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Abstract 

Liposomes have been coated with the pH responsive polymer, Eudragit S100, and the 

formulation’s potential for lower GI targeting following oral administration assessed. 

Cationic liposomes were coated with the anionic polymer through simple mixing. The 

evolution of a polymer coat was studied using zeta potential measurements and laser 

diffraction size analysis. Further evidence of an association between polymer and liposome 

was obtained using light and cryo electron microscopy. Drug release studies were carried out 

at pH 1.4, pH 6.3 and pH 7.8, representing the pH conditions of the stomach, small intestine 

and ileocaecal junction, respectively. 

The polymer significantly reduced liposomal drug release at pH 1.4 and pH 6.3 but drug 

release was equivalent to the uncoated control at pH 7.8, indicating that the formulation 

displayed appropriate pH responsive release characteristics. While the coating layer was not 

able to withstand the additional challenge of bile salts this reinforces the importance of 

evaluating these types of formulations in more complex media.   
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1.0 Introduction 

Liposomes have been widely explored as drug delivery vehicles for several decades, offering 

temporal control of drug release and/or site specific drug delivery for a wide range of drugs 

with different physiochemical properties. To date they have found clinical utility primarily 

for the treatment of severe systemic infections and cancer (Cattel et al., 2004), for which their 

parenteral delivery is necessary and appropriate. To further exploit the advantages associated 

with liposomes (e.g. their ability to interact with cells (Voskuhl and Ravoo, 2008), the 

relative ease in which they can be produced in a wide range of structural and compositional 

configurations (Lasic, 1998), their potential in gene transfection (Montier et al., 2008) and 

capacity to carry a vast array of chemical and biopharmaceutical drugs (Lasic, 1998) it is 

beneficial to explore formulations with potential for non-parenteral delivery.  Indeed, a 

formulation suitable for oral drug delivery (widely accepted as the most practical, efficient 

and cost effective route for drug administration) could broaden the portfolio of applications 

for liposomes and open up several new avenues for treatment. 

  

Of growing interest generally in the world of oral drug delivery is colon-targeted delivery for 

treatment of both local and systemic conditions. It is recognised that this region of the 

gastrointestinal (GI) tract offers advantages over the stomach and small intestine, e.g. milder 

pH, lower enzymatic activity, lower bile salt concentrations, longer residence time and slower 

turnover of the mucus layer. For biopharmaceutical delivery, it also appears to offer the 

benefit of allowing greater functioning of absorption enhancers, thus allowing reasonable 

bioavailability of drugs such as peptides which would normally be poorly absorbed from the 

GI tract (Haupt and Rubinstein, 2002; Sinha et al., 2007).  
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Several researchers have already recognised the potential of combining the advantages of 

liposomes and colonic drug delivery. Rubenstein’s group (Tirosh et al., 2009 and Jubeh et al., 

2004) have investigated liposomal adhesion to healthy and inflamed colonic mucosa in vitro. 

Their work lays important foundations for understanding how liposomes may interact with 

colonic tissue. D’Argenio et al. (2006) have considered liposomes as vehicles for delivery of 

carnitine for the reversal of colitis. Kesisoglou et al. (2005) used liposomes for encapsulating 

5-aminosalicylate and 6-mercaptupurine against inflammatory bowel disease. Although for 

colonic action, administration of the liposomes in all of these studies was either intraluminal 

or in vitro to excised tissue; delivery via oral administration was not considered.  

 

One study that has considered liposomes in the context of oral administration to the colon is 

that of Xing et al. (2003) who describe a multicomponent drug delivery vehicle comprising 

drug loaded liposomes within Eudragit-coated alginate beads. Although both in vitro and in 

vivo results were promising, drug release was controlled by the alginate and not the 

liposomes and it was not clear whether the liposomes were released to allow them to undergo 

the advantageous interactions with colonic mucosa that are described above. A further 

potential drawback of the formulation was the complexity of its preparation (particularly the 

multiple process steps), potentially limiting economically viable commercial manufacture.  

 

In the present study the emphasis is therefore on simplicity of preparation, with the liposomes 

retaining dominance as the drug delivery vehicle. Taking the lead from the successful 

development of commercially available tablet formulations for colonic drug delivery 

(Baumgart and Sandborn, 2007), the methacrylic acid copolymer Eudragit S100 ® has been 

used as the coating material. This polymer, with its anionic carboxylic acid side groups, has a 

solubility threshold of pH 7, remaining insoluble at lower pH values. On the journey through 
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the gastrointestinal tract, it is generally accepted that pH 7 is not normally reached until at 

least the distal small bowel/ileocaecal region; thus drug release from formulations coated 

with Eudragit S100 is likely to commence at the junction between the small intestine and 

colon, continuing into the colon.  

 

2.0 Materials and methods 

2.1 Materials 

Liposomal membrane components included egg phosphatidylcholine (EPC) (a gift from 

Lipoid, Ludwigshafen, Germany, minimum 98 % purity), cholesterol (CH) (Sigma Aldrich, 

Dorset, UK, and stearylamine (SA) (Sigma Aldrich). SA was incorporated to give the 

liposomes a positive charge, facilitating electrostatic interaction with the anionic polymer. 

Vitamin B12 (Sigma Aldrich) was chosen as a model drug due to its high solubility in all of 

the release media used (thus ensuring drug release would not be limited by solubility). 

Eudragit S100, the pH responsive polymer used for the coating of the liposomes, was a gift 

from Evonik (Essen, Germany). For the drug release studies 0.1 M hydrochloric acid (HCl), 

Hanks’ balanced salt solution (99.015 mol % water, 0.95 % Hanks’ balanced salt and 

0.035 % sodium bicarbonate adjusted to pH 6.3 using 0.1 M HCl) and phosphate buffered 

saline (PBS, increased to pH 7.8 using tribasic sodium phosphate) were used to simulate the 

pH conditions of the stomach (Sinha and Kumaria, 2003 and Ibekwe et al., 2006), small 

intestine (Ibekwe et al., 2006) and ileocaecal junction (Khan et al., 1999), respectively. All 

components for the release media were purchased from Sigma Aldrich (Dorset, UK). All 

other chemicals and solvents used were of an analytical grade and used as received.  
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2.2 Preparation of liposomes and their formulation with Eudragit S100 

Liposomes were prepared using EPC and CH in the molar ratio 1:1, with SA comprising 5% 

of the total lipid. This level of SA (5 mol%) was chosen after an initial screening study 

showed that it increased the zeta potential of liposomes at pH 7.4 from -12 mV (without SA) 

to +63 mV. Higher levels of SA were not found to significantly increase zeta potential. The 

conventional thin film hydration method (Bangham et al., 1965) was used to produce 

multilamellar vesicles (MLVs) for the study. Briefly, the lipids were dissolved in 5 ml 

chloroform in a 50 ml round bottom flask. The chloroform was then removed using a rotary 

evaporator, leaving a thin lipid film on the side of the flask which was then dried under 

nitrogen for 2 hours to remove trace chloroform. The film was then hydrated with an aqueous 

solution containing 10 mg/ml of vitamin B12 in PBS (pH 7.4). During hydration the flask was 

agitated using a vortex mixer. Excess drug was removed through three cycles of 

centrifugation and replacement of supernatant with PBS. The final pellet was then re-

suspended in 10 ml of PBS.  

 

To prepare the coated liposomes equal volumes of liposomal suspension and aqueous 

solution of Eudragit S100 of various concentrations (0.0125, 0.025, 0.05 and 0.1 % w/v in 

PBS) were combined and hand-shaken for 2 minutes. 

 

2.3 Characterisation of liposomes 

2.3.1 Zeta potential 

Changes in dispersion zeta potential as a function of Eudragit S100 concentration were 

determined through electrophoretic mobility measurements (Zetamaster, Malvern 

Instruments, UK) at pH conditions in which the polymer was insoluble. Briefly, 500 µl of the 

liposome/polymer suspensions (from section 2.2.) were diluted with 20 ml of distilled water 
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(pH<7) before introducing to the electrophoresis cell. Ten measurements were taken at 25˚C 

on three independent samples of each preparation. 

  

2.3.2 Light Microscopy 

Light microscopy was conducted using an Olympus BX50 light microscope interfaced with a 

Leica Q500IW computer, with images taken using Ph 3 (phase plate) under the phase contrast 

setting. A small drop of liposome sample was placed on a pre-cleaned microscope slide 

before covering with a cover slip. Images were taken at 1000× magnification. 

 

2.3.3. Cryo-electron microscopy (cryo-EM)  

Drops of liposomal samples were dispersed into sample wells. The sample holder was then 

quenched in liquid nitrogen under vacuum conditions. Fracturing of the samples was 

conducted within the preparation chamber through the use of a fine blade. Samples were 

fractured using a Polaron Polar Preparation 2000 attached to a Phillips XL 30 Environmental 

Scanning Electron Microscope (ESEM). The samples were then coated with gold to increase 

conductivity and transferred into the SEM chamber. Images were taken at a maximum 

voltage of 3.0 kV to reduce temperature fluctuations associated with higher voltages, with the 

instrument maintained at -180°C by the periodic addition of liquid nitrogen to the cooling 

chamber.  

 

2.3.3 Size distribution 

Vesicle size and size distribution, as a function of Eudragit S100 concentration, were 

measured using wet laser diffraction particle sizing (Mastersizer 2000 connected to a Hydro 

SM small volume sample dispersion unit, Malvern Instruments, UK). Measurements were 
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carried out in distilled water in which the polymer was not soluble. Three independent 

formulations of each preparation were each measured 5 times.  

 

2.4 Drug release studies 

Drug release studies with uncoated liposomes and liposomes + polymer were conducted in 

each of the different pH media described in section 2.1. For each release experiment, 1 ml of 

liposomal suspension was added to 40 ml of preheated (37˚C) release medium and well-

agitated in an incubator maintained at 37°C. Sink conditions were maintained throughout 

each experiment. Aliquots of 1ml were removed at 0, 0.5, 1, 2, 4, 6, 10, 20, 30, 45, 70 and 

120 hours and centrifuged to precipitate the liposomes. The concentration of released vitamin 

B12 in the supernatant was determined using UV spectrophotometry against a standard curve 

obtained at λ=361 nm. All measurements were taken against reference samples of the 

appropriate dissolution medium. For each formulation, the initial amount of drug (mg drug/ 

mg phospholipid) prior to release was determined by lysing the liposomes with ethanol and 

measuring the resulting drug concentration using UV spectroscopy, allowing drug release to 

be reported as a percentage of the total encapsulated.  

 

Further drug release trials with uncoated and coated liposomes were completed in the 

presence of bile salts at a concentration representative of that found in the small intestine 

(10 mM sodium taurocholate in pH 6.3 Hanks’ solution). These trials aimed to test the 

liposomal formulations beyond response to pH alone. Over a period of 4 hours 

(representative of small intestine transit time) samples were removed and analysed 

spectrophotometrically at λ=361nm against a reference sample of the release medium.      
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3.0 Results 

 

The results presented in this section are discussed in section 4.  

 

Table 1 shows the vesicle zeta potential as a function of polymer concentration, where the 

polymer concentration shown is that of original solution that was mixed with the liposomes.  

As no further decrease in zeta potential was seen by increasing the polymer concentration 

beyond 0.05 % this was assumed to be the concentration necessary to cover the surface of the 

liposomes and was that used in all further studies. Vesicle size (Table 1) was seen to increase 

with increasing polymer concentration until 0.05 % at which point there was a plateau similar 

to that seen for the zeta potential results. 

 

Evidence of an association between the polymer and liposomes was also seen using light 

microscopy. Figure 1A shows the uncoated liposomes at pH 6.3. Typically for MLVs, the 

size of the vesicles was originally around 5 - 10 µm. On addition of polymer to a system at 

pH 7.8 no increase in size was observed (Figure 1B), consistent with the fact that the polymer 

was in solution at these conditions. At pH 6.3 the polymer was seen to precipitate around the 

vesicles forming larger agglomerates (Figure 1C). A control experiment (results not shown) 

in which liposomes were excluded showed that polymer ‘particles’ resulting from 

precipitation at pH 6.3 were considerably smaller (approximately 200 nm) than the liposomes 

used in this study. In this way, the agglomerates seen in Figure 1C were assumed to be 

liposomes + polymer and not precipitated polymer alone.  

 

In Figure 2 typical images from cryo-EM are shown. In Figure 2A the lamellae and central 

aqueous core of liposomes are clearly visible. In the presence of polymer a crust was 
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observed around and across the liposomes and the lamellae were no longer visible 

(Figure 2B).  

In Figure 3 drug release profiles for liposomes with and without polymer are shown in the 

different release media. At pH 1.4 and 6.3 (Figures 4A and B) the amount of drug released 

was significantly lower at all time points on addition of polymer (Mann Whitney U Test 

(chosen level of significance α=0.05). For example at pH 1.4, over a 20 hour period, only 

10 % of the drug was released, which is in contrast to the 40 % release over the same time 

period for the uncoated formulation. Over a time period more representative of gastric 

residence time (boxed graph in Figure 4A) only 2.5 % was released from the coated 

formulation compared to 10 % for the uncoated. However it can clearly be seen that although 

drug release was significantly reduced it was not abolished.  

 

Addition of bile salts to the release media significantly increased the drug release rate for 

both uncoated and coated liposomes. Interestingly there was no statistically significant 

difference between coated and uncoated formulations in the presence of bile salts indicating 

that both the structural integrity of the vesicles and the polymer barrier were affected by the 

bile salts.  

 

4.0 Discussion 

The formulation of liposomes into a preparation suitable for colon-targeted oral drug delivery 

could open up a range of new applications and indications extending the utility of liposomes. 

However, production and quality control of liposomal preparations can be difficult, hence the 

need to keep additional process steps and production methods as simple possible. Here we 

have therefore evaluated a conceptually simple idea of bringing together cationic liposomes 

and anionic polymer with the intention of creating a pH responsive coat around the liposomes 
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which would protect the vesicles en route through the stomach and the small intestine. This 

general route to coating has been previously explored when anionic liposomes were coated 

with the cationic polymer chitosan (Guo et al., 2003; Takeuchi et al., 1996, 2005), but no 

similar work has been completed using a pH responsive polymer for coating. The polymer 

Eudragit S100 was chosen as the coating material as it is widely used in both commercially 

available and experimental formulations for colonic targeting e.g. tablets (Khan et al., 1999 

and 2000), microspheres (Paharia et al., 2007) and capsules (Kraeling and Ritschel, 1992).    

 

The use of pH responsive materials for targeted oral delivery is not a perfect science and is 

not without its drawbacks. For example, substantial inter-patient differences in pH can lead to 

unpredictable targeting and release (Ibekwe et al., 2008). In the case of Eudragit S100, the 

likelihood of inappropriately early release upstream of the colon can also be increased when 

partial neutralisation of the polymer’s acidic function groups is carried out to facilitate 

creation of an ‘aqueous dispersion’ for coating purposes (Ibekwe et al., 2006b). Hence 

although the coating method explored here was one involving only aqueous solutions, 

unmodified Eudragit S100, albeit at low concentration, has been used to reduce the risk of 

drug release in the small intestine.  

 

Zeta potential measurements were used to monitor the evolution of the coat. This strategy has 

previously been used in the development of polymer-coated cationic and anionic liposomal 

formulations, where the point at which the zeta potential plateaus is taken to indicate 

saturation of the vesicle surface with polymer (Guo et al., 2003; Davidsen et al., 2001; 

Takeuchi et al., 2005). Results from our other studies (sizing, cryo-EM and drug release) 

indicate that such an assumption should be made with caution or that certainly further 

experimentation should always be carried out to provide information on the physical 
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characteristics and functionality of the coat. In Table 1, the plateau of the size increase 

beyond 0.05% indicates that the coat was not building up evenly – instead perhaps 

developing preferentially on some vesicles before others.  Light microscopy images in 

Figure 1 point to a heterogeneous distribution of polymer and in Figure 2 a discontinuous 

‘crust’ around the liposomes rather than a homogenous coat is observed. 

  

Despite these observations, the polymer was able to substantially slow down drug release at 

pH 1.4 and 6.3, presumably acting as a diffusional barrier.  However, it was unable to protect 

against bile salts which indicates that premature drug release and liposomal degradation could 

be expected in vivo. This is an interesting finding as it reinforces the importance of going 

beyond evaluation of liposomal formulations for site specific delivery in the GI tract on the 

basis of pH shifts alone. The addition of bile salts, while adopted by some researchers in 

examining in vitro liposomal release for oral delivery (e.g. Lee et al., 2005) has not been 

pursued by others (e.g. Guo et al., 2003; Filipović-Grčić et al., 2001). 

 

Drug release results in Figure 4 indicated that both the liposomes and the coat were disrupted 

by the bile salts.  It was hypothesised that damage to the coat could be due to either the bile 

salts interacting directly with the polymer, facilitating its dispersion, or a secondary effect of 

liposomal degradation i.e. once the liposomes were ‘digested’ the coat dispersed due to the 

lack of a vesicle core holding it in place. To explore which of these was more likely, we 

carried out an additional experiment in which Eudragit S100 powder (as received from the 

manufacturer) was dispersed in either Hanks’ solution or Hanks’ solution + sodium 

taurocholate and analysed using wet laser diffraction particle sizing over 2 hours. All material 

concentrations were equivalent to those of the drug release studies. The resulting polymer 

particle size distributions were identical in both dispersion media, indicating that the bile salts 
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did not facilitate polymer dispersion or dissolution. Additionally, infra red spectra of aqueous 

pastes containing polymer, bile salt and their mixture were recorded using a Fourier 

transform infra red (FT-IR) spectrometer (FT-IR-6300, Jasco, Great Dunmow, UK) with an 

attenuated total reflection (ATR) infrared optical unit (golden gate
TM

, part number 10586, 

Specac Ltd., Orpington, UK). The purpose of this analysis was to test for the presence of any 

chemical interaction between the paste components. Any interactions between the Eudragit 

and the bile salt would result in a shift in the peak positions (e.g. ester vibrations at 1150 cm
-1

 

and 1250 cm
-1

, and C=O vibrations of the carboxylic acid groups at 1705 cm
-1

)  associated 

with the functional groups involved in the interaction.  Examination of the spectra revealed 

no variation in peak position; in fact, the spectra could be superimposed. It therefore seems 

likely that disruption to the coat was due to the loss of liposome structure. While liposomes 

can be designed to increase their resistance to bile salts (Andrieux et al., 2009), it would also 

be necessary to improve the integrity of the coat to prevent bile salt ingress and strategies for 

encapsulating liposomes within microparticles are therefore being explored.  

5.0 Conclusion 

Eudragit S100 can be associated with cationic liposomes through a simple mixing strategy 

creating a barrier that significantly reduces liposomal drug release at pH conditions 

representative of the stomach and small intestine. The importance of evaluating coated 

liposomes for oral drug delivery beyond pH shift studies has been demonstrated with the 

addition of bile salts.  
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Table 1. The effect of Eudragit S100 addition upon the particle size (d50), size distribution 

(span*) and zeta potential of liposomes. Each value represents the overall mean of three 

independent experiments ± the standard error of the mean. *Span =    

 

 

Concentration of 

polymer coating 

solution (%w/v) d(50) (µm) Span Zeta potential (mV) 

0 7.7 ± 0.1 1.2 ± 0.1 63 ± 2.4 

0.01 13.1 ± 2.1 2.3 ± 0.2 45 ± 2.4 

0.025 22.0 ± 2.8 1.9 ± 0.4 28 ± 1.9 

0.05 22.0 ± 3.4 2.4 ± 0.3 -28 ± 1.3 

0.1 20.0 ± 1.7 2.0 ± 0.2 -30 ± 0.5 
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Figure captions 

 

Figure 1.  Light microscopy images showing liposomes: (A) without polymer, and in the 

presence of Eudragit S100 at (B) pH 7.8 and (C) pH 6.3. 

 

Figure 2. Cryo-SEM images of (A) uncoated liposomes in pH 6.3 and (B) liposomes in the 

presence of Eudragit S100.  

 

Figure 3. Drug release profiles for liposome formulations with (■) and without (◊) Eudragit 

S100 at (A) pH 1.4, (B) pH 6.3 and (C) pH 7.8. In Figure 4 (A) drug release over 2 hours is 

additionally highlighted, corresponding to the typical residence time in the stomach. Each 

data point represents the overall mean of three independent experiments ± the standard error 

of the mean. 

 

Figure 4. Drug release profiles for liposome formulations with (●) and without (▲) Eudragit 

S100 at pH 6.3 in the presence of 10mM sodium taurocholate. Release data from Figure 4 (B) 

(no bile salts) are shown for comparison with (■) and without (◊) Eudragit S100. Each value 

represents the overall mean of three independent experiments ± the standard error of the 

mean. 
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