism from F to J which, in particular, is also locally injective.

For every graph J , we denote by δ(J) its minimum degree and by ∆(J) its maximum degree. For

every β ≥ 1, we say that J is β-almost regular if ∆(J) ≤ βδ(J).

Our first result is a locally injective version of Conjecture 1.

Theorem 2. Let F be a family of graphs, ε > 0, β ≥ 1 and α ≥ 25β2, and let d be large enough. If

J is a graph on αd vertices such that,

- J is β-almost regular,

- J has minimum degree δ(J) > dε, and

- hom∗(F, J) = 0, for every F ∈ F ,

then, for every d-regular graph G there exists a spanning subgraph H of G with δ(H) = Ω(δ(J)) and

hom∗(F,H) = 0, for every F ∈ F .

The proof goes as follows. Initially, we select a bipartite subgraph G′ of G with stable sets A and B

and large minimum degree. The main part of the proof consists on finding a vertex coloring χ using

as a color palette V (J). We color A in a two steps procedure; the first one being random and the

second one, deterministic. At the same time we delete some edges of G′ to obtain a subgraph H ′

that has large minimum degree and where vertices in B have rainbowly colored neighborhoods. We

color B afterwards via an iterative coloring procedure which also finishes with a deterministic step.

Again, during the coloring procedure we delete some edges to obtain a subgraph H that has minimum

1The chromatic number of F is the smallest chromatic number of F ∈ F .
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degree Ω(δ(J)) and where all the neighborhoods are rainbowly colored. Moreover, the coloring satisfies

that χ(a)χ(b) is an edge of J for every edge ab of H. Thus, χ naturally provides a locally injective

homomorphism from H to J . Since J has no locally injective copies of F , neither does H.

Theorem 2 has some direct implications for Conjecture 1. A family of graphs F is closed if for every

graph J we have: hom∗(F, J) = 0 for every F ∈ F if and only if J is F-free; that is, if J is F-free,

then there are no locally injective copies of F ∈ F in J . As a consequence of Theorem 2 we obtain

that Conjecture 1 holds for every closed family.

Theorem 3. Conjecture 1 holds for every closed family F of graphs: every d-regular graph G has a

spanning F-free subgraph H with minimum degree δ(H) = Ω(ex(d,F)/d).

Theorem 3 gives a lower bound on the minimum degree in terms of ex(d,F). We now provide some

explicit results for some important families F with chromatic number 2 that are closed. The problem

of determining ex(d,F) when F contains bipartite graphs is one of the most important in extremal

graph theory (see [12] for a complete survey on the topic). We use some well-known constructions of

extremal graphs to provide explicit corollaries of Theorem 3:

- Let F = Fg = {C3, . . . , Cg−1}. Observe that F is a closed family. However, the asymptotic

order of ex(d,F) is not known in general. Using the Erdős-Rényi random graph G(d, p) for some

suitably chosen probability p = p(d, g), one can show the existence of an F-free graph of order

d and Θ(d1+1/(g−3)) edges. This provides a lower bound for ex(d,F). By Theorem 3, we have

that every d-regular graph G has a spanning subgraph with girth at least g and minimum degree

Ω(d1/(g−3)). This improves the result of Kun [16].

- Let F = F6 = {C3, C4, C5}. From the constructions of extremal C4-free graphs provided by

Erdős, Rényi and Sós [9] and Brown [2] one can obtain an F-free graph of order d and Θ(d3/2)

edges. Again, by Theorem 3, for every d-regular graph G we can show the existence of a spanning

subgraph with girth at least 6 and minimum degree Ω(
√
d). Extremal constructions for graphs

with girth at least 8 and 12 are also known [17, 18]. From them we can obtain tight explicit

lower bounds for F8 = {C3, . . . , C7} and F12 = {C3, . . . , C11}.

- Let F = {Ka,b} with a ≤ b. Since Ka,b has diameter two, each locally injective homomorphism

of Ka,b onto a graph J , is also injective. Thus, if hom∗(Ka,b, J) = 0, then J is Ka,b-free, and

F is closed. In particular, any family composed by complete bipartite graphs is closed. It is

conjectured that ex(d,Ka,b) = Θ(n2−1/a). While the upper bound has been proved for all values

of a and b (Kovári, Sós and Turán [14]), the lower bound is still wide open. However, it is known

to be true in the following cases: a = 2 and b ≥ 2, a = 3 and b ≥ 3 (Brown [2]), and b > (a− 1)!

(Kollár, Rónyai and Szabó [13] and Alon, Rónyai and Szabó [1]). Using these results we can get

tight explicit lower bounds on the minimum degree of the largest subgraph of a d-regular graph

that induces no complete bipartite subgraph of a given size.

- Let F = {Q3}, where Qs is the s-dimensional hypercube. The family F is not closed since Q3

admits a locally injective homomorphism to K4, that is not injective. As before, the family

3
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F ′ = {K4, Q3} is closed. Since χ(K4) = 4, we have ex(d,F) = Θ(ex(d,F ′)) and Conjecture 1

is true for F . It is conjectured in [10] that ex(d,F) = Θ(d8/5), but no better lower bound that

ex(d,F) ≥ ex(d,C4) = Ω(d3/2) is known.

Theorem 3 solves in the affirmative Conjecture 1 for families of graphs satisfying a “local” condition.

However, there are many families the contain bipartite graphs and that are not closed. In order to

solve the conjecture for every family of graph F , one needs to extend the idea of local injectivity in

Theorem 2 to injectivity. In terms of colorings, it would suffice to prove the existence of a spanning

subgraph H with relatively large minimum degree and a coloring χ such that all copies of F in H are

rainbow. This is stronger than the rainbow condition in the neighborhoods of H that we impose here.

Finally, Theorems 2 and 3 study the case where G is d-regular. Similar results in terms of the maximum

and minimum degree have been given in [11]. We believe that the same techniques used here could

be extended to the non regular case, possibly adding a mild condition between the maximum and the

minimum degree.

Related work. Conjecture 1 is closely related to the following very general question: given a graph

parameter ρ, a value k and a family of graphs F , determine the largest value of ` such that for every

graph G with ρ(G) ≥ k there exists an F-free subgraph H of G with ρ(H) ≥ `. Here we list some

interesting results for other important graph parameters:

- Let ρ be the average degree. Thomassen [20] conjectured that every graph with average degree

at least d has an Fg-free subgraph with average degree f(d), for some f(d) → ∞ as d → ∞.

Kühn and Osthus [15] showed that Thomassen’s conjecture is true for g = 6, but the general

conjecture is still wide open.

- Let ρ be the number of edges. Bollobás and Erdős asked this problem for the case F = {C4} in a

workshop in 1966 [8]. The problem was rediscovered by Foucaud, Krivelevich and Perarnau [11]

and they provided lower bounds for the case Fg that are tight up to logarithmic factors. Conlon,

Fox and Sudakov [3, 4] proved tight lower bounds when F is composed by complete bipartite

graphs. In particular, this answers the question of Bollobás and Erdős.

- Let ρ be the vertex-connectivity. Thomassen [21] also conjectured that every k-connected graph

has a bipartite subgraph (F-free for F = {C3, C5, C7, . . . }) with connectivity f(k), for some

f(k)→∞ as k →∞. A first step towards the proof of this conjecture is the result of Delcourt

and Ferber [5].

2 Proof of Theorem 3 assuming Theorem 2

First, we may assume that the chromatic number of F is 2. Otherwise, Theorem 2 can be easily

proven (see Proposition 1 in [11] for a stronger version of it). We can also assume that F does not
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contain any forest. If F contains a forest T , since ex(d,F) ≤ ex(d, T ) = O(d), then Theorem 2 is

trivially true.

Recall that for every β ≥ 1, we say that J is β-almost regular if ∆(J) ≤ βδ(J). Erdős and Si-

monovits [10] showed that for every γ ∈ (0, 1), there exists β ≥ 1 such that the following holds for

every family of graphs F and every positive integer m: if every F-free β-almost regular graph of

order m has at most O(m1+γ) edges, then ex(m,F) = O(m1+γ), where the asymptotic notation here

corresponds to m → ∞. Otherwise stated, for every F and every m, there exists a β-almost regular

graph J on m vertices and Ω(ex(m,F)) edges. In particular, J satisfies δ(J) = Ω(ex(m,F)/m).

A classic result of Erdős [6, 7] states that if F does not contain any forest, then there exists a constant

ε0 = ε0(F) > 0 such that for every large enough m, ex(m,F) > m1+ε0 .

From these two results, we conclude that for every F that does not contain a forest there exist ε > 0

and β ≥ 1 such that for every large enough m, there is an F-free β-almost regular graph J on m

vertices with δ(J) = Ω(ex(m,F)/m) > mε.

Since F is closed by the hypothesis of Theorem 3, by the definition of closed, any F-free graph J also

satisfies hom∗(F, J) = 0, for every F ∈ F .

Given the family F , the choice of α ≥ 25β2 and setting m = αd, we note that

δ(J) = Ω

(
ex(αd,F)

αd

)
= Ω

(
ex(d,F)

d

)
.

Thus, we can use J in Theorem 2 to find a spanning F-free subgraph H of G with minimum degree

δ(H) = Ω
(

ex(d,F)
d

)
, concluding the proof of Theorem 3.

3 Notation and Probabilistic Tools

For every v ∈ V (G) we denote by NG(v) the set of vertices adjacent to v in G, by dG(v) = |NG(v)|
the degree of v in G and by N2

G(v) the set of vertices at distance two from v in G. If the graph G is

clear from the context, we use N(v), d(v) and N2(v). We denote by ∆(G) and by δ(G) the maximum

and the minimum degree of G respectively. We denote by χ a vertex (partial) coloring of a graph G.

Throughout the paper, we identify the color palette with the vertices of a graph J of order αd and

talk indistinctly of an αd coloring or a V (J) coloring. We use χ(G) to denote the chromatic number

of G, and for every family of graphs F , we also use χ(F) = minF∈F χ(F ). For every vertex v ∈ V ,

we denote by χ(v) its color and for every set S ⊆ V (G), by χ(S) the set of colors appearing in S. We

call S ⊆ V rainbow if χ(u) 6= χ(v) for every u, v ∈ S, u 6= v, that were assigned a color by χ.

Below, we introduce some standard tools from the probabilistic method that can be found in [19] and

that we will be of use in the proof of Theorem 2.

Lemma 4 (Chernoff’s inequality). For any 0 ≤ t ≤ np:

Pr(|Bin(n, p)− np| > t) < 2e−t
2/3np .
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Moreover, for every t ≥ 7np

Pr(Bin(n, p) > t) < e−t .

Lemma 5 (Talagrand’s inequality). Let X be a nonnegative random variable not identically 0, which

is determined by n independent trials T1, . . . , Tn and satisfying the following for some c1, c2 > 0:

- changing the outcome of any one trial can affect X by at most c1, and

- for any s, if X ≥ s then there is a set of at most c2s trials whose outcomes certify that X ≥ s,

then for any 0 ≤ t ≤ E(X),

Pr(|X − E(X)| > t+ 60c1

√
c2E(X)) ≤ 4e−t

2/(8c21c2E(X)) .

Lemma 6 (McDiarmid’s inequality). Let X be a nonnegative random variable not identically 0, which

is determined by n independent trials T1, . . . , Tn and m independent uniform random permutations

π1, . . . , πm, and satisfying the following for some c1, c2 > 0:

- changing the outcome of any one trial can affect X by at most c1,

- interchanging two elements in any one permutation can affect X by at most c1, and

- for any s, if X ≥ s then there is a set of at most c2s trials whose outcomes certify that X ≥ s,

then for any 0 ≤ t ≤ E(X),

Pr(|X − E(X)| > t+ 60c1

√
c2E(X)) ≤ 4e−t

2/(8c21c2E(X)) .

Lemma 7 (Lovász Local Lemma). Consider a set E of events such that for each E ∈ E

- Pr(E) ≤ p < 1, and

- E is mutually independent from the set of all but at most D of other events.

If 4pD ≤ 1, then with positive probability, none of the events in E occur.

4 Proof of Theorem 2

The rest of the paper is devoted to the proof of Theorem 2. Throughout this section we will fix a

family of graphs F , ε > 0, β ≥ 1 and α ≥ 25β2. In order for some inequalities to hold, we will require

d to be large enough with respect to the previous parameters. Recall that, by assumption, there exists

a graph J on αd vertices that satisfies the conditions of Theorem 2. We first describe the main ideas

of the proof.

6



Existence of spanning F-free subgraphs with large minimum degree

4.1 Outline of the proof

First of all, we choose a large bipartite subgraph G′ of G, by selecting a maximum edge-cut and

keeping the edges in it. Observe that every vertex in G′ has degree at least d/2. Let A and B be the

two stable sets of G′.

The goal of the proof is to select a spanning subgraph H of G′ and a V (J) coloring χ of H that

satisfies the following properties

- for every v ∈ V (H), dH(v) = Ω(δ(J)),

- for every v ∈ V (H), NH(v) is rainbow, and

- for every uv ∈ E(H), χ(u)χ(v) ∈ E(J).

From these properties, it will be easy to deduce that the subgraph H satisfies the statement of

Theorem 2. This is done at the end of the paper.

The subgraph H is selected by deleting some edges of G′ depending on the color assigned to its vertices.

Here and throughout the proof of the theorem, we always identify the set of αd colors with V (J).

We design a coloring procedure that is divided in two phases.

In Phase I we color the vertices of A and delete some of the edges of G′. This is done in two steps:

the first one being random and the second one, deterministic. We obtain a spanning subgraph H ′ of

G and a coloring χ′ of A with some desirable properties (see Lemma 9 for a precise description).

In Phase II we color the vertices of B and delete some of the edges of H ′. In contrast to Phase I,

here we perform a randomized iterative coloring procedure to color most of the vertices of B. We

also complete the coloring of B with a deterministic step. After Phase II, we obtain the spanning

subgraph H of G and the coloring χ of H with the properties described above.

4.2 Phase I: Coloring A

For every graph G, partial coloring χ of G and v ∈ V , we define

Bad(v, χ,G) = |{u ∈ NG(v) : ∃v′ ∈ NG(u) \ {v} and χ(v′) = χ(v)}| ,

that is, the number of vertices u ∈ NG(v) such that χ(v) appears more than once in NG(u). This

quantity will be crucial throughout the paper.

We will color the set A as follows:

1. For every a ∈ A, let χ′0(a) = c, where c ∈ V (J) is chosen independently and uniformly at

random.

7
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2. Uncolor a ∈ A if

Bad(a, χ′0, G
′) ≥ d√

α
.

Let A1 be the set of uncolored vertices in A.

3. Delete all the edges between a ∈ A \ A1 and NG′(a) that may cause conflicts, i.e. delete ab if

∃a′ ∈ NG′(b) \ {a} such that χ′0(a′) = χ′0(a). Let H ′0 be the subgraph obtained by removing

these edges from G′.

4. Consider an arbitrary order of the vertices in A1 = (a1, . . . , as), where s = |A1|.

5. For every i from 1 to s,

(a) Assign to ai the color in V (J) that minimizes Bad(ai, χ
′
i−1, H

′
i−1). Let χ′i be the partial

coloring of A obtained from χ′i−1 and the colored vertex ai.

(b) Delete all the edges between ai and NH′i−1
(ai) that may cause conflicts, i.e. delete aib if

∃a′ ∈ NH′i−1
(b) \ {ai} such that and χ′i(a

′) = χ′i(ai). Let H ′i be the subgraph obtained by

removing these edges from H ′i−1.

6. Let χ′ = χ′s and H ′ = H ′s.

For a random map χ : V (G) → V (J), let p be the probability that an edge uv ∈ E(G) gets mapped

to an edge χ(u)χ(v) ∈ E(J). Then we have,

p− :=
δ(J)

αd
≤ p =

2|E(J)|
(αd)2

≤ ∆(J)

αd
=: p+ .

Observe that since J is β-almost regular, p+ ≤ βp−.

The next lemma is going to be useful to prove that χ′ has some good properties with respect to each

b ∈ B.

Lemma 8. Let α ≥ 25 and let d be large enough. Let J be a graph on αd vertices. Let G′ be a

bipartite graph with stable sets A and B, maximum degree at most d and minimum degree at least d/2.

Let χ be a random coloring of A where each vertex is assigned a color from V (J) independently and

uniformly at random. For every b ∈ B and c ∈ V (J), let Wb,c be the number of vertices a ∈ NG′(b)

such that

1. a is the only vertex with color χ(a) in NG′(b),

2. Bad(a, χ,G′) ≤ d√
α

, and

3. χ(a)c ∈ E(J).

Then,

Pr

(
Wb,c ≤

δ(J)

4α

)
= e−Ω(δ(J)) .

8
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Proof. Let X be the number of neighbors a ∈ N(b) such that at least one of these two conditions

holds

(F1) ∃a′ ∈ N(b) \ {a} with χ(a′) = χ(a).

(F2) |{b′ ∈ N(a) \ {b} : ∃a′ ∈ N(b′) \N(b) and χ(a′) = χ(a)}| ≥ d√
α
− 1 .

Observe that if a does not satisfy conditions (F1) and (F2), then there are at most d√
α

vertices

b′ ∈ N(a) (this might include b′ = b) such that there exists a′ ∈ N(b′) \ {a} with χ(a′) = χ(a). In

other words, Bad(a, χ,G′) ≤ d√
α

(condition 2 of the lemma). Moreover, condition (F1) also implies

that a is the only vertex with color χ(a) in N(b) (condition 1 of the lemma).

We first show that, with high probability, X is not too large. We will prove a stronger statement: X

is concentrated around its expected value. Indeed, we will fix a coloring of A \N(b) and prove that,

conditional on any such coloring, X is concentrated.

For the event (F1), since d(a) ≤ d and there are |V (J)| = αd colors, the probability that a vertex a

receives the same color as one of the other neighbors of b is at most 1/α.

We call a color c′ dangerous for a ∈ N(b) if (F2) is satisfied when χ(a) = c′. The fact that c′ is

dangerous for a depends only on the coloring of A \N(b) which is already fixed. In particular, since

there are at most d2 edges a′b′ with b′ ∈ N(a), the number of dangerous color classes is at most
d2

(d/
√
α)−1

≤ 2
√
αd. Thus, the probability that a vertex a ∈ N(b) satisfies the event (F2) is at most

2/
√
α.

Using a union bound for the events (F1) and (F2) we obtain

E(X | χ(A \N(b))) ≤
(

1

α
+

2√
α

)
d(b) ≤ 3d(b)√

α
.

Since we have conditioned on the coloring given to A \N(b), X only depends on the colors assigned

to N(b). Changing the color of a vertex a ∈ N(b) from c′ to c′′ can change the value of X by at most

2. This change can create or destroy at most two vertices with the property (F1). It can also be the

case that c′′ is a dangerous color for a and that c′ is not (or vice versa); in this case the change is by

at most 1.

Furthermore, if we have X ≥ s and given that the coloring in A\N(b) has been fixed previously, there

exists a set of s choices of colors that certify X ≥ s; if a vertex a ∈ N(b) satisfies (F1) it suffices to

reveal all the vertices in N(b) with color χ(a) (and all them count for X), and if it satisfies (F2), it

suffices to reveal χ(a), since the fact that it is a dangerous color is certified by the coloring of A\N(b),

which is fixed.

Since α ≥ 25, by Talagrand’s inequality with c1 = 2 and c2 = 1, we have

Pr

(
X ≥ 4d(b)√

α
| χ(A \N(b))

)
≤ Pr

(
|X − E(X)| ≥ d(b)√

α
| χ(A \N(b))

)
= e−Ω(d) . (1)

9
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Since the previous inequality holds conditional on any coloring of A\N(b), it also holds unconditionally.

We now count the number of vertices a ∈ N(b) for which neither (F1) nor (F2) hold and that satisfy

χ(a)c ∈ E(J). Such vertices are in Wb,c since they fulfill conditions 1, 2 and 3. Observe that coloring

each vertex in A with a color chosen independently and uniformly at random in V (J) is equivalent to

color A in the same way and then permute the color classes according to a permutation π of length

αd = |V (J)| chosen uniformly at random. These two steps can be done independently and thus we

can analyse them separately. In the first step the color classes are set, while, in the second one each

color class is assigned a particular color according to π. Observe that the condition χ(a)c ∈ E(J) only

depends on the second step, while (F1) and (F2) only depend on the partition induced by the color

classes.

Let M be the set of vertices a ∈ N(b) such that, after the first step, conditions (F1) and (F2)

are not satisfied. Notice that every vertex in M receives a different color. Since π is a uniformly

chosen permutation, the set of |M | colors assigned to M is chosen uniformly from all the sets of size

|M | ⊆ [αd]. Then, for every I ⊆ N(b) with |I| = i,

E(Wb,c|M = I) =
∑
a∈I

Pr(χ(a)c ∈ E(J)|M = I) =
∑
a∈I

Pr(χ(a)c ∈ E(J)) ≥ p−i .

Recall that, by the independence of the two step coloring, to show that Wb,c is large with high

probability, we only need to focus on the second step. Once the color classes have been set, a swap

between two positions of π can change Wb,c by at most 2 and if Wb,c ≥ s we can certify it by only

revealing the permutation π. By McDiarmid’s inequality, for all 0 < γ < 1

Pr
(
Wb,c ≤ (1− γ)p−i|M = I

)
≤ Pr

(
|Wb,c − E(Wb,c)| ≥ γp−i|M = I

)
= e−Ω(p−i) . (2)

Since d(b) ≥ d/2, we have p−d(b)
2 ≥ δ(J)

4α . Now, using (1) and (2), we obtain the desired result

Pr

(
Wb,c ≤

δ(J)

4α

)
≤ Pr

(
Wb,c ≤

p−d(b)

2

)
=

∑
I⊆N(b)

Pr

(
Wb,c ≤

p−d(b)

2
|M = I

)
Pr(M = I)

≤
∑

I⊆N(b)

i≥(1− 4√
α

)d(b)

Pr

(
Wb,c ≤

p−d(b)

2
|M = I

)
Pr(M = I) + e−Ω(d)

≤
∑

I⊆N(b)

i≥(1− 4√
α

)d(b)

Pr

(
Wb,c ≤

p−i

2(1− 4√
α

)
|M = I

)
Pr(M = I) + e−Ω(d)

≤ e−Ω(δ(J))
∑

I⊆N(b)

i≥(1− 4√
α

)d(b)

Pr(M = I) + e−Ω(d)

10
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= e−Ω(δ(J)) .

Lemma 9. Let ε > 0 and α ≥ 25 and let d be large enough. Let J be a graph on αd vertices such that

δ(J) > dε.

With positive probability, Phase I provides a spanning subgraph H ′ of G and a coloring χ′ of A with

the following properties,

(P1) for every a ∈ A, dH′(a) ≥ d/4,

(P2) for every b ∈ B, NH′(b) is rainbow, and

(P3) for every b ∈ B and every c ∈ V (J), there are at least δ(J)/4α vertices a ∈ NH′(b) such that

χ′(a)c ∈ E(J).

Proof. Let us first show that (P1) is satisfied. If a ∈ A \ A1, we have dH′(a) = dH′0(a) ≥ (1 −
1/
√
α)dG′(a), since by the choice of χ′0(a) we deleted at most d/

√
α edges incident to it. For every

a ∈ A1, there is an 1 ≤ i ≤ s such that a = ai. Since there are at most d2 edges incident to NH′i−1
(ai),

there exists a color c ∈ V (J) (recall that |V (J)| = αd) such that if χ′i(ai) = c

Bad(ai, χ
′
i, H

′
i−1)= |{b ∈ NH′i−1

(ai) : ∃a′ ∈ NH′i−1
(b) \ {ai} and χ′i(a

′) = χ′i(ai)}| ≤
d

α
.

Since in Phase I we only delete edges incident to ai when its color is assigned, dH′(ai) = dH′i(ai) ≥
(1−1/α)dG′(a) for all ai ∈ A1. Since α ≥ 8 and since dG′(a) ≥ d/2, for all a ∈ A we have dH′(a) ≥ d/4.

Property (P2) also holds deterministically. Consider a vertex b ∈ B. Note that an edge ab can only be

deleted in the iteration when a retains its color. Suppose that a retains its color at the i-th iteration

and that the edge ab is not deleted. Then, the color χ′i(a) only appears once in the partial coloring

χ′i restricted to NH′i−1
(b). Moreover, if a vertex a′ ∈ NH′i

(b) \ {a} retains the color χ′i(a) in a further

iteration, then the edge a′b is deleted. Thus, a is the only neighbour of b in H ′ with color χ′i(a). Since

the choice of a is arbitrary, NH′(b) is rainbow.

Let us show that (P3) holds with positive probability. In order to show it, it suffices to look at the

first partial coloring χ′0. For every b ∈ B and c ∈ V (J), let Eb,c be the event that there are at most

δ(J)/4α vertices a ∈ NH′0
(b) such that a is the only vertex with color χ′0(a) in NH′0

(b), a retains its

color (i.e. Bad(a, χ′0, G
′) ≥ d√

α
) and χ′0(a)c ∈ E(J).

By applying Lemma 8 to G′ with χ = χ′0 and noting that by assumption δ(J) > dε, we obtain

Pr(Eb,c) = e−Ω(dε). The event Eb,c is mutually independent from the other events Eb′,c′ where both b′

and c′ are at distance larger than 6 from b and c in the respective graphs G and J . Then, each event

is mutually independent from all but at most d6∆(J)6 ≤ d12 other events. Since e−Ω(dε) = O(d−13),

provided that d is large enough with respect to ε and α, we can use the Local Lemma to show that

none of the events in Eb,c holds with positive probability.

11
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By coloring the vertices ai ∈ A1 and deleting edges incident to ai, one can neither decrease the degree

of b in A \ A1 nor change the fact that a given a ∈ A \ A1 is the only neighbor of b with color χ′0(a).

Thus, with positive probability (P3) is satisfied.

4.3 Phase II: Coloring B

In the second coloring phase it will be convenient to redefine Bad(v, χ,G) in a way that it takes into

account the compatibilities between colors given by the edges of J . For every graph G, every set

F ⊆ E(G) (we say that the edges in F are activated), every partial coloring χ of G, every v ∈ V and

every graph J , we define

BadJ(v, χ,G) =

∣∣∣∣∣
{
u ∈ NG(v) :

χ(u)χ(v) ∈ E(J),∃v′ ∈ NG(u) \ {v},
uv′ ∈ F and χ(v′) = χ(v)

}∣∣∣∣∣ ,
We will color B as follows:

1. Let B0 = B, H0 = H ′, χ0 = χ′ and i = 1. For every a ∈ A, let B0(a) = B0 ∩NH0(a).

2. While there exists a ∈ A with |Bi−1(a)| > dε/2,

(a) For every edge in Hi−1, activate it independently with probability 1/α.

(b) Construct χi as follows. For every v ∈ A ∪ (B \ Bi−1), let χi(v) = χi−1(v) and for every

b ∈ Bi−1, let χi(b) = c, where c is chosen independently and uniformly at random in V (J).

(c) Uncolor b ∈ Bi−1 if

BadJ(b, χi, Hi−1) ≥ δ(J)

8α
.

Let Bi be the set of uncolored vertices.

(d) ConstructHi fromHi−1 by deleting the following edges: for every b ∈ Bi−1\Bi, delete all the

edges ab in Hi−1 such that either can cause conflicts (there exists a vertex b′ ∈ NHi−1(a)\{b}
such that ab′ is activated, χi(a)χi(b) ∈ E(J) and χi(b

′) = χi(b)), χi(a)χi(b) 6∈ E(J) or ab

has not been activated.

Let Bi(a) = Bi ∩NHi(a) and increase i by one.

3. Consider an arbitrary order of the vertices in Bτ = (bτ+1, . . . , bt), where t = |Bτ |+ τ .

4. For every i from τ + 1 to t,

(a) Activate all the edges of Hi−1.

(b) Assign to bi the color in ∈ V (J) that minimizes BadJ(bi, χi−1, Hi−1). Let χi be the partial

coloring of V (G) obtained from χi−1 and the colored vertex bi.

(c) Construct Hi from Hi−1 by deleting all the edges abi such that either can cause conflicts

(there exists a vertex b′ ∈ NHi−1(a) \ {bi} such that χi(a)χi(bi) ∈ E(J) and χi(b
′) = χi(bi))

or χi(a)χi(bi) 6∈ E(J).

12
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5. Let χ = χt and H = Ht.

We define τ to be the smallest i such that |Bi(a)| ≤ dε/2 for every a ∈ A; that is, the number of

iterations in step 2 of Phase II. Observe that τ is a random variable.

Lemma 10. With positive probability, Phase II of the coloring procedure ends and provides a spanning

subgraph H of G and a coloring χ of H with the following properties,

(Q1) for every v ∈ V (H), dH(v) ≥ δ(J)
16α2 ,

(Q2) for every v ∈ V (H), NH(v) is rainbow, and

(Q3) for every uv ∈ E(H), χ(u)χ(v) ∈ E(J).

Let `i(a) be number of vertices in b ∈ Bi−1(a) \Bi(a) such that ab is active in Hi−1 and χi(a)χi(b) ∈
E(J). Recall that p+ = ∆(J)/αd.

In order to prove Lemma 10 we will make sure that, for every 1 ≤ i < τ , the following three conditions

are satisfied:

(C1) for every a ∈ A, `i(a) ≤ max
{

2
α · p

+|Bi−1(a)|, dε/2
}

,

(C2) for every a ∈ A, |Bi(a)| ≤ d
αi/2

, and

(C3) for every b ∈ Bi−1 \Bi, dHi(b) ≥
δ(J)
16α2 .

In words, (C1) ensures that the degree of a in B \Bτ is not too large; (C2) implies that the number of

uncolored vertices in each neighborhood of A decreases exponentially with the number of iterations;

and (C3) ensures that b ∈ B \ Bτ has a large minimum degree in H. We will use (C1) and (C2) to

prove that b ∈ Bτ also has a large minimum degree in H.

In particular, we will require that the following condition is satisfied after the first iteration of Phase

II:

(C4) for every a ∈ A, the degree of a to B \B1 in H1 is at least δ(J)
16α2 .

Condition (C4) ensures that the degree of A in H is large.

Let us show that the probability that any of these four conditions is violated, is exponentially small

in terms of d. In order to control the condition (C1), for every a ∈ A, we define Di
1(a) to be the event

that `i(a) ≥ max
{

2
α · p

+|Bi−1(a)|, dε/2
}

.

Lemma 11. For every 1 ≤ i < τ and for every a ∈ A, we have

Pr(Di
1(a)) = e−Ω(dε/4) .

13
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Proof. Each edge ab is activated independently with probability 1/α. Moreover, by definition of p+,

and independently from the fact that ab has been activated, when b is assigned a random color c, it

satisfies χi(a)c ∈ E(J) with probability at most p+. Since the choice of color for each b ∈ Bi−1(a) is

done independently, `i(a) follows a binomial distribution with |Bi−1(a)| trials and probability at most

p+/α. In particular, E(`i(a)) ≤ 1
α · p

+|Bi−1(a)|.

Suppose first that |Bi−1(a)| ≥ αdε/4

p+
. By Chernoff’s inequality,

Pr

(
`i(a) ≥ 2

α
· p+|Bi−1(a)|

)
≤ Pr

(
|`i(a)− E(`i(a))| ≥ 1

α
· p+|Bi−1(a)|

)
= e−Ω(p+|Bi−1(a)|) = e−Ω(dε/4) .

Suppose now that |Bi−1(a)| < αdε/4

p+
. Then, E(`i(a)) < dε/4. Provided that d is large enough,

dε/2 ≥ 7E(`i(a)) and by Chernoff’s inequality,

Pr
(
`i(a) ≥ dε/2

)
= e−Ω(dε/2) .

In order to control the condition (C2), for every a ∈ A, we define Di
2(a) to be the event that |Bi(a)| ≥

d
αi/2

.

Lemma 12. For every 1 ≤ i < τ and for every a ∈ A, if (C1) and (C2) hold for every 1 ≤ j < i,

then

Pr(Di
2(a)) = e−Ω(dε/4) .

Proof. We call a color c dangerous for b ∈ Bi−1(a) if the number of vertices a′ ∈ NHi−1(b) \ {a} such

that χi(a
′)χi(b) ∈ E(J) and there exists b′ ∈ NHi−1(a′) \Bi−1(a) with a′b′ activated and χi(b

′) = c, is

at least δ(J)
8α −1. The fact that c is a dangerous color is fully determined by the coloring of B \Bi−1(a)

and the choice of activated edges between A and B \Bi−1(a).

We now show that conditional on a certain event that holds with very high probability, for every

b ∈ Bi−1(a) there are few dangerous colors.

Let Freei(a
′) be the number of colors c ∈ V (J) with χi(a

′)c ∈ E(J) such that at least one of the

following two conditions is satisfied:

- c does not appear in NHi−1(a′) \Bi−1(a)

- for every b′ ∈ NHi−1(a′) \Bi−1(a) with χi(b
′) = c, a′b′ is not activated.

In other words, the number of colors such that if we assign one of them to b, then a′ will not count

for BadJ(b, χi, Hi−1).

14
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Let E be the event that Freei(a
′) ≥

(
1− 1

α

)
δ(J), for every a′ ∈ N2

Hi−1
(a). Observe that the event

E only depends on the coloring of A, the one of B \ Bi−1(a) and the activated edges between A and

B \Bi−1(a).

Next claim shows that the probability of E is very large.

Claim 13. If (C1) and (C2) are satisfied for every 1 ≤ j< i, then Pr(E)=1− e−Ω(dε/4).

Proof. Observe that Freei(a
′) can be controlled with `j(a

′), for j ≤ i. Since (C1) is satisfied for

every j < i, we have that `j(a
′) < max

{
2
α · p

+|Bj(a′)|, dε/2
}

. Moreover, by Lemma 13, Di
1(a′)

does not hold with probability at least 1 − e−Ω(dε/4). Recall that Di
1(a′) is defined as `i(a

′) <

max
{

2
α · p

+|Bi(a′)|, dε/2
}

. A union bound shows that this is true for all a′ ∈ N2
Hi−1

(a) with probability

1− e−Ω(dε/4).

Since (C2) holds for every j < i and |Bi(a′)|≤ |Bi−1(a′)|, we have that
∑i

j=1 |Bj(a′)| ≤ 2d. Thus, for

every a′ ∈ N2
Hi−1

(a) we obtain

Freei(a
′) ≥ δ(J)−

i∑
j=1

`j(a
′) ≥ δ(J)− 4

α
· p+d ≥

(
1− 1

α

)
δ(J) ,

where we used that α ≥ 25β2 in the last inequality. We conclude that E is satisfied with probability

1− e−Ω(dε/4).

Moreover, the event E allow us to control the number of dangerous colors for the neighbors of a.

Claim 14. If E is satisfied, then for each b ∈ NHi−1(a), the number of dangerous colors for b is at

most 9d.

Proof. Since E implies Freei(a
′) ≥

(
1− 1

α

)
δ(J) for every a′ ∈ NHi−1(b) \ {a}, we have that there are

at most δ(J)
α · dHi−1(b) edges a′b′ with χi(a

′)χi(b
′) ∈ E(J). Recall that if c is dangerous for b, then

there are at least δ(J)
8α −1 vertices a′ ∈ NHi−1(b)\{a} that are incident to an (activated) edge a′b′ with

χi(a
′)χi(b

′) ∈ E(J) and χi(b
′) = c.

Thus, the number of dangerous colors is at most,

δ(J)
α · dHi−1(b)
δ(J)
8α − 1

≤ 9d .

Let us prove that the probability |Bi(a)| is large is exponentially small. Let X be the number of

vertices b ∈ Bi−1(a) that satisfy at least one of these two conditions,

(F1) there exists b′ ∈ NHi−1(a) \ {b} with χi(b
′) = χi(b),

15
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(F2) χi(b) is a dangerous color for b.

We claim that |Bi(a)| ≤ X. Suppose that b does not satisfy (F1) and (F2). Since (F1) does not hold,

all the other vertices in Bi−1(a) have a color different from χi(b). Together with (F2) not holding, we

obtain that BadJ(b, χi, Hi−1) ≤ δ(J)
8α and b retains its color.

Thus, we will show that X is small with very high probability. Indeed, it will suffice to show it in the

case that the event E holds. We fix a coloring on B \ Bi−1(a) and an activation of edges between A

and B \ Bi−1(a) that is compatible with E and show that, conditional on that, X is concentrated.

Recall that the choice of the coloring of B \Bi−1(a) and of the activation of the edges between A and

B \Bi−1(a) fully determines whether E is satisfied.

For b ∈ Bi−1(a), the probability that χi(b) is assigned a color that already appears in NHi−1(a) (that

is, of condition (F1)) is at most 1/α, since d(a) ≤ d and there are αd colors. Since E is satisfied, by

Claim 14, for each b ∈ Bi−1(a) there are at most 9d dangerous colors. Thus, the probability that b is

assigned a dangerous color is at most 9/α.

By the hypothesis of the lemma, (C2) holds for i− 1 and there are |Bi−1(a)| ≤ d/α(i−1)/2 candidates

for X. Hence, conditional on χi(B \Bi−1(a)) and on the activation of edges,

E(X) ≤ 10

α
· |Bi−1(a)| ≤ 10α−1/2 · d

αi/2
.

As in the proof of Lemma 8, by changing the color of a vertex b ∈ Bi−1(a) one can change X by at

most 2 and, if X ≥ s, then there exists a set of s colored vertices that certifies X ≥ s. By applying

Talagrand’s inequality to X with c1 = 2 and c2 = 1, and conditional on χi(B \ Bi−1(a)) and on the

activation of edges,

Pr
(
Di

2(a)
)
≤ Pr

(
X ≥ d

αi/2

)
≤ Pr

(
|X − E(X)| >

(
1− 10α−1/2

) d

αi/2

)
= e−Ω(d/αi/2) = e−Ω(dε/2) ,

if α ≥ 400. Since the previous statement holds for any choice of χi(B \ Bi−1(a)) and of activation

of edges that are compatible with E, it also holds if we only condition on E. Since by Claim 13,

Pr(E) = 1− e−Ω(dε/4), we obtain

Pr
(
Di

2(a)
)
≤ Pr(E) + Pr

(
Di

2(a) | E
)

= e−Ω(dε/4) .

In order to control the condition (C3), for every b ∈ Bi−1 \ Bi, we define Di
3(b) to be the event that

dHi(b) ≤
δ(J)
8α2 .

Lemma 15. For every b ∈ Bi−1 \Bi,

Pr(Di
3(b)) = e−Ω(dε) .
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Proof. If b ∈ Bi−1 \ Bi, then BadJ(b, χi, Hi−1) ≤ δ(J)
8α ; that is, there are at most δ(J)

8α vertices a ∈
NHi−1(b) with χi(a)χi(b) ∈ E(J) such that there exists b′ ∈ NHi−1(a) \ {b} with ab′ activated and

χi(b
′) = χi(b). By (P3) with c = χi(b), there are at least δ(J)

4α vertices a ∈ NHi−1(b) with χi(a)χi(b) ∈
E(J). Hence, there are at least δ(J)

8α vertices a ∈ NHi−1(b) with χi(a)χi(b) ∈ E(J) such that either b is

the only neighbour of a with color χi(b), or if there is another neighbour b′ with χi(b
′) = χi(b), then

ab′ is not activated and will be deleted in the case that b′ retained its color.

We activate every such edge ab independently with probability 1/α. Therefore, the probability that

dHi(b) is smaller than k is at most the probability that a Binomial random variable with δ(J)
8α trials

and probability 1/α is smaller than k. Since δ(J) ≥ dε, Chernoff’s inequality implies that,

Pr(Di
3(b)) = Pr

(
dHi(b) ≤

δ(J)

16α2

)
= e−Ω(dε) .

In order to control the condition (C4), for every a ∈ A, we define D1
4(a) to be the event that the

degree of a to B \B1 in H1 is at most δ(J)
16α2 , that is |NH1(a) ∩ (B \B1)| ≤ δ(J)

16α2 .

Lemma 16. For every a ∈ A,

Pr(D1
4(a)) = e−Ω(dε) .

Proof. Note that in the first iteration of Phase II we can color B in the following equivalent way:

i) Color each vertex in B \NH0(a) independently.

ii) Color each vertex in NH0(a) independently.

iii) Keep the color classes in B \NH0(a) but permute the colors assigned to each class.

After the step i), we say that a color class C ⊆ B \NH0(a) (with no color assigned, yet) is dangerous

for b ∈ NH0(a) if there are at least δ(J)
8α − 1 activated edges a′b′ with a′ ∈ NH0(b) \ {a} and b′ ∈ C.

For a b ∈ NH0(a), we consider the following set of conditions,

(F1) there exists b′ ∈ NH0(a) \ {b} with χ1(b′) = χ1(b),

(F2) χ1(b) is a dangerous color for b,

(F3) χ1(a)χ1(b) /∈ E(J).

Let Y be the number of vertices b ∈ NH0(a) that do not satisfy (F1), (F2) and (F3).

Observe that the number of vertices b ∈ NH0(a) that do not satisfy (F1) and (F3) is determined by

the coloring of NH0(a) (step ii)). The number of vertices that do not satisfy (F2) is determined by

the final coloring of B \ NH0(a) (steps i) and iii)) and the activation of the edges between A and

B \NH0(a). We will use the fact these steps are independent to bound Y .
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Let Z be the number of vertices b ∈ NH0(a) that do not satisfy (F1) and (F3). For a given vertex

b, the probability that χ1(a)χ1(b) ∈ E(J) is at least p− = δ(J)/αd. Given that a color has been

assigned to b, the probability that this color is unique in NH0(a) is at least (1− 1
αd)d ≥ 1− 1/α. Since

dH0(a) ≥ d/4, we have

E(Z) ≥
(

1− 1

α

)
p−dH0(a) ≥ (1− 1/α)δ(J)

4α
.

Similarly as in the proof of Lemma 8, we can apply Talagrand’s inequality to obtain that

Pr

(
Z ≤ δ(J)

8α

)
≤ e−Ω(δ(J)) . (3)

To show that Y is typically large, consider M to be the set of vertices that do not satisfy (F1) and

(F3). Let b ∈M . At step iii), each color class will get assigned a random (and different) color and, if

in the step i) we have created a small number of dangerous color classes, it will be likely that b does

not satisfy (F2).

We define E to be the event that, for every a′ ∈ N2
H0

(a), there are at most 2d
α activated edges a′b′

with b′ /∈ NH0(a). A simple use of Chernoff’s inequality and a union bound, gives Pr(E) = 1− e−Ω(d).

The event E is fully determined by the activation of edges between A and B \NH0(a). Moreover, it

allows us to control the number of dangerous color classes.

Claim 17. If E is satisfied, then for each b ∈ NH0(a), the number of dangerous color classes for b is

at most α1/2d.

Proof. Since E is satisfied, for any a′ ∈ NH0(b), there are at most 2d/α activated edges a′b′ with

b′ /∈ NH0(a). Since NH0(b) is rainbow, there are at most ∆(J) ≤ βδ(J) vertices a′ ∈ NH0(b) with

χ1(a′)χ1(b) ∈ E(J) (recall that χ1(b) has been fixed at step ii)). Therefore, there are at most 2β
α δ(J)d

activated edges a′b′ with a′ ∈ NH0(b), χ1(a′)χ1(b) ∈ E(J) and b′ /∈ NH0(a).

Recall that a color class C ⊆ B\NH0(a) is dangerous for b if there are at least δ(J)
8α −1 ≥ δ(J)

9α activated

edges a′b′ with a′ ∈ NH0(b), χ1(a′)χ1(b) ∈ E(J) and b′ ∈ C.

Thus, there are at most 18βd ≤ α1/2d dangerous color classes, as desired.

We now proceed to show that, conditional on E, most of the vertices in M do not satisfy (F2). By

Claim 17 and since there are at least αd colors, the probability that all the dangerous classes for b are

assigned in step iii) a color different than χ1(b) is at least 1− α−1/2. Thus,

E(Y | E, M) ≥ (1− α−1/2)|M | .

Observe that swapping the colors in two color classes of B \NH0(a) can only change Y by at most 2,

since every vertex in M has a unique color. We can use McDiarmid’s inequality to prove that

Pr
(
Y ≤ (1− 2α−1/2)|M | | E, M

)
≤ e−Ω(|M |) .
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Using (3) and Pr(E) = 1− e−Ω(d), we obtain a bound on the unconditional probability,

Pr

(
Y ≤ (1− 2α−1/2)δ(J)

8α

)
≤ e−Ω(dε) ,

where we used that δ(J) ≥ dε.

If b ∈ NH0(a) does not satisfy (F1), (F2) and (F3), then b ∈ B \ B1. The edge ab is retained in

H1 if it was activated in H0. Observe that the events (F1), (F2) and (F3) are independent of the

activation of the edges between a and NH0(a): (F1) and (F3) do not depend on edge activations, and

(F2) only depends on the activation of edges between A and B \NH0(a). Such an edge ab is activated

independently with probability 1/α. Using Chernoff’s inequality we conclude the proof,

Pr(D1
4(a)) = Pr

(
|NH1(a) ∩ (B \B1)| ≤ δ(J)

16α2

)
= e−Ω(dε) .

Lemma 18. Conditions (C1), (C2), (C3) and (C4) hold after the first iteration with positive proba-

bility.

Proof. By Lemmas 11, 12, 15 and 16, we have Pr(D1
k(a)) = e−Ω(dε/4), for every k ∈ {1, 2, 3, 4}. On

the other hand, D1
1(a), D1

2(a), D1
3(b) and D1

4(a) are mutually independent from every other D1
1(a′),

D1
2(a′), D1

3(b′) and D1
4(a′) such that a′ (or b′) is at distance larger than 6 from a (or b) in H0. Thus,

each event is mutually independent from all but at most 4d6 other events. Since e−Ω(dε/4) = O(d−7),

provided that d is large enough with respect to ε, β and α, we can use the Local Lemma to show that

after the first iteration, (C1), (C2), (C3) and (C4) hold with positive probability.

The same argument suffices to show the following.

Lemma 19. Let 1 ≤ i < τ . If (C1), (C2) and (C3) hold for every 1 ≤ j < i, then (C1), (C2) and

(C3) hold after the i-th iteration with positive probability.

Proof of Lemma 10.. Observe that (Q2) and (Q3) are satisfied deterministically, by Phases I and II

of the coloring procedure.

We first show that Phase II stops with positive probability. By Lemma 19 condition (C2) is satisfied

with positive probability for every i ≥ 1. Since the stopping condition of the iterative part of Phase

II is |Bi(a)| ≤ dε/2 for every a ∈ A, with positive probability the iterative part of Phase II ends after

O(log d) iterations.

It remains to show that (Q1) is satisfied with positive probability at the end of Phase II. By Lemma 18,

condition (C4) is satisfied after the first iteration. Hence,

dH(a) ≥ |NH(a) ∩ (B \B1)| = |NH1(a) ∩ (B \B1)| ≥ δ(J)

16α2
.
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Let us show that the degrees of b ∈ B in H are also large. First notice that the degree of a vertex

b ∈ B only decreases in the iteration when b retains its color.

Suppose first that b ∈ B \Bτ . By Lemma 19, condition (C3) is satisfied at every iteration. Therefore,

dH(b) ≥ δ(J)

16α2
.

Now suppose that b ∈ Bτ . Then b = bi, for some i ≥ τ+1. Recall that Phase II assigns to bi the color

that minimizes BadJ(bi, χi−1, Hi−1). First, we show that for every a ∈ A, dHi−1(a) is not too large.

By Lemma 19, (C2) holds at each iteration, which implies that the number of uncolored neighbors

decreases exponentially fast (in particular, τ = O(log d)). Recall that since J is β-almost regular,

∆(J) ≤ βδ(J). Since (C1) and (C2) are satisfied at every iteration, we have

|NHi−1(a) ∩ (B \Bτ )| ≤
τ∑
i=1

`i(a) ≤
τ∑
i=1

2

α
p+|Bi(a)|+O(dε/2 log d)

≤

( ∞∑
i=1

1

αi/2

)
2∆(J)

α2d
|B0(a)|+O(dε/2 log d)

≤ 4∆(J)

α2
≤ δ(J)

2α
,

provided that d is large enough and since α ≥ 25β2. Here we also used that |B0(a)| ≤ d. By the

definition of τ , we also have |NHi−1(a) ∩Bτ | = |Bτ (a)| ≤ dε/2. This implies that, for any i > τ

dHi−1(a) ≤ δ(J)

2α
+ dε/2 ≤ δ(J)

α
. (4)

Now we can lower bound the degree of bi in H. By (4), there are at most δ(J)d
α edges in Hi−1 incident

to a neighbour of bi. Thus, there is a color c ∈ V (J) such that if χi(bi) = c, BadJ(bi, χi, Hi−1) is

small, in fact

|{a ∈ NHi−1(bi) : ∃b′ ∈ NHi−1(bi) \ {bi} and χi(b
′) = c}| ≤ δ(J)

α2
.

We set χi(bi) = c and delete all the edges abi for some a ∈ A that either may cause conflicts (at most

δ(J)/α2) or χi(a)χi(bi) /∈ E(J). Since property (P3) holds for every b ∈ B and every color c ∈ V (J),

the degree of bi in H is

dH(bi) ≥
δ(J)

4α
− δ(J)

α2
≥ δ(J)

16α2
,

provided that α ≥ 5.

We conclude with the proof of the main theorem.

Proof of Theorem 2.. Let H be the spanning subgraph and let χ be the partial coloring of H provided

by Lemma 10. For the sake of contradiction, suppose that H contains a locally injective copy of F ∈ F .

Consider the coloring of F induced by the colors given by χ to the locally injective copy of F in H.
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Since for every edge ab in H we have χ(a)χ(b) ∈ E(J), the coloring of F induces an homomorphism

from F to J . Moreover, since for every vertex v ∈ V (H), NH(v) is rainbow, this homomorphism

is locally injective. However, hom∗(F, J) = 0 by the hypothesis of the theorem and we obtain a

contradiction. Thus, hom∗(F,H) = 0. Finally, the subgraph H also satisfies δ(H) = Ω(δ(J)).
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