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Abstract 14 

Mixed Mn-Co spinels are currently studied as protective coating materials for Solid 15 

Oxide Fuel Cells interconnects. Compositional changes in manganese cobaltites lead to 16 

modifications in the materials properties, such as sintering behaviour, thermal 17 

expansion and electrical conductivity, with advantages in the technological application.  18 

In this work, the effect of Fe, Cu and simultaneous Fe+Cu doping of Mn-Co spinels has 19 

been studied. Different oxide powder mixtures were prepared with a High Energy Ball 20 

Milling (HEBM) treatment, obtaining highly reactive oxides that easily form single 21 

spinel phase compounds by moderate heating. The effect of the composition is observed 22 

on high temperature stability of the spinel phase and on densification behaviour of the 23 

powders, greatly enhanced by copper addition.  24 
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Analyses carried out on sintered pellets allow to observe simple relations among dopant 25 

concentration, thermal expansion and electrical conductivity. The combined effect is 26 

obtained in case of the simultaneous addition of multiple dopants. An appropriate 27 

composition can be therefore designed to obtain a material characterized by enhanced 28 

sintering behaviour, high electrical conductivity and tailored thermal expansion to fulfil 29 

the application requirements. 30 

 31 

 32 
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1. Introduction 35 

Development and commercial breakthrough of Solid Oxide Fuel Cells (SOFCs) is 36 

necessarily linked to reduction of costs and increase of long-term reliability. One of the 37 

key-factors is represented by the substitution of ceramic interconnects with metallic 38 

parts. High chromium ferritic steels have been identified as the most promising 39 

candidate material because of their low cost and their Coefficient of Thermal Expansion 40 

(CTE) compatibility with the SOFC materials [1]. In operating conditions, however, 41 

long-term performance degradation arises due to the formation of insulating chromium-42 

rich oxides and the evaporation of volatile Cr species, that can migrate and react with 43 

the cathode material, thereby reducing the active surface area [2]. The application of 44 

protective coating is therefore mandatory to avoid these issues, and several materials are 45 

being studied, including reactive element oxides, rare earth perovskite and spinel oxides 46 

[3,4]. Among these materials, Mn-Co spinels with Co:Mn in the 1:1÷2:1 range, 47 

characterized by high conductivity values and good thermal expansion compatibility 48 

with ferritic stainless steels, have been suggested as the best candidates. 49 

In view of large-scale application, cheap wet-powder coating techniques, such as spray 50 

coating, screen printing and ink-jet printing, would be preferred. These methods rely on 51 

their own ink formulations and sintering thermal treatments, and the effectiveness of the 52 

coating is therefore related to efficient sintering steps. Sintering Mn-Co spinel powders 53 

in air requires high temperature (e.g. 1000°C [5]), raising concerns about the 54 

degradation of mechanical properties that could be induced in the substrate. To achieve 55 

sufficient densification at lower temperature, thermal treatments in reducing atmosphere 56 

are widely used, followed by oxidation steps to recover the spinel structure [6,7]. 57 

Alternatively, reduction of sintering temperature can be achieved with the introduction 58 
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of further elements acting as sintering aids, such as Cu and Ni [8,9], representing an 59 

attractive approach avoiding a more expensive multi-step sintering treatment.  60 

The addition of dopant elements, such as transition metals or reactive elements like Fe, 61 

Ti, Cu, Ni or Y, has furthermore been proven effective in enhancing application related 62 

to properties such as chromium retention capability or electrical conductivity [8,10,11]. 63 

However, changes in composition affect the thermal expansion behaviour: Mn-Co 64 

spinels possess CTE values in the 9.7÷13.5-6 K-1 [12–15] and 10.6÷14.1·10-6 K-1 
65 

[5,8,10,16] ranges, respectively at 800°C and at 1000°C. Cu and Ni doping produces an 66 

increase in CTE [8,9,14,15,17], while Fe and Ti lower this property [10]. No clear 67 

relation between CTE and dopant concentration can be however deduced from the 68 

literature, mostly due to the high dispersion of results. Furthermore, to the best of our 69 

knowledge, no results have been reported related to the effect of simultaneous doping. 70 

HEBM is a consolidated, cost effective and environmentally friendly powder processing 71 

technique widely applied in material science. The technique consists in the exposure of 72 

defined quantities of powder reactants to repeated energy transfer phenomena obtained 73 

by colliding balls. The kinetic energy released from the balls to the powder can induce 74 

several physico-chemical phenomena, the first being represented by fine grinding of 75 

particles, and therefore formation of new active surfaces. Nanostructuration of the 76 

powder can occur at this stage, enhancing significantly powder reactivity, followed by 77 

interdiffusion, atomic rearrangements, nucleation of stable or metastable phases, 78 

amorphization, re-crystallization phenomena and so on [18].  79 

In our previous works, High Energy Ball Milling (HEBM) was evaluated as a synthesis 80 

route to obtain mixed spinels starting from oxide powders [19,15]. A HEBM treatment 81 

carried out on Mn-Co oxides promotes the room temperature solid state mechano-82 

chemical reaction between Mn and Co oxide mixtures, with a unitary reaction yield 83 



 

5 
 

after 65 h of milling. Powders obtained after relatively short mechano-chemical 84 

treatments (e.g. 10 h), despite not containing a single phase compound, are 85 

characterized by significantly enhanced reactivity with respect to pristine oxides, and 86 

easily evolve to form the equilibrium products when subjected to moderate heating (i.e. 87 

T<800°C).  88 

In this work, to study the effect of Fe, Cu and simultaneous Fe+Cu doping on the 89 

chemico-physical properties of Mn-Co spinels, different powder mixtures of Mn, Co, Fe 90 

and Cu oxides are prepared and subjected to a HEBM treatment.  The obtained highly 91 

reactive powder samples are characterized in their thermal evolution and sintering 92 

properties, and differences on powder densification behaviour and high temperature 93 

spinel stability induced by the dopant contents are observed and reported. Finally, the 94 

effect of different metal compositions on thermal expansion and electrical conductivity 95 

of sintered samples is evaluated and discussed. 96 

 97 

2. Experimental Procedure 98 

Mn3O4 (Sigma Aldrich, 97%), Co3O4 (Sigma Aldrich, 99%), CuO (Carlo Erba, 99%) 99 

and Fe2O3 (Carlo Erba, 99%) were mixed in stoichiometric quantities to obtain the 100 

compositions reported and labelled in Table 1. The HEBM process was performed in a 101 

SPEX8000M mixer mill, using cylindrical steel vials (60 cm3 volume) and steel balls 102 

(10mm diameter) with powder to balls weight ratio of 1:10. Vials were loaded with 8g 103 

of powder, sealed in argon atmosphere and subjected to 10 hours of milling. After the 104 

milling treatment, the absence of contamination from the milling media was assessed 105 

evaluating chromium presence by means of energy-dispersive X-ray microanalysis 106 

(Hitachi TM3030Plus). 107 
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X-Ray diffraction analyses (XRD) were carried out on a 120° angular dispersion X-ray 108 

diffractometer (Italstructure, curved position sensitive detector from INEL), equipped 109 

with Fe Kα1 radiation source. Phase identification was performed on collected patterns 110 

using the PDF-2 database [20] as reference data. Lorentzian fitting of selected 111 

reflections allowed to evaluate cell parameters and to calculate accordingly theoretical 112 

densities, considering nominal compositions of the samples. 113 

Morphology of the samples was evaluated using N2 adsorption at 77K technique 114 

(Quantachrome Autosorb-iQ). Specific surface area (SSA) values were obtained by 115 

applying the BET method [21]. BET particle size l was calculated as	 	
∙

, where ρ 116 

is the material density. 117 

Thermogravimetric analysis was carried out in air using a Perkin Elmer thermobalance 118 

(Pyris Diamond TG/DTA, Perkin Elmer) with the following procedure: heating scan up 119 

to 1200°C at 5°C/min, 60 minutes of isothermal step and cooling to room temperature at 120 

5°C/min.  121 

Dilatometric measurements were performed in a push-rod dilatometer (DIL 402 C, 122 

NETZSCH). To evaluate sintering behaviour, consolidated pellets of about 6mm 123 

diameter length were obtained by uniaxial cold pressing (3.5 T/cm2) and heated in air 124 

with a heating rate of 5°C/min up to 1200°C. Thermal expansion measurements were 125 

carried out with a heating rate of 10°C/min on pellets of about 6mm diameter and 126 

2.5mm height sintered as described later in the text. Average CTE was calculated 127 

between room temperature and 800°C as: 
∆

∆
, where L0 is the initial length and 128 

ΔL represents the length change occurring in the ΔT temperature range. 129 

To assess electrical conductivity, pellets of about 10mm diameter were obtained by 130 

uniaxial cold pressing (3.5 T/cm2) and sintered similarly to thermal expansion samples. 131 

The conductivity was measured by applying the Van der Pauw method [22] (PAR273A 132 
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potentiostat coupled to a HP 3457A multimeter) in the 500‒800°C temperature range. 133 

Activation energy Ea was calculated from the Arrhenius plot obtained using the 134 

formula: , where σ is the conductivity, T the temperature, σ0 the pre-135 

exponential factor, Ea the activation energy and k the Boltzmann’s constant. 136 

3. Results and discussion 137 

3.1. Powder characterization 138 

The XRD patterns of the 10 hours milled powders are reported in Fig. 1. All the 139 

examined samples are characterized by similar patterns, with significant peak 140 

broadening ascribable to nanostructuration of crystallites and strain. Starting with the 141 

MnCo1.8Fe0.2 pattern, main peaks are ascribable to the presence of a cubic spinel 142 

compound, compatible with Co3O4 phase (JCPDS card n. 42-1467). Peaks related to the 143 

Mn3O4 compound are not evident, confirming that the cobalt rich phase exhibits a high 144 

stability during the mechano-chemical treatment, as already observed in the case of 145 

similar oxides mixtures [19,15]. The asymmetry of Co3O4 peaks towards lower angles 146 

could be ascribed to the nucleation of a cubic spinel phase characterized by higher 147 

lattice parameter, most likely a mixed spinel similar to MnCo2O4 (JCPDS card n. 23-148 

1237). The small broadened peaks at 2θ≅48 degrees is due to the presence of highly 149 

destructured Fe2O3 phase (JCPDS card n. 33-0664), and are more evident in the 150 

MnCo1.6Fe0.4 pattern, as expected due to the higher iron content. In the case of copper 151 

containing samples, instead, clear evidences of CuO phase (JCPDS card n. 48-1548) are 152 

not observed, suggesting low stability of CuO structure during the HEBM treatment, 153 

most likely due to facile diffusion of small copper ions into the spinel lattice during the 154 

mechano-chemical treatment. In the MnCo1.6Fe0.2Cu0.2 pattern, similar to what is 155 

observed for MnCo1.8Fe0.2 sample, features of a hematite phase are visible.  156 
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Therefore, as shown in the XRD analysis, the 10h HEBM treatment does not produce a 157 

single equilibrium spinel phase but some metastable mixture of metal oxides. 158 

Nitrogen adsorption measurements at 77K were carried out to calculate BET specific 159 

surface area and thus evaluate the degree of particle aggregation. The obtained values 160 

are reported in Table 2. Mn-Co-Fe samples exhibit comparable surface areas, while Cu 161 

addition seems to favour higher degrees of aggregation resulting in lower surface areas. 162 

The size of particles calculated with BET ranges between 160 and 330nm. 163 

In order to evaluate the differences in the high temperature behaviour of the powders, 164 

which is induced by the cobalt substitution, thermogravimetric analyses up to 1200°C 165 

were carried out and are reported in Fig. 2. The samples exhibit an initial weight loss, 166 

ascribable to adsorbed humidity departure. In the 200‒500°C temperature range a 167 

weight gain step is instead observed. This phenomenon can be related to the powder 168 

comminution and activation induced by the HEBM, carried out in Ar atmosphere. 169 

Highly reactive new surfaces are produced during the mechano-chemical treatment that 170 

interacts with oxygen already at low temperature giving rise to the oxidation 171 

phenomena observed during the thermal treatment. Moreover, the HEBM treatment 172 

induces a high degree of interdiffusion of the precursor oxides with solid state reactions 173 

at the new interfaces, most likely with the formation of highly anion defective lattices, 174 

due to the milling atmosphere. Subsequent filling of the oxygen vacancies may 175 

therefore occur when exposed to air at moderate temperatures. The occurrence of 176 

similar weight gain phenomena and the existence of metastable non-stoichiometric 177 

mixed valence spinels has been observed for similar systems and ascribed to high 178 

reactivity due to high nanostructuration of the compounds [23], and it is supposed that 179 

similar mechanisms occur here, due to the defectivity induced by the HEBM treatment. 180 
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Regarding the influence of the composition on this weight gain step, it can be observed 181 

that the magnitude of the weight gain increases following the order: MnCo1.6Fe0.4 182 

<MnCo1.8Fe0.2 <MnCo1.6Fe0.2Cu0.2 <MnCo1.8Cu0.2. This can be related to the 183 

initial powder composition: Co3O4 precursor is substituted with species characterized by 184 

different oxygen content (i.e. Fe2O3 and CuO), and it is likely to suppose that, with Fe 185 

and Cu ions presence in the spinel lattice due to the mechano-chemical treatment, the 186 

oxygen uptake of the metastable spinels will be inversely related to the initial oxygen 187 

content.  188 

Following this weight gain step, in the 500‒700°C temperature range a gradual weight 189 

loss can be observed, related to the rearrangement and homogenization of the oxidized 190 

compound to form the expected high temperature single spinel phase. At about 800°C, 191 

in fact, the curves reach a plateau, suggesting that no further oxygen release occurs. 192 

Also in this weight change step a relationship between the weight loss and the material 193 

composition can be observed: in particular, the weight loss increases following the order: 194 

MnCo1.8Cu0.2 <MnCo1.6Fe0.2Cu0.2 <MnCo1.8Fe0.2 <MnCo1.6Fe0.4. The samples 195 

characterized by the higher initial oxygen content show therefore the higher mass loss. 196 

The substitution of the Co2+/Co3+ precursor with higher or lower oxidation state species, 197 

respectively Fe3+ from Fe2O3 and Cu2+ from CuO, affects the oxidation behaviour of the 198 

milled powder both during the formation of the metastable spinels and during the 199 

homogenization reaction that produce equilibrium compounds. In our previous work 200 

[19], we observed that during mechano-chemical treatment of Mn and Co oxides the 201 

reaction proceeds through nucleation and growth of mixed phases rather than through 202 

interdiffusion phenomena of the starting oxides. Observing how the thermal behaviour 203 

of the doped powders is influenced by the initial composition, it is likely to suppose that 204 
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the formation of Fe and Cu doped phases occurs already during the milling step, 205 

suggesting that a similar reaction mechanism is involved. 206 

Further increase of temperature above 1000°C leads to a third weight loss phenomenon, 207 

that can be related to metal reduction from the spinel phases with related oxygen 208 

release, due to the formation of Me(II) oxide phases. The existence of a high 209 

temperature spinel-MeIIO multi-phase boundary is known for Co-Mn oxide mixtures 210 

[24], and the data reported here suggest that a similar behaviour is retained with Fe and 211 

Cu addition to the spinel composition, with some differences in the onset temperature. 212 

Co substitution with Fe appears to extend the spinel stability region. Copper substitution 213 

promotes instead the spinel de-mixing at lower temperature. 214 

During the successive cooling stage, the weight loss associated to the high temperature 215 

phase transition is recovered for all the stoichiometries, compatibly with spinel stability 216 

at intermediate temperature. In the case of the MnCo1.8Cu0.2 sample, weight gain 217 

occurs in two steps, suggesting a multiple oxidation process that could be due to 218 

multiple high temperature dual-phase regions, as observable in the Cu-Co oxides phase 219 

diagram [25]. 220 

To evaluate sintering behaviour, consolidated pellets were formed with the 10h HEBM 221 

powders. The pre-sintering densities are reported in Table 3: similar values of density 222 

are obtained for all the different samples, as expected from the processing of 223 

morphologically similar powders. Shrinkage and shrinkage rate curves are reported in 224 

Fig. 3. Mn-Co-Fe samples show behaviour comparable to similar Mn-Co spinels [15], 225 

with sintering temperatures of about 1040‒1060°C and maximum densification rates at 226 

1150°C approximately. The addition of Cu significantly improves sintering: in the case 227 

of MnCo1.8Cu0.2 and MnCo1.6Fe0.2Cu0.2 samples, shrinkage starts at approximately 228 

925‒950°C, with maximum densification rate occurring at T≅1000°C. 229 
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XRD analysis carried out on the pellets after dilatometric measurements indicated 230 

however the presence of secondary phases: differently with respect to 231 

thermogravimetric measurements, thermal treatment of the pellets at 1200°C could 232 

result in the lack of recovery of the single spinel structure upon cooling. This is most 233 

likely due to high packing and higher crystals growth, limiting oxygen diffusion. Being 234 

crucial to obtain single phase pellets to evaluate precisely thermal expansion and 235 

electrical conductivity properties, different sintering procedures were studied to obtain 236 

dense single phase pellets. In the case of the MnCo1.8Fe0.2 and MnCo1.6Fe0.4 sample, 237 

requiring sintering temperature of 1200°C to achieve high density values, a lower 238 

temperature (800°C) dwell step was introduced to facilitate spinel recovery. The 239 

significantly lower sintering temperature of Cu containing compounds, as evidenced by 240 

dilatometric analysis, allowed to reduce the maximum treatment temperature to 1000°C 241 

still obtaining dense pellets. 242 

The sintered densities obtained for the different samples, reported in Table 3, show how 243 

Cu inclusion leads to a significant enhancement of densification: Cu substituted samples 244 

are in fact characterized by higher density with respect to Mn-Co-Fe samples even with 245 

a reduction in sintering temperature of 200K. 246 

X-Ray diffraction patterns of the sintered samples are reported in Fig. 4. All 247 

compositions exhibit a single cubic spinel phase. The evidence of well-defined peaks 248 

suggests a significant crystal growth during the sintering process. Peak shifts with 249 

respect to the standard MnCo2O4 phase are observed for the different compositions, 250 

highlighted by the calculated cell parameters reported in Table 4. In particular, due to 251 

the different size of dopants ionic radius with respect to the substituted cobalt [26], Fe-252 

Co substitution promotes the enlargement of the lattice (8.27Å for MnCo2O4 [20]), 253 
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differently from Cu-Co substitution that, due to similar ionic radii, does not induce 254 

significant changes in the cell parameter.  255 

 256 

3.2. Thermal expansion 257 

Thermal expansion compatibility between the substrate and the coating material is a 258 

crucial factor to avoid mechanical stress that could arise during thermal cycles or long 259 

term operation and could promote cracking or delamination of the coatings. To evaluate 260 

CTE of the examined materials, the sintered pellets were subjected to dilatometric 261 

analyses. In Fig. 5 the expansion curves are reported, and average CTE values 262 

calculated between room temperature and 800°C are listed in Table 5. All the samples 263 

exhibit a linear behaviour through all the measured temperature range. The results here 264 

obtained are comparable to values found in literature for similar compounds (e.g. [10]). 265 

Considering the thermal expansion of ferritic stainless steels, i.e. 11‒13·10-6K‒1[27], 266 

MnCo1.8Cu0.2 samples possess lower compatibility with respect to the Fe containing 267 

samples.  268 

To evaluate how cobalt substitution with Fe and Cu affects this property, in Fig. 6 are 269 

depicted the CTE values at 800°C versus the cobalt content for the different samples, 270 

compared with result previously obtained on a MnCo2O4 spinel [15]. It can be observed 271 

a clear negative trend between CTE value and iron content, while MnCo1.8Cu0.2 272 

sample is characterized by higher CTE value than the undoped sample. Consistently 273 

with the single metal doped samples, the combined effect is obtained in the 274 

MnCo1.6Fe0.2Cu0.2 compound, the CTE of which is ranged between those of 275 

MnCo1.8Fe0.2 and MnCo1.8Cu0.2. This result suggests that the CTE of Mn-Co spinels 276 

can be tuned in the examined range by compositional tailoring, as the effect of the 277 
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cobalt substitution with copper and iron on CTE is retained with the simultaneous 278 

doping. 279 

Regarding the dependence of the CTE with the composition, the obtained results are in 280 

agreement with previous studies that suggest the occurrence of a relation between CTE 281 

and the different occupations and valence states in the spinel lattice [28]. In particular, 282 

mixed element spinels characterized by higher valence differences among the sites 283 

possess higher CTE, especially when this difference occurs between octahedrally 284 

coordinated cations [28]. In Mn-Co spinels, tetrahedral sites are occupied preferentially 285 

by CoII species, while octahedral sites are occupied by CoII, CoIII, MnIII and MnIV. The 286 

amount of CoII and MnIV, strictly connected due to charge neutrality restraints, is 287 

maximum when Co:Mn~2 [29]. The substitution of Co with Fe occurs with FeIII species 288 

occupying preferentially octahedral sites in place of Co atoms [11], reducing the amount 289 

of octahedral CoII and therefore the amount of species characterized by different 290 

valences. When copper is added to the compound, instead, Cu atoms tend to occupy 291 

preferentially tetrahedral sites [30], with the presence of CuI and CuII species. 292 

Moreover, copper addition is likely to promote octahedral MnIII oxidation to MnIV to 293 

maintain charge neutrality [30], increasing further the number of different valence 294 

species in the lattice and therefore CTE.  295 

When Co is substituted by both Fe and Cu, the enhancement of CTE due to CuI and CuII 296 

introduction on tetrahedral sites is counterbalanced by the CTE decrease induced by the 297 

FeIII presence in octahedral sites, and, with Fe and Cu ions not being competitors for 298 

lattice sites occupation in the examined composition range, the overall CTE change can 299 

be considered as limited to the sum of the single dopants contributions.  300 

 301 
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3.3. Electrical conductivity 302 

Electrical conductivity was evaluated by means of Van der Pauw method in the 303 

temperature range 500‒800°C. In Fig. 7 the Arrhenius plots are reported. All samples 304 

exhibit a linear relation: evaluating the slope of the linear fits to the Arrhenius curves 305 

activation energy was calculated, and results are reported in Table 6. All samples show 306 

similar values of about 0.5eV, suggesting a similar conduction mechanism.  307 

In Fig. 8 the conductivity values measured at 800°C for the different samples are 308 

reported as a function of the cobalt content, and compared with an undoped MnCo2O4 309 

spinel [15]. It can be observed a clear decreasing trend upon the substitution of Co with 310 

Fe, with conductivity of about 51 S/cm and 36 S/cm for MnCo1.8Fe0.2 and 311 

MnCo1.6Fe0.4 samples respectively. Co substitution with Cu significantly increases 312 

conductivity, and similar enhancements are observed when cobalt is substituted in the 313 

reference material (Mn1.8Co1.8Cu0.2 versus MnCo2O4) or in the iron doped sample 314 

(MnCo1.6Fe0.2Cu0.2 versus Mn1Co1.8Fe0.2). 315 

The electrical conductivity in spinels is associated with a small polaron hopping 316 

mechanism between mixed valence elements on octahedral sites and in Mn-Co oxides it 317 

is related to CoII/CoIII and MnIII/MnIV pairs [13,28]. The valence state concentration 318 

ratio affects therefore significantly conductivity properties. The observed decrease in 319 

conductivity with Fe substitution is related to the preferential occupation of octahedral 320 

sites by FeIII atoms, not involved in polaron formation, limiting the charge carrier 321 

density [11]. Regarding Cu addition, the conductivity enhancement could be due to 322 

multiple factors: the aforementioned promotion of MnIII oxidation to MnIV to maintain 323 

charge neutrality [30], occurring with the presence of CuI and CuII species in the lattice, 324 

could increase the number of active pairs on octahedral sites. Furthermore, Cu atoms in 325 

tetrahedral sites could contribute indirectly through mediation of charge transfers 326 
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between close Mn atoms in octahedral sites [31]. The electrical conductivity 327 

enhancement observed with copper addition therefore could be attributed to an indirect 328 

enhancement of Mn pairs contribution. 329 

Similarly to what was observed for CTE, most likely due to the absence of competition 330 

for lattice site occupation among the dopants, our results suggest that the effect of the 331 

simultaneous substitution is limited to the sum of the single factors. 332 

 333 

4. Conclusions 334 

Doped spinels were successfully produced by a mechano-chemically enhanced solid 335 

state reaction synthesis. The effect of doping has been clearly highlighted with respect 336 

to high temperature stability, sintering behaviour, CTE and electrical conductivity. 337 

Through a high energy ball milling treatment, Fe and Cu substituted Mn-Co highly 338 

reactive oxide mixtures were obtained. The powders easily form the expected single 339 

cubic phase when exposed to moderate temperature (T<800°C). Influence of the dopant 340 

content was observed on thermal stability of the spinel phase, enhanced by Fe and 341 

decreased by Cu addition.  342 

Regarding the densification behaviour, Cu addition resulted highly effective in reducing 343 

sintering temperature and achieving higher density at lower temperature, while iron 344 

doping did not lead to significant improvement with respect to the undoped Mn-Co 345 

sample.  346 

The measurement of thermal expansion of the sintered pellets indicated a direct relation 347 

between Co substitution and CTE, which decreased with Fe content and was increased 348 

by Cu doping. The sample substituted with both Cu and Fe revealed a combined effect 349 

on CTE, ranged between that of Fe or Cu doped sample. Similar influence of the 350 

composition was observed also on electrical conductivity, lowered by Fe doping and 351 
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greatly enhanced by Cu addition, with the mixed Cu-Fe-Mn-Co sample behaving 352 

coherently. 353 

Substitution of Co with Fe and Cu to obtain a Fe-Cu doped Mn-Co spinel proved 354 

therefore as a versatile approach to enhance sintering behaviour and electrical 355 

conductivity while retaining thermal expansion compatibility with ferritic stainless 356 

steels. This suggests that a multiple doping approach can represent an effective strategy 357 

to design cobaltite materials properly tailored on the application.  358 

 359 
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List of Figures 467 

 468 

Fig. 1. X-ray powder diffraction patterns of the different samples after 10h of milling; 469 

1) Co3O4 2) MnCo2O4 3) Fe2O3 reflections. 470 
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 471 

Fig. 2. Thermogravimetric curves as a function of temperature for the different 472 

samples; solid lines represent weight% change, dotted lines the derivative of wright% 473 

versus temperature. 474 
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 475 

Fig. 3. Dilatometric curves as a function of temperature of the different samples; solid 476 

lines represent the length change, dashed lines the derivative of the length change 477 

versus temperature. 478 
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 479 

Fig. 4. X-ray powder diffraction patterns of the samples after sintering treatment; 480 

specified reflections are ascribable to a cubic spinel phase. 481 
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 482 

Fig. 5. Thermal expansion curves of the sintered samples. 483 
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 484 

Fig. 6. Coefficient of thermal expansion calculated at 800°C as a function of the Cobalt 485 

substitution in comparison with the undoped material (as reported in [15]). 486 
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 487 

Fig. 7: Arrhenius plots of electrical conductivity measured (dots) for the different 488 

samples and linear fits of the experimental points (dashed lines). 489 
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 490 

Fig. 8. Conductivity values measured at 800°C as a function of the Cobalt substitution 491 

in comparison with the undoped material (as reported in [15]). 492 

 493 
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Tables 495 

 496 

Table 1: Sample nomenclature and nominal composition. 497 

Sample name 
Atomic ratio Nominal 

composition Mn Co Fe Cu 

MnCo1.8Fe0.2 0.33 0.60 0.07  MnCo1.8Fe0.2O4 

MnCo1.6Fe0.4 0.33 0.53 0.14  MnCo1.6Fe0.4O4 

MnCo1.8Cu0.2 0.33 0.60
 

0.07 MnCo1.8Cu0.2O4 

MnCo1.6Fe0.2Cu0.2 0.33 0.53 0.07 0.07 MnCo1.6Fe0.2Cu0.2O4 

 498 

 499 

Table 2: BET surface area and BET particle size for the 10h HEBM powders. 500 

Sample 
BET 

(m2/g) 

l* 

(nm) 

MnCo1.8Fe0.2 6.0±0.3 182±9 

MnCo1.6Fe0.4 6.8±0.3 163±8 

MnCo1.8Cu0.2 3.3±0.2 323±20 

MnCo1.6Fe0.2Cu0.2 3.8±0.2 287±16 

* 	
∙

 

 501 

  502 
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Table 3: Sintering thermal treatments. 503 

Sample Green density (%) Sintering treatment Sintered density (%) 

MnCo1.8Fe0.2 66±1 4 h @1200°C + 4 h @800°C 92±1 

MnCo1.6Fe0.4 66±1 4 h @1200°C + 4 h @800°C 90±1 

MnCo1.8Cu0.2 65±1 4 h @1000°C + 4 h @800°C 97±1 

MnCo1.6Fe0.2Cu0.2 65±1 4 h @1000°C + 4 h @800°C 95±1 

 504 

 505 

Table 4. Lattice parameter (a) of the cubic spinel cell calculated from XRD patterns of 506 

the sintered samples. 507 

Sample a (Å) 

MnCo1.8Fe0.2 8.319(7) 

MnCo1.6Fe0.4 8.351(8) 

MnCo1.8Cu0.2 8.277(8) 

MnCo1.6Fe0.2Cu0.2 8.312(8) 

 508 

 509 

Table 5. Thermal expansion coefficient measured between room temperature and 800°C 510 

for the different samples. 511 

Sample CTE (·10-6 K-1) [30°-800°] 

MnCo1.8Fe0.2 12.7±0.1 

MnCo1.6Fe0.4 11.1±0.1 

MnCo1.8Cu0.2 13.7±0.1 

MnCo1.6Fe0.2Cu0.2 12.9±0.1 
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Table 6. Activation energy calculated from the Arrhenius plot of 10 hours milled 512 

samples. 513 

Sample Ea (eV) 

MnCo1.8Fe0.2 0.54±0.03 

MnCo1.6Fe0.4 0.53±0.03 

MnCo1.8Cu0.2 0.46±0.03 

MnCo1.6Fe0.2Cu0.2 0.50±0.03 

 514 


