
 
 

University of Birmingham

Geopolymers from lunar and Martian soil simulants
Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.

DOI:
10.1016/j.asr.2016.10.003

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Alexiadis, A, Alberini, F & Meyer, ME 2017, 'Geopolymers from lunar and Martian soil simulants', Advances in
Space Research, vol. 59, no. 1, pp. 490-495. https://doi.org/10.1016/j.asr.2016.10.003

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.asr.2016.10.003
https://doi.org/10.1016/j.asr.2016.10.003
https://birmingham.elsevierpure.com/en/publications/84dce82d-53a5-4e30-a136-7f88003153a8


Accepted Manuscript

Geopolymers from lunar and Martian soil simulants

Alessio Alexiadis, Federico Alberini, Marit E. Meyer

PII: S0273-1177(16)30563-4
DOI: http://dx.doi.org/10.1016/j.asr.2016.10.003
Reference: JASR 12928

To appear in: Advances in Space Research

Received Date: 13 July 2016
Revised Date: 26 September 2016
Accepted Date: 3 October 2016

Please cite this article as: Alexiadis, A., Alberini, F., Meyer, M.E., Geopolymers from lunar and Martian soil
simulants, Advances in Space Research (2016), doi: http://dx.doi.org/10.1016/j.asr.2016.10.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.asr.2016.10.003
http://dx.doi.org/10.1016/j.asr.2016.10.003


  

1 
 

Geopolymers from lunar and Martian soil simulants 

 
Alessio Alexiadis

a1
, Federico Alberini

a
, Marit E. Meyer

b 

 

a
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT United Kingdom 

b
NASA Glenn Research Center, Cleveland, Ohio 44135 United States of America 

 

Abstract 

 

This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and 

Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily 

and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires 

milling to reduce the particle size. Tests were carried out to measure, for both 

JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural 

strengths. In the case of the lunar simulant, these are higher than those of conventional 

cements. In the case of the Martian simulant, they are close to those of common building 

bricks. 

Keywords: JSC LUNAR-1A; JSC MARS-1A; Mars; Moon; geopolymer. 

 

1. Introduction 

 

Plans for long-term planetary or lunar outposts require the creative use of the available 

resources for sustainable human existence outside our planet. In this context, building 

materials deserve special attention since they are intrinsically heavy and usually required in 

large quantities. Therefore, their on-site production would reduce the amount of payload 

sent from Earth considerably.  

 

As a building material for lunar structures, researchers have proposed Lunarcrete (Happel 

1993); a concrete where lunar regolith, instead of sand, is used as an aggregate. An even 

more radical solution –because both the aggregate and the binder come from the regolith– 

would be the on-site production of building material by geopolymerization. With some 

notable exceptions (e.g. Montes et al. 2015), however, little attention has been given to the 

geopolymerization of the lunar regolith, and no attention at all has been given to the 

geopolymerization of the Martian regolith. NASA has a renewed commitment to human 

missions to Mars, including investments in planetary research, enabling life support 

technologies, as well as the development of spacecraft and launch systems capable of 

carrying humans to Mars.  Living and working on Mars is considered a solvable challenge, 

and the ability to construct human-habitable structures using planetary resources is a 

significant aspect of the problem. 
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This study focuses on the geopolymerization of both lunar (JSC LUNAR-1A) and Martian (JSC 

MARS-1A) dust simulants. In fact, the geopolymerization of JSC LUNAR-1A has generated 

new scientific questions. Can JSC MARS-1A geopolymerize as well? How high are the 

compressive and tensile strengths of the Martian geopolymer compared to that of the lunar 

geopolymer? How do they compare to commercially available cement?    

 

2. Geopolymerization 

 

Geopolymers are a class of cementitious materials formed by the reaction of an alkaline 

solution with an aluminosilicate source such as fly ash or red mud, which today are 

considered as a potential alternative for replacing traditional structural materials 

(Davidovits 1994). 

 

The process of geopolymerization starts with silalate (–Si–O–Al–) or silalate-siloxi (–Si–O–Al–

O–Si–) monomers in solution that join together to form inorganic polymers with properties 

similar to those of Portland cement. In general, geopolymerization is a complex process, 

involving three main steps: (i) alkali activation, which consist in the dissolution of 

amorphous aluminosilicates by alkali to produce monomers; (ii) reorientation, which 

consists in the transportation, orientation, and condensation of monomers into oligomers; 

and (iii) polycondensation, where the whole system hardens into an inorganic polymeric 

structure (Xu and Van Deventer 2002). 

 

Any material with high fractions of silica and alumina in amorphous (glassy) form could, in 

principle, geopolymerize. The composition of both JSC LUNAR-1A and JSC MARS-1A is shown 

in Table 1 (Allen et al. 1998, Gustafson 2009); in both cases, the major components are SiO2 

and Al2O3. Moreover, both simulants are collected form glassy volcanic ashes and have a 

high amorphous content. Ideally, geopolymers should have a stoichiometric Si/Al ratio of 1, 

2 or 3 (Davidovits 1994): the lunar simulant has a Si/Al ratio around 2.5, the Martian around 

1.6. All these considerations suggest that, at least in theory, both Lunar and Martian 

simulants should react with alkaline solutions to form geopolymers. 

 

We prepared six samples (three with JSC LUNAR-1A and three with JSC MARS-1A) following 

the method given by Xu and Van Deventer 2002: 

Sample 1, 30 g of simulant, 7 mL solution of water 8 M NaOH. 

Sample 2, 20 g of simulant, 10 g of K2SiO3, 7 mL solution of water 8 M NaOH. 

Sample 3, 50 g of simulant, 10 g of K2SiO3, 20 mL solution of water 4 M NaOH. 

In Sample 2 and 3, K-silicate (K2SiO3) was added to obtain samples with various Si/Al ratios. 

NaOH solutions with different concentrations were used to obtain samples at various pH. 

After blending the different materials, a viscous fluid was obtained. The final mixture was 

dried at constant temperature of 80°C for 3 hours in a silicone stamp (8x20x40 mm) and 

cured at room temperature for another 28 days. 
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The resulting product, for all three samples containing JSC LUNAR-1A, was a rock-like solid 

as expected in the case of geopolymerization. On the contrary, none of the samples 

containing JSC MARS-1A agglomerated, but produced a loosely cohesive assembly that 

easily crumbled when dry. 

 

2.1 Effect of Milling 

 

Does this negative result imply altogether that geopolymers from Martian simulant cannot 

be produced? JSC MARS-1A has a good content of alluminosilicates, the Si/Al ratio is 

acceptable, and volcanic ashes with composition similar to JSC MARS-1A are known to 

geopolymerize producing materials with high mechanical strength (Tchakoute et al. 2013). 

 

The lack of geopolymerization could originate from the larger size of JSC MARS-1A particles. 

The mean (volume averaged) particle size of the lunar simulant is around 190 µm, while that 

of the Martian is 295 µm. This indicates a lower contact area between the NaOH solution 

and the JSC MARS-1A particles and, therefore, slower alkali activation. 

 

In order to test this hypothesis, the dust was milled to reduce the particle size and, at the 

same time, enhance reactivity by mechanical activation (Terzić et al. 2014). A planetary mill 

Pulverisette 5 by Fritsch GmbH was used for 30 minutes at 200 rpm followed by a 125µm 

sieve to remove any larger particles left. This procedure was adopted for both simulants, 

and the new size distributions measured with a Malvern Mastersizer Particle Size Analyzer. 

Milling produced a tenfold reduction of the mean particle size, which decreased to 19 μm in 

the case of JSC LUNAR-1A and to 28 μm in the case of JSC MARS-1A. After milling, the 

particles of the two simulants present a very different morphology as indicated by Figure 1 

(images obtained with a SEM microscope Hitachi TM3030). The lunar particles have very 

sharp and jagged edges, the Martian particles tend to be more round. 

 

The same procedure used before was applied to the milled simulants and, this time, both 

JSC LUNAR-1A and JSC MARS-1A samples produced solid blocks (Figure 2). 

 

2.2 FTIR data 

 

To verify that the hardening of the material is actually due to geopolymerization, FTIR 

spectra of the original JSC LUNAR-1A and JSC MARS-1A dusts were compared with the 

corresponding agglomerated samples. Absorbance profiles were obtained with a Bruker 

Tensor 27 FTIR Spectrometer. 

 

The peaks highlighted in Figure 3 are typical of geopolymers (Montes et al 2015, Zhang et al. 

2012, Arioz et al. 2013, Cătănescu et al 2012, Lee et al 2003). The strong peak at ~1000 cm-1 
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(labelled A in Figure 2) includes T-O-Si (T = Al or Si) asymmetric stretching vibrations within 

the TO4 tetrahedra typical of the amorphous aluminosilicates and is considered to be the 

fingerprint of geopolymerization (Montes et al 2015, Arioz et al. 2013, Lee et al 2003). 

Atmospheric carbonation is evident at around 1430 cm-1 (peak C) (Montes et al 2015, Arioz 

et al. 2013, Cătănescu et al 2012). Peak B refers to the symmetric Si-O bonds and its 

increase can be associated with the addition of soluble silicates during the preparation of 

the samples (Lee et al 2003). The shifting of the main band A to smaller wave numbers 

suggests the silica solubilisation and polycondensation processes and is also typical of 

geopolymerization (Montes et al 2015, Zhang et al. 2012, Arioz et al. 2013, Cătănescu et al 

2012, Lee et al 2003). Moreover, the disappearance of the bands at around 600 cm-1 (band 

F) points out the consumption of silicates or aluminosilicates glasses (Cătănescu et al 2012, 

Lee et al 2003). The bands indicated with E are attributed to the stretching vibrations of –

OH, while point D refers to the bending vibrations of H-O-H (Montes et al 2015, Arioz et al. 

2013, Cătănescu et al 2012).  

 

3. Strength of the JSC LUNAR-1A and JSC MARS-1A geopolymers 

 

Once geopolymers are produced from both lunar and Martian simulants, we want to 

evaluate their strength in comparison with traditional building materials such as cement. 

There are several types of material strengths that can be tested: Montes et al. 2015, for 

instance, measured the compressive strength of the lunar geopolymers. This is the typical 

test performed on building materials such as concrete with a much higher compressive 

strength than tensile strength.  

 

In this study, we assess both compressive and tensile strength for both JSC LUNAR-1A and 

JSC MARS-1A geopolymers. In the case of tensile strength, we actually tested the flexural 

strength, which is often used as a measure of tensile strength (Young and Budynas 2001).  

 

Standard tests for both compressive and flexural strength are based on relatively large 

samples and usually require quantities of material larger than those available to us. For this 

reason, we based our analysis on tests that need less quantities of material. We also 

performed these tests on conventional cement (Tarmac high performance Cement) and 

compared the results between cement, lunar polymer, and Martian polymer. 

 

3.1 Compressive strength 

 

Standard test for compressive strength of concrete specimens are based on cylindrical 

samples with diameters between 10 and 15 cm and heights between 20 and 30 cm, or on 

standard size 10 cm concrete cubes. In order to use a lesser quantity of simulant, the 

compressive strength of cubes of approximately 1 cm of length was measured. We prepared 

the samples with the milled simulant (for both JSC LUNAR-1A and JSC MARS-1A) and 
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solutions at different NaOH concentrations (see Table 2); K2SiO3 was not added to any of the 

samples. 

 

The cubes were tested to failure in compression by an Advanced Materials Testing Machine 

LS 100 kN Plus by Lloyd Instruments Ltd. In Table 2, the maximum compressive strength is 

calculated by averaging the results obtained with a varying number of tests (also indicated 

in Table 2). The maximum compressive strength is achieved in the case of Luna-8M 

(18.4±1.6 MPa based on 7 tests/samples) and it is even higher to that of cement. In general, 

the compressive strength is larger for the samples produced using 8M NaOH solutions for 

both the lunar and the Martian simulants, but JSC MARS-1A, overall, results in a weaker 

geopolymer.  

 

3.2 Flexural strength 

 

The transverse bending test is most frequently employed test for measuring the flexural 

strength of concrete samples. Also in this case, we prefer a technique that requires less 

material. The milled powder was mixed with a 8 M sodium hydroxide solution, which 

produced the geopolymers with higher compressive strength. Ten geopolymer disks 

(diameter 12 mm, thickness ~ 1mm) for each simulant were made. Table 3 displays the 

composition of the lunar and Martian geopolymers, along with a conventional cement 

sample (Tarmac high performance Cement, as before) used for comparison purposes. 

 

A Stable Micro Systems TA.XTplus texture analyser was used to test the samples; the disks 

are placed at the centre of a metal plate with a circular hole of 9 mm and the probe 

measures the force required to break each sample as illustrated in Figure 4. From the break-

up force, the maximum flexural strength was estimated from the formula (Young and 

Budynas 2001) 

 

 
max 2

0

0.6201ln 0.477
F d

h d
σ

  
= +  

   
     (1) 

 

Where F is the maximum force required to break the sample, h is the thickness of the 

sample, d the diameter of the hole and d0 the diameter of the probe 

For each material, the tests were repeated with ten different specimens; the averaged 

maximum force required to break each type of disk is reported in Table 3 together with the 

respective standard deviation. 

 

The lunar geopolymer is by far the strongest material of the three, while the Martian 

geopolymer is almost of similar strength to traditional cement. It is also worth noting that 

upon breakage, the lunar geopolymer broke cleanly into a few fractured pieces whereas the 
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Martian and cement samples crumbled into pieces of much larger size distribution down to 

the powder-like scale. 

 

4. Discussion 

 

While the lunar dust simulant geopolymerizes as it is, the Martian simulant requires milling. 

Milling reduces the particle size and has a twofold effect on the geopolymerization process: 

it increases the contact area with the alkaline solution, and increases the alluminosilicates 

reactivity. The former occurs because smaller particles have a larger surface area per unit 

volume than larger particles. The latter occurs because, during milling, fractures and break-

up arise preferentially at the defects of the crystal structure (Chunlong et al. 2010). Defects 

are the chemically most active parts of the structure that, in this way, are exposed to the 

particle surface. 

 

High chemical reactivity means high degree of geopolymerization and, in turn, high 

compressive strength. Actually, compressive strength is often used as a measure of success 

of geopolymerization (Xu and van Deventer 2003). Therefore, the higher compressive 

strength of the lunar geopolymers can be explained by the higher reactivity of JSC LUNAR-

1A with respect to JSC MARS-1A. 

 

However, there are other two factors to consider. Firstly, experiments indicate that the 

compressive strength of geopolymers increases with the Si/Al ratio (Duxon et al. 2007); the 

Si/Al ratio of JSC LUNAR-1A is actually higher than that of JSC MARS-1A. Secondly, due to the 

higher particle size, the Martian geopolymer is less dense and more porous than the lunar 

geopolymer. The densities of the JSC LUNAR-1A and the JSC MARS-1A geopolymers are 

respectively 2.6 g cm-3 and 1.8 g cm-3. Therefore, there is less material in the Martian 

samples and actually the higher porosity of the Martian geopolymers, after breakage, can be 

appreciated with the naked eye.     

 

5. Conclusions 

 

The lunar geopolymer outperforms cement in both compressive and flexural strength tests. 

Moreover, both lunar and Martian geopolymers do not show a drastic reduction of flexural 

strength with respect of compressive strength, as is the case with cement. 

 

The Martian geopolymer is clearly the weakest material when it comes to compressive 

strength. This has been associated to a low reactivity of JSC MARS-1A. The reactivity of a 

given oxide depends on the binding energies of its crystal (or amorphous) structure. 

JSC MARS-1A was designed to match the available information on the Martian soil 

composition. However, details about its reactivity are unknown and, therefore, we do not 
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possess enough information to establish if the chemical activity of JSC MARS-1A is 

representative of the real regolith. 

 

From a certain point of view, we consider the conditions of Martian geopolymerization 

tested in this study a sort of unfavourable scenario. In the samples tested for compressive 

and flexural strength, we limited milling to 30 minutes; we did not perform any preliminary 

thermal activation; and we did not add K2SiO3 or any other additive. We chose this course of 

action to test geopolymerization under conditions maximizing in-situ resource utilization. 

 

Under these circumstances, the compressive strength of the Martian geopolymer is not 

comparable to concrete. Nonetheless, it is comparable to other building materials such as 

common clay bricks, whose compressive strength is 3.5 MPa. This means that, even in this 

unfavourable scenario, geopolymers made from Martian regolith could be used as building 

material and could play a role in the future colonization of the red planet. 
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TABLES 

 

Oxide 
JSC LUNAR-1A 

[wt%] 

JSC Mars-1A 

[wt%] 

SiO2 46.7 43.7 

Al2O3 15.8 23.4 

CaO 9.9 6.2 

MgO 9.4 3.4 

FeO 8.17 3.5 

Fe2O3 12.5 11.8 

Na2O 2.8 2.4 

TiO2 1.7 3.8 

K2O 0.8 0.6 

P2O5 0.7 0.9 

MnO 0.19 0.3 

 

Table 1: Chemical composition of JSC LUNAR-1A and JSC MARS-1A. 

 

 

Sample 

name 

Quantity of 

simulant 

[g] 

NaOH 

conc. 

[M] 

Num. of 

tests/samples 

Average 

side 

[mm] 

Compressive 

strength 

[MPa] 

Cement 38 0 10 9.0 12.6±1.6 

Luna-2M 24 2 8 8.8 2.0±0.6 

Luna-4M 24 4 7 9.4 3.7±0.7 

Luna-6M 24 6 7 9.8 7.8±0.5 

Luna-8M 24 8 7 9.3 18.4±1.6 

Mars-2M 20 2 5 9.4 1.4±0.3 

Mars-4M 20 4 6 9.2 1.0±0.3 

Mars-6M 20 6 7 9.0 0.7±0.2 

Mars-8M 20 8 8 9.1 2.5±0.3 

 

Table 2. Geopolymer cubes composition and maximum compressive strength 
 

 

Solid Liquid 
Composition 

[g/ml] 

Maximum 

force 

[N] 

Flexural 

strength 

[MPa] 

JSC LUNAR-1A 8 M NaOH 4.3 17.9 ± 2.7 13.0 ± 3.7 

JSC MARS-1A 8 M NaOH 2.5 5.0 ± 1.8 3.6 ± 1.3 

Standard 

cement 

Deionised 

water 
4.0 6.7 ± 1.2 4.8 ± 0.9 

 

Table 3. Geopolymer composition and force required to break the solid geopolymer and 

cement disks. The final values of flexural strength are calculated on the basis of 10 

tests/samples.  
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FIGURE CAPTIONS 

 

Figure 1. SEM images of the milled JSC LUNAR-1A (a) and JSC MARS-1A (b). 

 

Figure 2. Blocks of JSC LUNAR-1A (left) and JSC MARS-1A (right) geopolymers 

 

Figure 3. FTIR data of lunar and Martian simulants before and after geopolymerization 

(Sample 2). 

 

Figure 4. Test used to estimate the flexural strength 
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