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Abstract. We introduce self-interested evolutionary market agents, which
act on behalf of service providers in a large decentralised system, to adap-
tively price their resources over time. Our agents competitively co-evolve
in the live market, driving it towards the Bertrand equilibrium, the non-
cooperative Nash equilibrium, at which all sellers charge their reserve
price and share the market equally. We demonstrate that this outcome
results in even load-balancing between the service providers.
Our contribution in this paper is twofold; the use of on-line competitive
co-evolution of self-interested service providers to drive a decentralised
market towards equilibrium, and a demonstration that load-balancing
behaviour emerges under the assumptions we describe.
Unlike previous studies on this topic, all our agents are entirely self-
interested; no cooperation is assumed. This makes our problem a non-
trivial and more realistic one.

Key words: decentralised systems, market-based control, co-evolution,
load-balancing, self-interested agents

1 Introduction

Emerging paradigms for the development and deployment of massively dis-
tributed computational systems allow resources to span many locations, organi-
sations and platforms, connected through the Internet [1]. It has been predicted
that the majority of transactions over the Internet will, in the future, be car-
ried out by autonomous agents on behalf of their owners [2]. In this scenario,
neither control nor even full knowledge of key resources may be assumed. There
is therefore a need to find novel ways to understand and autonomically manage
and control these large, decentralised and dynamic systems [3].

Gupta et al. [4] propose externality pricing for the provision of otherwise vir-
tually zero cost per-use computational services. They argue that this approach,
where service users self-select their quantity based on price, is a more preferable
approach to the alternative of provider-side enforced quantity limits.

We propose the use of autonomous evolutionary market agents as an ap-
proach to achieving this. Evolutionary market agents operate on behalf of indi-
vidual actors in a decentralised market-based system. Such decentralised mar-
kets have no auctioneers or market-makers. Instead, selling agents (the service
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providers) advertise their services at a price, and buying agents (the service
users) decide whether to buy, and from whom. Making use of only local informa-
tion about the live market, the sellers adapt (or evolve) the offers of their host in
order to maximise their payoff. When coupled with rational, self-interested buy-
ing agents, we demonstrate that this approach is able to provide load-balanced
allocations across the system as a whole.

Market-based resource allocation and adaptive pricing are not new ideas (see
[5] for an introduction) and our contribution in this paper is twofold. Firstly, we
describe how decentralised computational markets can provide an emergent load-
balancing behaviour between self-interested agents at equilibrium, and secondly,
we demonstrate the use of competitive co-evolution to drive the market towards
this equilibrium.

2 Related Work

Traditionally, load-balancing is done in a centralised manner [6]. Relying on
a single node, such approaches have a central point of failure. Alfano and Di
Caprio note that scalability is a critical factor in load-balancing systems [7].
They present a scalable, decentralised load-balancing mechanism, based upon
cooperating peers. Our model, however, does not require cooperation. Indeed,
its power lies in the self-interested competition of peers, over whom we may not
have control.

As such, our approach falls into the broad category of market-based control,
a methodology which has been applied to the allocation of resources in vari-
ous real-world scenarios. Clearwater provides a useful introduction to the use
of computational markets in scenarios such as bandwidth allocation and air-
conditioning control [5]. A full review is beyond the scope of this paper, but may
be found in [8].

Cliff and Bruten note that a large proportion of market-based control sys-
tems, however, either rely on a central auctioneer, or require human intervention
[8]. Therefore, though much of the computation is done by individual agents and
is distributed, these systems are often not decentralised. They argue that this
leads to a brittleness of the system.

A number of distributed auction mechanisms have also been proposed [9–12],
which do not rely on one central auctioneer. These reduce the fragility associated
with reliance upon a single point, provide more scalability and allow for dynamic
composition of auctions. Typically, the central auctioneer is replaced by a number
of local ones, which communicate through some secure means. However, similarly
to the vulnerabilities of the Internet’s domain name system [13], failure at certain
points in the network may well cripple wider functionality, at best.

Kuwabara et al. propose what we believe to be the most decentralised market-
based approach to the allocation of resources [14]. Here, no auctioneer, specialist
or market-maker is used; prices are set solely by the sellers and advertised via
a broadcast mechanism. Rational buyers then decide the quantity to purchase
from each seller, in order to maximise their payoff. However, unlike our sellers’
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strategies, those used used by Kuwabara et al. are not driven by self-interest.
The problem studied here is of the same general form as that in [14].

A variety of computational intelligence techniques have been used to attempt
to replicate the behaviour of human marketing managers in the real world. Midg-
ley et al. model brand managers in the retail coffee market as agents, which
determine the occurrence and nature of various promotions and price discounts
[15]. However, the difference between these cases and our problem is that we are
not interested in modelling human behaviours, or in replicating them.

Applying evolutionary techniques to self-interested selling behaviour, Cheung
et al. [16] used a simple model of the Australian consumer petroleum market to
predict how sellers would modify their prices in a competitive environment. By
giving sellers historical information about each other, they correctly replicated
implicit cartel behaviour found in the real world, where despite the short-term
rationality of cutting prices to increase market share, sellers in fact raised their
prices in step. Their simulations resulted in sellers colluding in order to all charge
the maximum price and share the market equally. If all other sellers cooperate,
then this is the optimal strategy from a seller’s point of view. However, only one
seller not cooperating and undercutting the others, leads to it making a greater
short-term payoff.

3 Problem Formulation

We consider a scenario consisting of a set of service providing nodes, S, each
member of which provides an equivalent, quantitatively divisible service, the
resource π, which may vary only in price. We assume that each member of S has
an equal capacity for the provision of π, and that they cannot be relied upon to
cooperate. We then imagine a large population of service users or buyers, B, each
member of which aims to consume some of the resource π, at regular intervals.
Our objective is to balance the load, such that all the service providers in S are
providing an equal amount of π across the population of service users. Though
this is a trivial problem when cooperation may be assumed, we wish to achieve
this using self-interest, with no central control. Note that we are not modelling
service providing nodes owned by competing businesses in the real-world, since
then load-balancing would not be desirable; self-interested competition is instead
artificially created in order to serve the purposes of the system owner.

At a given instant, a service provider, si ∈ S, advertises π at the price pπ
si

per unit. From a service user’s point of view, this may be denoted as the offer
Xsi . Each service user, a buyer in this case, purchases some of the resource π
should it be in their interest to do so at the price offered. The system iterates,
with service providers able to adapt their prices to the market conditions over
time. The actual provision of π may be regarded as instantaneous, such that it
does not interfere with this mechanism.

For simplicity at this stage, we assume that the system proceeds in discrete
time-steps, that each buyer bj ∈ B desires exactly one unit of π per time-step,
and that each and every si ∈ S has sufficient quantity of π available to satisfy all
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the buyers in B should it be so requested. This final assumption is commonplace
in the provision of information-based services, and is present in other related
work such as [14]. We do not believe that its presence alters the underlying
behaviour we demonstrate. We further simplify the model by stipulating that
each service provider has no overhead cost associated with obtaining, producing
or providing π. This assumption allows for buyers to purchase a tiny amount
from each of a large number of sellers. Whether or not this is unrealistic will be
determined by the application scenario.

Each time-step, each buyer, if it chooses to buy, may purchase any amount
of π from any number of service providers in S, subject to the constraint that
the total amount purchased per time-step is equal to exactly one unit. If no offer
from any si ∈ S is in its interest, the buyer may instead opt to purchase nothing.
We therefore define qij to be the instantaneous quantity bought by buyer bj from
seller si. The constraints mean therefore that

∑|S|
i=1 qij ∈ {0, 1} for all bj ∈ B.

The quantity of π sold by a given seller si at a given time-step, its load, lsi ,
is therefore:

lsi =
|B|∑

j=1

qij . (1)

Our stated objective is even load-balancing. In previous work [14], this is
defined as being the minimisation of the variance between the service providers’
loads, vl, as shown in equation 2.

vl =
∑|S|

i=1 (lsi − µ)2

|S| , (2)

where

µ =
∑|S|

i=1 lsi

|S| .

However, we prefer instead the measure, dl, a normalised measure of mean
absolute distance from the ideal load (here referred to as NMA distance), as
described in equation 3. We find that this scales better with respect to |S|, mak-
ing comparisons between simulations with different numbers of sellers simpler.
Hence a high dl indicates an uneven load, while a perfectly even load leads to a
value of zero. We define µ as before.

dl =
∑|S|

i=1 |lsi − µ|
|S| ÷ 2|S| − 2

|S|2 . (3)

Both buyers and sellers accrue a payoff, or utility gain, from their interactions
in the marketplace. For buyers, this will be the value they associate with the
price paid subtracted from the value they associate with the purchased resource.
We assume that buyers are self-interested, such that they attempt to maximise
their utility. However, as in previous work [14], we do not assume that they are
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hyperrational, behaving in an all-or-nothing manner in favour of the instanta-
neously most attractive option, since this behaviour may expose the buyer to a
degree of risk.

Instead, we investigate buyers who are risk-averse, preferring to spread their
purchases across a number of sellers. At each time-step, each buyer looks at the
available offers, Xsi

∀si ∈ S, and purchases a proportion of their total desired
resource from each seller, relative to the expected utility gain from selecting the
offer from that seller. An alternative would be to motivate risk-aversion through
the game itself, however we prefer not to complicate the model, instead favouring
the clarity gained by the assumption of risk averse behaviour.

Therefore firstly a buyer considers a unit transaction of π from each seller.
The instantaneous expected utility, or payoff, for a buyer, bj , in purchasing one
unit of π from the seller si at the current offer,

E[U bj (Xsi)] = ubj (pπ
si

, π) , (4)

where E[U bj (Xsi
)] represents buyer bj ’s expected payoff from accepting offer

Xsi , and ubj (p, π) is the buyer’s utility function over the goods: money and π.
The buyer then purchases a proportion of his total desired π from each seller.

Any sellers which would provide a negative payoff are ignored. Recalling that qij

is the quantity of π purchased by buyer bj from seller si,

qij =
E[U bj (Xsi)]∑
E[U bj (Xsk

)]
, (5)

which ranges over k for which the expectation is positive.
The market model we have described here is an example of a Bertrand Game

[17]. This is where two or more sellers compete by simultaneously setting prices
for equivalent goods, and buyers then decide the quantity to purchase from each
seller in a rational utility-maximising manner. The theoretical non-cooperative
Nash equilibrium outcome is the Bertrand equilibrium, at which all sellers charge
their reserve price and share the market equally. It is the equal sharing of the
market at the Bertrand equilibrium which provides us with load-balancing.

However, Bertrand competition relies on the presence of a number of po-
tentially unrealistic assumptions. Two of these are of particular interest. Firstly,
Bertrand competition assumes no collusion between sellers. Cheung et al. showed
that if sellers are able to reliably predict the behaviour of competitors, then they
may implicitly collude in order to raise prices and hence their payoffs [16]. This
behaviour is not observed in our model however, since the sellers do not retain
historical information concerning each other. Such an ability might well be un-
feasible in very large systems [16], though clearly a heterogeneous set of sellers,
differentiated by strategic ability is likely to lead to an uneven market, and hence
an uneven resource allocation.

Secondly, Bertrand competition assumes that sellers compete only on price,
and are otherwise unable to differentiate their products in the market. This is
unlikely, since more realistic service providing nodes’ differing quality of ser-
vice will provide product differentiation. Once competition exists other than on
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price, Bertrand competition no longer applies, though other potentially useful
equilibria will exist.

However, the introduction of issues other than price, and with it the het-
erogeneity of buyers, will also introduce the likelihood of ‘price-war’ behaviour.
Kephart et al. showed that in certain circumstances the competitive behaviour
of (non-colluding) sellers would lead to a never-ending series of price-wars [18].
This is shown to be the case when services are described over a number of is-
sues, and a heterogeneous population of buyers have preferences over those issues
such as to exist in different niches of the market. In these circumstances, sellers
undercut each other in order to gain a greater market share and hence greater
payoff. However, once the price has become sufficiently low, it becomes ratio-
nal for the sellers to switch to providing for another niche of buyers, and the
competition begins again. Once competition in that niche has driven the price
down, the sellers will switch to a different niche, and so on. This result will be
important to consider in future work.

4 Evolutionary Market Agents

Sellers also accrue a payoff, their revenue. In our model, this is income from the
sale of π. At a given instant, the revenue of a seller, si ∈ S, is therefore:

rsi =
|B|∑

j=1

pπ
si

qij . (6)

Ideally, a seller will wish to maximise its revenue by increasing both its price
and its market share, however as we have seen, the market share will depend
upon the relationship between its price and those of its competitors.

An evolutionary market agent operates on behalf of each seller, with the self-
interested objective of maximising its revenue. Using evolutionary computation
techniques, the agent evolves the market position of its host over time. In this
model, a market position consists simply of price, therefore each individual rep-
resents a real-valued price. For each interaction in the market, the price encoded
by an individual is adopted, and the resulting payoff provides its fitness.

The evolutionary algorithm for seller si’s agent proceeds as follows:

1. Decide upon the design parameters to be used: initial price range, population
size and mutation factor. In the simulations described, an initial price range
of 0 to 500 was chosen, along with a population size of 10 and mutation
factor (α) of 0.1.

2. Generate an initial population, P , and set k = 1. Each individual in P is a
real value, drawn from the uniform random distribution [0, pmax].

3. Initial fitness testing
(a) Set the seller’s offer to the value of the first individual in P , and enter

the market for one market time-step. Record the seller’s revenue, rsi as
that individual’s fitness.
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(b) Repeat for the next individual in P , until all initial individuals have been
fitness tested in the market.

4. Probabilistic tournament selection
(a) Select four individuals, x1, x2, x3 and x4 from P , at random, such that

x1 6= x2 6= x3 6= x4.
(b) Let champion c1 be either x1 or x2, the fitness of whichever is greater

with probability 0.9, the fitness of whichever is less otherwise.
(c) Let champion c2 be either x3 or x4, the fitness of whichever is greater

with probability 0.9, the fitness of whichever is less otherwise.
5. Let the offspring, o, be a new individual with its value equal to the mid-point

of the values of c1 and c2.
6. Mutate o, by perturbing its value by a random number drawn from a normal

distribution with mean zero and standard deviation α.
7. Select the individual in {x1, x2, x3, x4} with the lowest fitness value, remove

it from P , and insert o into P .
8. Set the seller’s offer to the value encoded in o, and enter the market for one

market time-step. Record the seller’s revenue, rsi as o’s fitness.
9. Repeat from step 4.

5 Simulation Results

5.1 A Baseline Scenario

We firstly consider a small scenario with two service providers, such that S =
{s1, s2}, each providing the resource π, at prices pπ

s1
and pπ

s2
respectively. Both

s1 and s2 make use of an evolutionary market agent, as described in section 4
in order to determine these prices at each time-step.

We begin with 10 buyers (the service users), with identical linear utility
functions,

ubj (pπ
si

, π) = 375− pπ
si

. (7)

This represents a buyer being indifferent between a unit of π and its cost at
a price of 375. This is an arbitrary positive value, and has little impact other
than to provide a range of positive payoff values for a range of prices. An al-
ternative approach would be to have the objective of minimising the buyer’s
spending, though this would remove the notion of a value placed upon π by the
buyer. Actively considering negative buyer payoffs would introduce the question
of buyer motivation, and considering a payoff able to range over both positive
and negative values would slightly complicate the buyer’s decision function for
no gain. Linear utility functions are used to give an estimation of a service user’s
expected preferences, though the exact function will of course depend on the
specific service and its users. The success of our approach with other forms of
utility function remains a topic for research.

Figure 1 shows the normalised mean absolute distance from the ideal load, dl

between s1 and s2, over time, for a typical run and across 30 independent runs.
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Fig. 1. Load balancing performance over time: 2 sellers and 10 buyers. Typical run
(left) and mean and standard deviation over 30 independent runs (right).

Here, the NMA distance drops quickly, indicating the approach’s ability to
achieve a roughly even load between the two service providers in a short time.
This this is due to the evolutionary agents’ competitively co-evolving their prices
to within close proximity of each other, resulting in roughly even shares of the
market. Due to diverse populations within each agent however, their prices, and
hence the allocation of resources, continue to vary.

Following these exploratory fluctuations, the NMA distance then stabilises
as the populations converge. At this point, the load-balance is highly equal. It is
important to note that Kephart’s price-wars [18], which would result in an unsta-
ble load allocation, do not occur here. This is the case since the sellers describe
the service π over only a single issue, price, and hence our buyer population is
homogeneous.

5.2 A More Complex Scenario

Due to the distributed, decentralised nature of our approach, it is highly scalable.
The complexity of the agents’ evolutionary algorithms remains constant with
respect to the number of buyers, whilst the complexity of the buyers’ algorithm
grows only linearly with respect to the number of sellers.

Figure 2 shows both a typical run and mean and standard deviation calcu-
lated over 30 independent runs for |S| = 1000, |B| = 10, 000.

Here results are of a similar form to the previous simulation. This shows the
power of our approach to achieve load-balancing in a large, decentralised system
where no individual has any desire in favour of this behaviour. Indeed to the
contrary, though our outcome is similar to that in [14], our approach is novel in
that it relies on self-interested behaviour. The presence of larger populations of
agents appears to lead to more reliable results; the approach clearly scales well.



Evolutionary Market Agents 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

N
M

A
 D

is
ta

nc
e 

(d
l)

Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

N
M

A
 D

is
ta

nc
e 

(d
l)

Iteration

Fig. 2. Load balancing performance over time: 1,000 sellers and 10,000 buyers. Typical
run (left) and mean and standard deviation over 30 independent runs (right).

6 Conclusions and Future Work

We have presented a resource allocation problem, motivated by an emerging
computational paradigm; dynamic, decentralised, service-based systems. Based
on the mechanism proposed by Kuwabara et al. [14], we have described a de-
centralised, evolutionary market-based approach, which makes use of Bertrand
competition between self-interested sellers to achieve load-balancing. No coop-
eration is assumed. We believe that our approach is more suited to this scenario
than other decentralised load-balancing mechanisms, since it accounts for self-
interested utility maximising individuals.

Unlike the majority of market-based systems, our approach requires no cen-
tral point of control or auctioneer. Agents have no knowledge of the size of the
marketplace or any history. It has no point which is weaker than any other, and
is hence both scalable and robust to failure. Sellers instead have the ability to
advertise their prices through a broadcast mechanism.

A future, more realistic model may include a second issue with which to
describe quality of service. Sellers could then achieve product differentiation.
Outcomes in such a scenario are likely to be more complex than in the model
investigated here, in which effectively sellers behave as Dutch auctioneers, since
in general their prices only reduce over time.

It is also likely that more realistic scenarios will be dynamic, where ser-
vice providers may be added to or removed from the system. In addition, the
population of buyers may change over time, and there may also be external dis-
turbances. It would be desirable for the system to autonomically achieve a new
load-balance in the presence of such changes.

Finally, more advanced tuning of the evolutionary algorithm used in the
sellers’ evolutionary market agents should improve system performance, and
analysis of the algorithm’s properties, especially in dynamic environments, will
be useful in achieving this. Adaptive mutation, in order to allow sellers to ex-
plore the market widely when necessary, but to compete without reckless price
changes, will be one potentially useful technique.



10 Peter R. Lewis, Paul Marrow, and Xin Yao

References

1. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley and Sons, Chichester, West Sussex (2005)

2. He, M., Jennings, N.R., Leung, H.: On agent-mediated electronic commerce. IEEE
Transactions on Knowledge and Data Engineering 15(4) (2003) 985–1003

3. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: Research roadmap. (2006)

4. Gupta, A., Stahl, D.O., Whinston, A.B.: The economics of network management.
Communications of the ACM 42(9) (September 1999) 57–63

5. Clearwater, S.H., ed.: Market-Based Control: A Paradigm for Distributed Resource
Allocation. World Scientific, Singapore (1996)

6. Ardellini, V.C., Olajanni, M.C., Yu, P.S.: Dynamic load balancing on web server
systems. IEEE Internet Computing 3(3) (May - June 1999) 28–39

7. Alfano, R., Caprio, G.D.: Turbo: an autonomous execution environment with scal-
ability and load balancing features. In: Proceedings of the IEEE Workshop on Dis-
tributed Intelligent Systems: Collective Intelligence and its Applications (DIS06).
(2006) 377– 382

8. Cliff, D., Bruten, J.: Simple bargaining agents for decentralized market-based
control. Technical Report HPL-98-17, HP Laboratories, Bristol, UK (1998)

9. Esteva, M., Padget, J.: Auctions without auctioneers: Distributed auction proto-
cols. In: Lecture Notes in Artificial Intelligence. Volume 1788. Springer-Verlag,
Berlin, Germany (2000) 20–28

10. Kikuchi, H.: (m+1)st-price auction protocol. In: Proceedings of the 5th Interna-
tional Conference on Financial Cryptography, London, UK, Springer-Verlag (2002)
351–363

11. Hausheer, D., Stiller, B.: Peermart: The technology for a distributed auction-
based market for peer-to-peer services. In: Proceedings of the IEEE International
Conference on Communications. Volume 3. (2005) 1583–1587

12. Haque, N., Jennings, N.R., Moreau, L.: Scalability and robustness of a network
resource allocation system using market-based agents. Netnomics 7(2) (2005) 69–
96

13. Ramasubramanian, V., Sirer, E.G.: Perils of transitive trust in the domain name
system. Technical Report TR2005-1994, Cornell University, Ithaca, New York,
USA (2005)

14. Kuwabara, K., Ishida, T., Nishibe, Y., Suda, T.: An equilibratory market-based
approach for distributed resource allocation and its applications to communication
network control. In Clearwater, S.H., ed.: Market-Based Control: A Paradigm for
Distributed Resource Allocation. World Scientific, Singapore (1996) 53–73

15. Midgley, D.F., Marks, R.E., Cooper, L.G.: Breeding competitive strategies. Man-
agement Science 43(3) (1997) 257–275

16. Cheung, Y., Bedingfield, S., Huxford, S.: Monitoring and interpreting evolved
behaviours in an oligopoly. In: Proceedings of the IEEE International Conference
on Evolutionary Computation. (1997) 697–701

17. Mas-Colell, A., Whinston, M.D., Green, J.R.: Micro-Economic Theory. Oxford
University Press, Oxford (1995)

18. Kephart, J.O., Hanson, J.E., Sairamesh, J.: Price-war dynamics in a free-market
economy of software agents. In: Proceedings of the Sixth International Conference
on Artificial Life, Cambridge, MA, USA, MIT Press (1998) 53–62


