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Abstract 20 

The importance of the atmospheric deposition of biologically-essential trace elements, 21 

especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace 22 

element wet and dry deposition and their fractional solubility. This paper summarises some of the 23 

recent progress in this field, particularly that driven by the GEOTRACES, and other, international 24 

research programmes. The utility and limitations of models used to estimate atmospheric deposition 25 

flux, for example from the surface ocean distribution of tracers such as dissolved aluminium, are 26 

discussed and a relatively new technique for quantifying atmospheric deposition using the short-27 

lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly 28 

by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed 29 

against observed aerosol concentration data. It is also important to improve our understanding of 30 

the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance 31 

and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing 32 

tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric 33 

composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility 34 

are an essential component of the GEOTRACES programme.  35 

  36 

 37 

Keywords  38 

Air – Sea Exchange 39 

Atmospheric Deposition 40 

Trace Element Solubility 41 

Biogeochemical Impacts 42 

Mineral dust 43 

Anthropogenic aerosols  44 

Page 3 of 27

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

3 

 

Introduction  45 

A great deal of research activity has focussed on addition of material to the ocean across the 46 

air – sea interface since the realisations that iron (Fe) plays a key role as a limiting nutrient for 47 

primary productivity or biological nitrogen fixation in large areas of the global ocean [1-3] and that 48 

the deposition of mineral dust from the atmosphere was a major source of Fe to the remote ocean 49 

[4]. That research has led to huge advances in the understanding of the impact of Fe 50 

biogeochemistry on the marine carbon cycle [5], the sources and composition of Fe-bearing material 51 

to the atmosphere [6, 7] and the chemical and physical processing of that material during 52 

transportation through the atmosphere [8]. Alongside those advances has come the understanding 53 

that a number of other trace elements (TEs) that are deposited across the air – sea interface (e.g. 54 

manganese (Mn), cobalt (Co), zinc (Zn), nickel (Ni), cadmium (Cd), copper (Cu) [9]) have 55 

micronutrient functions for marine microbial organisms or have potentially toxic effects (e.g. Cu 56 

[10]).  57 

In that context, one of the goals of the international GEOTRACES programme is to extend 58 

knowledge of the exchange across the air – sea interface, based on the understanding that mineral 59 

dust constitutes a vector for a wider range of important trace elements and their isotopes (TEI) than 60 

Fe alone and that the sources of TEI in atmospheric deposition to the ocean are not limited to 61 

mineral dust [7, 11]. 62 

This paper aims to highlight recent progress in this field, with a focus on research driven by 63 

the international GEOTRACES programme, and identify topics for which further effort is still 64 

required. Two long-standing problems – the difficulties in making accurate estimates of the 65 

atmospheric flux of material to the ocean and in determining the fraction of the atmospheric flux of 66 

bioactive substances that is available to marine biota – continue to challenge our understanding. The 67 

extent to which anthropogenic emissions contribute to the atmospheric flux to the oceans and their 68 

biogeochemical response to that flux is also of increasing interest. 69 

Highlights of recent progress 70 

Estimation of Deposition Flux 71 

Atmospheric deposition is an important source of biologically-essential trace elements to the 72 

open ocean. Knowledge of these fluxes helps us understand and model ocean productivity, yet these 73 

fluxes are extremely difficult to measure. Although autonomous buoys capable of collecting aerosol 74 

samples over extended periods have been developed and deployed at remote ocean sites [12], long-75 

term monitoring of the composition of aerosols and rainfall over the vast majority of the remote 76 

ocean is effectively impossible due to limitations associated with the lack of suitable island sampling 77 
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locations and the expense of ship deployment to areas where island sites are not available. In a few 78 

regions, where long-term records from island sampling sites exist [e.g. 13] or where specific ocean 79 

areas are subject to relatively intense research ship activity [14-17], flux estimates based on direct 80 

atmospheric sampling can be made. By combining observations of aerosol and rainwater chemistry 81 

made during 28 research cruises of the  GEOTRACES and other research programmes (such as the 82 

Atlantic Meridional Transect (AMT) and the Surface Ocean Lower Atmosphere Study (SOLAS)), 83 

Powell et al. [16] were able to estimate seasonally-resolved 10-year average atmospheric fluxes for 84 

NO3
-
 and NH4

+
 and soluble and total Fe, aluminium (Al) and Mn, for the eastern tropical North 85 

Atlantic. However, the uncertainties associated with such deposition estimates are considerable [14-86 

16]. Aerosol dry deposition to the ocean surface cannot be directly measured, necessitating the use 87 

of highly uncertain dry deposition velocities to convert measured aerosol concentrations into dry 88 

deposition flux. Direct measurement of wet deposition fluxes are hampered by either biases in 89 

rainfall patterns (compared to the open ocean) at island sites, or the difficulty in measuring 90 

precipitation rates and the collection of sufficient rainfall samples to represent the wet deposition 91 

flux effectively from ships.  92 

With trace metals that partially solubilise from mineral dust, such as Al, titanium (Ti), gallium, 93 

or thorium (Th), one can indirectly estimate dust deposition using the dissolved distribution of these 94 

metals in seawater. The use of stable (non-radioactive) tracers to estimate dust fluxes often relies on 95 

variations in Equation 1 (where dissolved Al is used as an example). The concentration of dissolved 96 

Al in the surface ocean has been widely used as a dust deposition proxy because Al is abundant in 97 

dust (about 8% by mass) and is not biologically essential (e.g. [18-22] Anderson et al., this volume). 98 

d[Al]/dt = (Fdust f(Aldust) f(Alsol)/MLD) – ([Al]/τ) - ∇ • (v [Al]) + ∇  • (K • ∇[Al])          (1) 99 

where: 100 

[Al] = dissolved Al concentration (g/m
3
) in the surface ocean mixed layer 101 

Fdust = flux of dust (g/m
2
/d) 102 

f(Aldust) = fraction of Al in dust (typically ~ 0.08 g total Al/g dust) 103 

f(Alsol)] = fraction of soluble Al in dust (variable (see below), but typically assumed to be ~0.03 104 

g soluble Al/g total Al) 105 

MLD = Mixed Layer Depth (m) 106 

τ = residence time of dissolved Al in the MLD (typically on the order of 5 years) 107 

∇ • (v [Al]) = effects of advection (in x, y, and z) on the concentration of dissolved Al. 108 
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∇  • (K • ∇[Al]) = effects of turbulent mixing (in x, y, and z) on the concentration of dissolved 109 

Al. 110 

The dust flux term is assumed to dominate the input of the tracer. The residence time can be 111 

separated into components influenced by multiple removal processes such as particle adsorption 112 

(scavenging removal) or incorporation into biogenic particles (biological uptake). The removal rates 113 

are modelled as first-order with respect to dissolved Al. For tracers with short residence times, 114 

advection and mixing are often thought to be small and therefore insignificant (the implications of 115 

this simplification are discussed below). Assuming steady-state conditions, and neglecting physical 116 

mixing and advection, Eqn (1) resolves to: 117 

Fdust = ([Al] MLD)/(τ f(Aldust) f(Alsol))                 (2) 118 

Equation (2) represents the MADCOW model [23] where the numerator is the inventory of the 119 

tracer in the mixed layer. A comparison between this model (applied to dissolved Al and dissolved 120 

232
Th) and other methods for estimating dust deposition is presented in Anderson et al. [this 121 

volume]. This intercomparison also demonstrates very dramatically how different methods for 122 

measuring aerosol TEI solubility have a significant influence on the dust flux estimates. 123 

Whenever possible, it is preferable to make use of the full equation (Eqn. 1) and to make 124 

measurements that are relevant for the region and time of year. Rates of particle scavenging and 125 

uptake into biogenic material can vary from regime to regime and season to season. The depth of 126 

tracer penetration can also vary in space and time, as can the sources and chemical nature of the 127 

aerosols. The physical transport terms (particularly horizontal advection) may not be insignificant. 128 

Van Hulten et al. [24, 25] showed how important this can be, using a general ocean circulation 129 

model to take into account the effects of particle scavenging, biogenic particle uptake, and physical 130 

transport. These authors compare the timescales (residence times) for dissolved Al in the upper 131 

water column with respect to advection and particle scavenging: 132 

Y = τadv/τscav     (3) 133 

and use this ratio to recommend where one-dimensional models, like MADCOW, might be applied 134 

with confidence (when Y>>1, e.g. the North Pacific Ocean and Mediterranean Sea) and where not 135 

(when Y<<1, e.g. the equatorial Atlantic Ocean), see Fig. 1.  136 

Because the fractional solubility of aerosol Al exhibits significant variability [e.g. 26, 27-29] and 137 

because dissolved Al has a somewhat complicated behaviour in the upper ocean (with respect to 138 

abiotic and biotic scavenging; e.g. [30]), it has been suggested to use dissolved Ti as an alternative 139 

dust input proxy [31]. 140 
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A tracer that shows promise as a way to estimate atmospheric deposition is the natural 141 

radionuclide beryllium-7 (
7
Be: half-life 53.3 days – comparable to the life-time of particles in the 142 

surface ocean [32]; gamma energy 0.4776 MeV). It is produced in the upper atmosphere from 143 

cosmic ray spallation, quickly attaches to aerosol particles, and is transported to the lower 144 

troposphere by atmospheric circulation processes. Because it is associated with sub-micron aerosols, 145 

the deposition of aerosol 
7
Be is dominated by rainfall scavenging [33, 34]. Given the relatively short 146 

half-life of 
7
Be, at steady state the input flux of 

7
Be (atoms m

-2 
min

-1
) is balanced by the 

7
Be 147 

inventory, or decay rate, integrated over the upper water column (dpm m
-2

). The important point is 148 

that the ability to derive the atmospheric flux of 
7
Be from its ocean inventory provides a key linkage 149 

between the atmospheric concentration of chemical species and their deposition to the ocean [33, 150 

34].   151 

The flux (Fi) of an aerosol element into the ocean can be described as the sum of wet and dry 152 

deposition processes, respectively: 153 

Fi  = Cai R S ρ  + Cai Vd  =  Cai [R S ρ + Vd]                                 (4) 154 

Where: 155 

Fi = flux to the oceans (µg/m
2
/d),  156 

Cai = aerosol concentration (µg/m
3

air),  157 

R = precipitation rate (mrain/d),  158 

S = washout ratio (kgair/kgrain; i.e. the concentration in rain (µg/kgrain) divided by the aerosol 159 

concentration (µg/kgair)),  160 

ρ = the ratio of the densities of water and air ((~1000 kgrain/m
3

rain)/(~1.2 kgair/m
3

air) = ~833 161 

(kgrain m
3

air)/(m
3

rain kgair)),  162 

Vd = aerosol dry deposition velocity (m/d).  163 

The bracketed term on the right in Eqn. 4 represents the effective “bulk deposition velocity”, 164 

combining wet and dry deposition. 165 

The aerosol dry deposition velocity (Vd) to the ocean surface is a function of humidity, wind 166 

speed, and particle size and has been estimated to vary by a factor of 3 for sub-micron aerosol 167 

particles [35]. There are also large uncertainties associated with wet deposition estimates [36]. The 168 

rain rate over the ocean is very difficult to constrain as direct measurement of patchy and episodic 169 

rain events over vast, remote areas is impractical. Remote determinations from, for example, 170 

Microwave Imager (TMI) and precipitation radar (PR) suffer in accuracy [e.g. 37]. However, we can 171 
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use the known flux of 
7
Be (calculated from the ocean 

7
Be decay inventory) to avoid the pitfalls 172 

associated with determination of these parameters.  173 

The ratio of the atmospheric flux of any aerosol component to that of 
7
Be is: 174 

Fi / F7Be    =  Cai [R S ρ + Vd]I / CaBe [R S ρ + Vd]7Be   (5)  175 

Assuming that the right-hand terms in brackets roughly cancel: 176 

Fi ≅ F7Be Cai / CaBe    (6) 177 

such that the flux of any aerosol component can be estimated by multiplying the 
7
Be flux by the ratio 178 

of that component to 
7
Be in aerosols. For many ocean areas [33], this formulation works well 179 

because seasonal variation in the aerosol 
7
Be concentrations and the resulting ocean inventory of 180 

7
Be are small. In regions where there is large seasonal variability in the 

7
Be aerosol concentrations, 181 

such as the Arctic Ocean, the expected 
7
Be inventory resulting from the input and decay of aerosol 182 

7
Be can be described by Eqn. 7 [38]:  183 

λ Inventory7Be  =  ∑ [Ca
7

Be,n + Ca
7

Be, n-1 e
-λ

] (R S ρ + Vd)  (7) 184 

Where: 185 

 λ is the 
7
Be decay constant (0.013 d

-1
),  186 

Inventory7Be is the predicted 
7
Be inventory to the depth of 

7
Be penetration (100-200 m; 187 

dpm/m
2
), 188 

Ca7Be, n = 
7
Be aerosol concentration on day “n” (dpm/m

3
air),  189 

Ca
7

Be, n-1 e
-λ 

is the 
7
Be aerosol concentration on the previous day corrected for radioactive 190 

decay (dpm/m
3

air).   191 

As in Eqn. 4, the right-hand terms in parentheses represent the effective bulk deposition 192 

velocity (m/d) that combines precipitation plus dry deposition.  193 

This approach has been used in the central Arctic Ocean, yielding a bulk deposition velocity of 194 

~1350 m/d [38]. For the subtropical North Atlantic, using Eqn. 6, a bulk deposition velocity of ~2400 195 

m/d was derived [33]. In both cases, the estimated bulk deposition velocity is higher than the dry 196 

deposition velocity that is often used to estimate mineral aerosol dry deposition (1 cm/s = 864 m/d); 197 

this is consistent with the conclusion that 
7
Be deposition is dominated by wet deposition. These bulk 198 

deposition velocities from a given region of the ocean can then be used to estimate the flux of any 199 

other aerosol component, despite the complication that larger mineral dust aerosols may have 200 

higher dry deposition velocities and lower rainfall scavenging ratios. Considering Fe in mineral dust 201 
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for example, one might use Vd = 1000 m/d and a rainfall scavenging ratio (S) of 200 [35], while for 202 

7
Be one might use Vd = 86 m/d and S = 500 [39]. Using these estimates (and Eqn. 5), for a rainfall 203 

rate of 4 mm/d, the bulk deposition velocity for aerosol Fe would only be 5% lower than that for 
7
Be 204 

[33]. The higher proportions of larger mineral dust particles immediately downwind of sources like 205 

the Sahara may impact on the choice of deposition velocities and scavenging ratios for modelling 206 

deposition in those regions. 207 

Trace Element Solubility 208 

Understanding the fraction of the atmospheric flux of bioactive substances that is available to 209 

marine biota is a key part of assessing the biogeochemical impact of that atmospheric flux. Defining 210 

the bioavailable fraction is extremely complex, but in many cases the soluble fraction of trace 211 

element deposition constitutes a major part of the bioavailable fraction [40, 41].  212 

In laboratory studies a positive relationship has been reported between the solubility of 213 

aerosol Fe (and other TEs) and aerosol acidity [e.g. 42, 43]. These studies were undertaken, in part, 214 

to simulate pH changes that occur when aerosol particles cycle through clouds (a process that can 215 

also affect other factors that influence solubility, such as aerosol constituent mixing). Despite these 216 

results, and there being a general consensus in the community that aerosol chemistry is a key 217 

control on aerosol TE solubility, field observations have failed to convincingly reproduce this 218 

relationship for the most part. In the Atlantic Ocean, no relationship between acid species, such as 219 

non-sea salt sulphate (nss-SO4
2-

) and nitrate (NO3
-
), or net potential acidity (i.e., the difference 220 

between total acid species concentrations and total alkaline species concentrations) and fractional 221 

Fe solubility has been observed [29, 44]. In contrast, in the Pacific Ocean, a significant relationship 222 

between aerosol acid species, but not oxalate concentration, and soluble aerosol Fe has been 223 

observed [e.g. 26]. Similar observations were made of the relationships between aerosol Al solubility 224 

and acid species concentrations at Hawaii [45]. This led Buck et al. [26] to conclude that aerosol 225 

provenance was the dominant control on TE solubility.  226 

There are a number of theories suggested to explain why field data generally fail to capture a 227 

relationship between aerosol TE solubility and aerosol acidity. For example, the large buffering 228 

capacity of CaCO3 means that mineral dust particles do not easily become acidic. The pH of the 229 

aqueous solution surrounding dust aerosols is controlled by the ionic balance between acidic species 230 

(e.g., sulphate, nitrate, chloride anions) and basic species, including ammonium and components of 231 

mineral dust itself, i.e. calcite (CaCO3). Before Fe can be effectively mobilized from the particle 232 

through proton-promoted dissolution processes [46], the concentration of acidic species must be 233 

sufficiently high to overcome the alkalinity of mineral dust (which will vary according to the source 234 
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and composition of the dust), and decrease the pH of the aqueous solution surrounding the dust 235 

particle. Alternatively, part of the problem in linking aerosol acidity and TE solubility may lie in the 236 

difficulty of determining the acidity of aerosol particles directly, and therefore proxies are frequently 237 

used [47]. Hennigan et al. [47] found from their model study that approaches that combined aerosol 238 

and gas inputs showed the best agreement with the aerosol pH predicted from the phase 239 

partitioning of ammonia, and that ionic balance or molar ratio approaches failed to accurately 240 

predict aerosol pH. The highly complex nature of atmospheric aerosol suspensions, in which aerosol 241 

components may be fully externally mixed (present in the same volume of air but in different 242 

particles), fully internally mixed (present within the same particles within that air volume) or at some 243 

point on a continuum between these two extremes, also makes a complete understanding of field 244 

observations of TE solubility very challenging. At present it is not possible to acquire measurements 245 

of TE solubility on individual aerosol particles and hence it is not possible to distinguish between 246 

observations for which acid species are externally mixed with TE-containing particles and those for 247 

which internal mixing might lead to increased solubility. 248 

In the future, in contrast to the ocean, the atmosphere is predicted to become more basic 249 

[48]. Emissions of SO2 and NOx are expected to continue to decline as a result of stricter and/or 250 

more commonplace regulation and technological advances, whereas global ammonia emissions (the 251 

majority , ~80%, of which come from the agriculture sector) are difficult to control and are relatively 252 

unchecked [49]. Gaseous ammonia is the most abundant alkaline gas in the atmosphere, and global 253 

emissions have increased over the last few decades. A more basic atmosphere might be expected to 254 

reduce aerosol TE solubility.  255 

Recent work has highlighted the impact of organic matter on TE speciation and solubility in 256 

aerosols and rainfall. Aerosol particles and rainwater are known to contain Fe-binding organic 257 

ligands such as formate, acetate and oxalate [50]. These ligands facilitate the dissolution of Fe in 258 

aerosol and stabilise soluble Fe [51-56]. Kieber et al. [57] estimated that 69% to 100% of Fe(III) in 259 

rainwater was organically complexed. The concentrations of the Fe organic ligands and their 260 

conditional stability constants have been directly measured in rainwater only very recently with a 261 

new sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping 262 

Voltammetry (CLE-ACSV) [58]. Ligand concentrations in the first measured samples of coastal 263 

rainwater were as high as 336 ± 19 nM, with log K’Fe3+L around 21.1-22.8 at pH=5.45 [58]. These 264 

K’Fe3+L values correspond to the strong ligand class in seawater [59] and imply that 80 % to 100 % of 265 

Fe in rainwater is organically complexed [58], confirming the estimation of Kieber et al. [57]. The 266 

presence in rainwater of ligands capable of complexing other TEs, e.g. Cu [60], has also been 267 
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demonstrated. However, the exact nature and origin of these atmospheric ligands are still largely 268 

unknown. 269 

The molar ratios of Fe/water soluble organic carbon (WSOC) in aerosols collected during two 270 

GEOTRACES cruises were found to be anti-correlated with Fe solubility (Fig. 2), suggesting a possible 271 

role of organic ligands in enhancing Fe solubility [61, 62]. Using a global chemical transport model 272 

that considered the oxalate-promoted Fe dissolution in aerosols, Ito and Shi [52] successfully 273 

reproduced the inverse relationship of Fe solubility and Fe/WSOC ratio over the cruise tracks (Fig. 2). 274 

The process-based modelling by Ito and Shi [52] suggested that proton- and oxalate-promoted Fe 275 

dissolution in the aerosol aqueous phase and mixing with combustion aerosols are the main 276 

mechanisms to cause the high Fe solubility at low Fe loading in the North Atlantic. This is consistent 277 

with observations [e.g. 63, 64] and previous modelling [65]. 278 

Primary biological aerosol particles, also called bioaerosols, include fungi, pollen, spores, plant 279 

debris, epithelial cells, algae, protozoa, viruses, and bacteria. They are ubiquitous in the atmosphere 280 

[66, 67] and cover a very large size range from viruses (about 1 nm diameter) to pollen (up to 300 281 

µm diameter) [68]. A recent campaign over the Caribbean Sea revealed that viable bacterial cells 282 

represented on average 20% of the total particles in the 0.25-1 μm diameter range and were at least 283 

one order of magnitude more abundant than fungal cells, suggesting that bacteria represented an 284 

important and underestimated fraction of micrometer-sized atmospheric aerosols [69]. Bacteria 285 

could directly influence the atmospheric chemistry of TEs, for example through the degradation TE-286 

complexing carboxylic compounds [70, 71] and the release of metabolic compounds, such as 287 

siderophores [72]. Despite these advances, airborne microorganisms above the oceans remain 288 

essentially uncharacterized, as most work to date is restricted to samples taken close to the 289 

continents.  290 

Other atmospheric compounds that could complex Fe are humic-like substances (HULIS) [73, 291 

74] and/or sugars. These have been detected in rainwater samples and in the water soluble fraction 292 

of aerosol particles [e.g. 54] and have been shown to bind Fe, at least in the ocean [75]. 293 

The expanded range of TEs studied under the GEOTRACES programme not only provides 294 

information about additional micronutrients (Zn, Co, Cd, Cu, Ni, etc.) but has also allowed further 295 

progress in understanding the solubility behaviour of Fe through the synergies with elements with 296 

similar sources or chemistry. For instance, over the spatial scale of the North and South Atlantic 297 

Ocean the variation in fractional solubility with total element aerosol concentration of Fe, Al and 298 

silicon (Si) has been found to be very similar [76], suggesting that redox processes and 299 

anthropogenic inputs are relatively minor controls of aerosol Fe solubility over that spatial scale. 300 
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Biogeochemical Impact of Trace Element Deposition 301 

Ultimately, the biogeochemical impact of TEs that enter the ocean via the air – sea interface is 302 

dependent on the characteristics of the marine waters into which they are deposited, in addition to 303 

the characteristics of the TEs at the point of deposition [77]. The combination of atmospheric and 304 

marine influences on solubility has been discussed for Fe by Baker and Croot [8], who suggested a 305 

conceptual model of aerosol iron solubility controls in which the various competing and inter-related 306 

processes that influence (Fe) solubility in the atmosphere and seawater are likened to electrical 307 

resistors connected in parallel in each compartment. In Fig. 3 we revisit that conceptual model, 308 

adding (Fe-) binding ligands in the atmosphere and revising it to describe TE dissolution in general. 309 

Whether these newly-considered organic ligands result from atmospheric biological activity or have 310 

a significant impact on TE solubility in seawater still needs further investigation. 311 

The combined effects of atmospheric and seawater influences on TE dissolution have been 312 

studied by addition of mineral dust to natural seawater at scales ranging from bottle incubations to 313 

mini- and meso-cosm experiments. For example, an initial addition of dust during the DUNE 314 

mesocosm experiment led to decreased dissolved Fe concentrations due to adsorption [78, 79]. A 315 

second addition of dust to the DUNE mesocosms produced a very different response, with increased 316 

dissolved Fe concentrations facilitated by higher Fe-binding ligand concentrations [79]. The 317 

percentage of dust Fe released into seawater can be dependent on season and related to surface 318 

water dissolved organic matter concentrations and character [80]. The DUNE experiments, involving 319 

the addition of controlled amounts of well characterised dust to large volumes of isolated in situ 320 

seawater, have provided the opportunity to study the fate and impact of deposited dust in a manner 321 

not possible through either laboratory or field experiments.  322 

The biological response of oceanic waters to dust or ambient aerosol addition has been 323 

studied in a number of short-term bottle incubation experiments [81-84]. In many of these 324 

experiments, responses to dust addition were different from the systems’ responses to the addition 325 

of macronutrients (nitrogen (N) and phosphorus (P)) and Fe, or additions of combinations of these. It 326 

is apparent that a multi-element approach to such studies is necessary in order to interpret their 327 

results [84]. 328 

Non-dust Sources of TEIs 329 

Although mineral dust probably constitutes the major atmospheric source of TEIs to the ocean 330 

on a global scale, other sources, including volcanic ash [85, 86], ship exhaust [87] and land-based 331 

anthropogenic emissions [7, 88, 89] can also be significant on smaller scales. In a similar manner to 332 

the behaviour of mineral dust, the deposition of volcanic ash has the potential to decrease surface 333 
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water Fe concentrations through scavenging, as well as acting as a source of dissolved Fe [90]. 334 

Anthropogenic sources of Fe have been found to be significantly more soluble than mineral dust Fe 335 

[e.g. 91, 92]. Gas phase emissions from ship exhaust include CO2, NOx and SO2 [87], with the latter 336 

two being precursors of atmospheric acidity. Particulate emissions from shipping have been found to 337 

contain a number of TEIs including Ni, vanadium (V), lead (Pb), Fe and Zn [e.g. 93, 94, 95]. In general, 338 

little is known about whether such emissions might have a significant effect on the aeolian delivery 339 

of TEIs to the ocean around major shipping routes. However, global ship traffic is projected to 340 

increase over the coming decades and one modelling study has indicated that ship emissions might 341 

constitute a significant source of soluble Fe to some ocean regions by 2100 [96]. 342 

Isotopic data on aerosol trace elements may also be useful in distinguishing sources, such as 343 

between biomass burning or mineral dust for Fe [11], between anthropogenic emissions or mineral 344 

dust for Zn [97] or between combustion aerosols from different regions with Pb isotopes (e.g. [98]) 345 

Value of Coordinated International Research Programmes 346 

The large amount of new observational data acquired through work by the GEOTRACES and 347 

other international research programmes are useful for validation of numerical models and serve to 348 

enhance our understanding of TE air – sea interactions. These studies have highlighted the 349 

importance of atmospheric transport regimes and deposition modes in determining the overall air – 350 

sea flux of TEIs and their impacts on marine biogeochemistry. GEOTRACES data is particularly 351 

valuable in this context because the programme’s sampling strategy aims to produce a co-collected, 352 

corresponding set of TEI data for surface waters.  353 

The collection of a coherent set of TEI data for aerosols through the GEOTRACES programme 354 

has been underpinned by the successful aerosol intercalibration / intercomparison exercise [99]. 355 

GEOTRACES standardization and intercalibration protocols for oceanic samples generally entail 356 

sharing of replicate samples among various labs/analysts and sampling at common locations 357 

(crossover stations). For atmospheric aerosols, air mass origin and aerosol composition are highly 358 

variable, so the applicability of crossover stations is problematic and the best options for aerosol 359 

intercalibration are a readily available reference material and/or plentiful marine aerosol sample 360 

replicates. During the 2008 GEOTRACES aerosol intercalibration [99], a set of replicate aerosol 361 

samples consisting of a mixture of marine, lithogenic, and anthropogenic components was 362 

successfully analysed for many total element and soluble ion concentrations. It was recommended 363 

that digestions for “total” TEI concentrations should utilize nitric acid, hydrofluoric acid, heat and 364 

pressure to achieve total dissolution of aerosol material. The exercise also revealed discrepancies in 365 
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the measurement of soluble aerosol TEI concentrations, most importantly Fe, a key parameter in 366 

many observational and modelling studies. 367 

Recommendations for further research 368 

Analytical Issues 369 

The continuation and expansion of intercalibration / intercomparison exercises will be 370 

necessary to provide coherent datasets for future work. Because aerosols may be analysed for a 371 

broad spectrum of trace elements and isotopes and soluble species (e.g. chloride, nitrate, sulphate 372 

and soluble organic compounds), a substantial amount of aerosol material for intercalibration is 373 

required. A suitable “reference” material is required to facilitate this intercalibration work. It should 374 

be very fine-grained (to mimic aerosol particle sizes), homogeneous at small scales (less than 20 mg) 375 

and be readily available at low cost.  376 

• To address the lack of a suitable aerosol certified reference material (CRM), the Arizona Test 377 

Dust (ATD) produced by Powder Technology, Inc. is currently being evaluated. ATD is a dry 378 

aerosol powder that has been oven dried and sieved, but has not been subjected to washing 379 

or leaching. ATD is available in several different size ranges, including  A1 Ultrafine (PN 380 

12103-1) whose particle size distribution shows ~70% less than 5.5 µm and ~98% less than 11 381 

µm. It has a composition very similar to mineral (desert) dust: 382 

http://www.powdertechnologyinc.com/product/iso-12103-1-a1-ultrafine-test-dust/. A large 383 

quantity has been purchased and our preliminary tests show that it is homogeneous at 384 

subsample masses of 10-20 mg.  385 

• A second round of intercalibration tests has begun in 2016; subsamples of the A1 Ultrafine 386 

ATD have already been sent to a number of international labs to measure total TEI and 387 

soluble TEI concentrations, and we hope to recruit additional collaborators for this effort. As 388 

part of this intercalibration effort, we also want to encourage the use of ATD for 389 

intercomparison of various aerosol solubilisation schemes.   Our goal is to avoid the cost and 390 

time delays needed to produce a true CRM or SRM, and to use the ATD material to 391 

intercalibrate analysis of aerosol TEIs in much the same way that the SAFe and GT seawater 392 

samples have been used to intercalibrate the sampling and analysis for TEIs in seawater. 393 

Subsamples of our large batch of the A1 Ultrafine ATD are freely available (contact William 394 

Landing wlanding@fsu.edu or Peter Morton pmorton@fsu.edu). 395 

• Finally, we are also investigating the availability of replicate aerosol samples collected during 396 

research cruises to further advance aerosol intercalibration. Members of the international 397 

aerosol community are encouraged to facilitate this intercalibration by communicating and 398 
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collaborating; discussion is underway regarding establishment of a SCOR Working Group on 399 

aerosol chemistry and solubility.  400 

Deposition 401 

• A multi-tracer approach shows promise in reducing the uncertainties associated with 402 

quantifying dust deposition fluxes to the ocean [Anderson et al., this volume]. GEOTRACES 403 

products are likely to expand the range of tracers and isotopes that can be used for this 404 

purpose which should lead to further reduction of this key uncertainty. 405 

• Modelling of dust and TEI deposition to the oceans is an essential part of the study of the 406 

Earth System, since it allows estimation of TEI fluxes over spatial and temporal scales which 407 

will never be accessible through direct observation. Modelling activities of this nature are 408 

inherently uncertain however, because they inevitably involve the simplification of highly 409 

complex systems that are themselves incompletely understood. The modelling community 410 

conducts occasional intercomparison exercises [100, 101] in order to assess the variability 411 

between models and to aid in model development. Since the ultimate product of these 412 

models is the deposition flux of TEIs to the ocean, it makes sense for the intercomparison 413 

exercises to report comparisons of deposition flux. We note however, that comparison to 414 

observations is also an important part of validation and development of models. We would 415 

therefore suggest that future model intercomparisons should also report model mean 416 

aerosol surface level concentrations, since these are directly available from observations 417 

whereas deposition fluxes to the ocean are not. 418 

Solubility 419 

Ultimately we wish to provide the modelling community with sufficient information to include 420 

realistic descriptions of TE solubilisation in numerical models in the most computationally efficient 421 

manner possible. In order to do this we need to clarify several outstanding issues: 422 

• To what extent do anthropogenic emissions influence the solubility of TEI in aerosols? (How 423 

significant, on global and regional scales, are direct anthropogenic emissions of TEIs in 424 

determining the overall deposition of soluble forms of those TEIs to the ocean. What is the 425 

indirect impact of anthropogenic emissions of acidic (NOx, SO2) and alkaline (NH3) 426 

substances on the evolution of aerosol TEI solubility during atmospheric transport?) 427 

• Further improvement in our understanding of the influence of organic matter and 428 

bioaerosols on TEI solubility in aerosols and in seawater after deposition, as well as their 429 

potential impact on bioavailability, is required. 430 
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• Deposition of aerosol particles and rainfall to the surface ocean requires the transfer of 431 

material across the sea surface microlayer (SSM), a region whose biogeochemical 432 

characteristics are quite distinct from the properties of bulk seawater [102]. In all probability 433 

the SSM has a significant influence on TEI solubility, but our understanding of the extent of 434 

this influence is still in its infancy. 435 

• Similarly, conditions in bulk seawater will also have a significant (perhaps dominant for Fe) 436 

influence on TE solubility. We still need to improve our understanding of TEI dissolution 437 

“length scales” and kinetics in relation to particle residence times in the ocean. Some of that 438 

understanding may only be accessible via process studies or meso-scale oceanic enrichment 439 

experiments. 440 

Anthropogenic impacts 441 

• There has been much recent interest in the role played by anthropogenic emissions in 442 

introducing TEIs into the atmosphere (e.g. for soluble Fe, as stated above). Characterisation 443 

of exemplar source end-members for these emissions will be required in order for them to 444 

be incorporated into numerical models. Emissions from shipping are of particular interest in 445 

this context as shipping has seen rapid growth in recent decades and this growth is 446 

projected to increase further into the near future. Elements such as Ni and V are of 447 

particular concern with regard to ship emissions, as are acid precursors (NOx and SO2), 448 

although changes in regulations relating to ship emissions may influence this [103, 104]. 449 

• The introduction of routine sampling for black carbon (QMA filters) into GEOTRACES 450 

protocols will help to link aerosol TEI concentrations to anthropogenic emissions and will 451 

also aid in the validation of anthropogenic emissions and transport in numerical models. 452 

Although our manuscript has focussed primarily on studies conducted under the international 453 

GEOTRACES programme, we note that other international scientific programmes (e.g. SOLAS) share 454 

many of the goals of GEOTRACES. We encourage the development of links between these 455 

programmes through the sharing of data and expertise. For example, the SOLAS Aerosol and 456 

Rainwater Chemistry database 457 

(http://www.bodc.ac.uk/solas_integration/implementation_products/group1/aerosol_rain/458 

) contains a large amount of GEOTRACES-relevant data and open access to results obtained by both 459 

programmes is of clear benefit to both communities. 460 
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Figure Captions 803 

Fig. 1  Distribution of the ratio of advection to scavenging timescales (Y) for Al in the global ocean 804 

(after [25]). This is a measure of the relative importance of scavenging versus advection for Al 805 

export.  Regions where Y is higher than one are scavenging-driven, those where Y is smaller than one 806 

are advection-driven. Where advection dominates (blue) the one-dimensional MADCOW model is 807 

predicted to be unreliable. 808 

Fig. 2  Fe solubility as a function of Fe/WSOC molar ratio for model estimates (red squares) and 809 

measurements (black circles, from [61, 62]) of aerosol samples collected over the Atlantic Ocean. 810 

Reproduced from [52]. 811 

 812 

Fig. 3: Conceptual model of aerosol TEI solubility controls proposed (for Fe) by Baker and Croot [8], 813 

with the addition of a new control factor in the atmosphere: Ligand complexation, which may be 814 

linked to bioaerosols (see text for more details). 815 

 816 
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