
 
 

University of Birmingham

Reconfigurable Computing for Speech Recognition:
Preliminary Findings
Melnikoff, Stephen Jonathan; James-Roxby, P B; Quigley, Steven Francis; Russell, Martin

DOI:
10.1007/3-540-44614-1_54

Document Version
Peer reviewed version

Citation for published version (Harvard):
Melnikoff, SJ, James-Roxby, PB, Quigley, SF & Russell, M 2000, Reconfigurable Computing for Speech
Recognition: Preliminary Findings. in Field-Programmable Logic and Applications. The Roadmap to
Reconfigurable Computing: 10th International Conference, FPL 2000, Villach, Austria, August 27-30, 2000.
Proceedings. vol. 1896, Lecture Notes in Computer Science, vol. 1896, Springer, pp. 495-504.
https://doi.org/10.1007/3-540-44614-1_54

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Springer-Verlag

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1007/3-540-44614-1_54
https://doi.org/10.1007/3-540-44614-1_54
https://birmingham.elsevierpure.com/en/publications/d733bc42-bff7-4f4f-82fd-8754d81fc17c


Reconfigurable Computing for Speech Recognition: 
Preliminary Findings 

 
 

S.J. Melnikoff, P.B. James-Roxby, S.F. Quigley & M.J. Russell 
 

Presented at: 
10th International Conference on Field Programmable Logic and Applications 

(FPL 2000) 
Villach, Austria, 28th-30th August 2000 

 
Published in: 

Lecture Notes in Computer Science #1896, pp.495-504 
Springer-Verlag 

 
 

© Springer-Verlag 
 
 
 

The original publication is available at www.springerlink.com
 

http://www.springerlink.com/content/39k67e1w85n7l8py 

http://www.springerlink.com/


Reconfigurable Computing for Speech Recognition:
Preliminary Findings*

S.J. Melnikoff1, P.B. James-Roxby2, S.F. Quigley1 & M.J. Russell1

1 School of Electronic and Electrical Engineering, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, United Kingdom

S.J.Melnikoff@iee.org, S.F.Quigley@bham.ac.uk,
M.J.Russell@bham.ac.uk

2 Xilinx, Inc., 2300 55th Street, Boulder, Colorado 80301, USA
Phil.James-Roxby@xilinx.com

Abstract. Continuous real-time speech recognition is a highly computationally-
demanding task, but one which can take good advantage of a parallel processing
system. To this end, we describe proposals for, and preliminary findings of,
research in implementing in programmable logic the decoder part of a speech
recognition system. Recognition via Viterbi decoding of Hidden Markov Models
is outlined, along with details of current implementations, which aim to exploit
properties of the algorithm that could make it well-suited for devices such as
FPGAs. The question of how to deal with limited resources, by reconfiguration
or otherwise, is also addressed.

1 Introduction

Techniques for performing speech recognition have existed since the late 1960s, and
since then, these have been implemented in both hardware and software.

A typical speech recognition system begins with a signal processing stage which
converts the speech waveform into a sequence of acoustic feature vectors, or
“observations”. That data is then passed through a decoder which computes the
sequence of words or phones (sub-word units, e.g. vowels and consonants) which is
most likely to have given rise to the data. Higher-level information about context and
grammar can be used to aid the process.

What is being proposed here is an implementation of the decoder. This is highly
computationally demanding, but has the advantage that it is also highly parallelisable,
and hence an ideal candidate for application in programmable logic.

With such devices - FPGAs in particular - becoming available which can utilise an
increasing number of processing resources at ever faster speeds, this paper describes
preliminary findings in research aimed at implementing speech recognition on a
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programmable logic device, while also looking at how to deal with the eventuality that
the device used does not have sufficient logic resources to perform all of the
necessary calculations at each step, by use of run-time reconfiguration or otherwise.

It is envisaged that such a decoder would act as a coprocessor in a larger system.
This is advantageous both because it would free up resources for the rest of the
system, and also because a dedicated speech processor is likely to be able to perform
recognition faster than a general-purpose device.

This last point is particularly relevant here. At the time of writing, reconfigurable
computing is still in its infancy, and so one of the aims of this research is to justify the
use of this technology over conventional approaches (e.g. software implementations,
ASICs, use of RAM, etc.).

The paper is organised as follows. Section 2 describes the theory of speech
recognition based on the Hidden Markov Model. Section 3 then outlines some
previous parallel implementations of this model, and describes a proposed structure
for this implementation. This leads on to section 4, which discusses the findings of the
current implementation, and looks at the problem of resource shortage. Section 5
describes the structure of the whole recognition system, and also looks at system
performance. Section 6 then summarises the conclusions drawn so far, and section 7
outlines some of the tasks that will be carried out as the research continues.

2 Speech Recognition

The most widespread and successful approach to speech recognition is based on the
Hidden Markov Model (HMM) [2], [8], [11], and is a probabilistic process which
models spoken utterances as the outputs of finite state machines (FSMs).

2.1 The Speech Recognition Problem

The underlying problem is as follows. Given an observation sequence
O O O OT= 1 2, ... , where each Ot is data representing speech which has been sampled

at fixed intervals, and a number of potential models M, each of which is a
representation of a particular spoken utterance (e.g. word or sub-word unit), we would
like to find the model M which best describes the observation sequence, in the sense
that the probability P(M|O) is maximised (i.e. the probability that M is the best model
given O).

This value cannot be found directly, but can be computed via Bayes’ Theorem [11]
by maximising P(O|M). The resulting recognised utterance is the one represented by
the model that is most likely to have produced O. The models themselves are based on
HMMs.



2.2 The Hidden Markov Model

An N-state Markov Model is completely defined by a set of N states forming a finite
state machine, and an N × N stochastic matrix defining transitions between states,
whose elements aij = P(state j at time t | state i at time t-1); these are the transition
probabilities.

With a Hidden Markov Model, each state additionally has associated with it a
probability density function bj(Ot) which determines the probability that state j emits a
particular observation Ot at time t (the model is “hidden” because any state could have
emitted the current observation). The p.d.f. can be continuous or discrete; accordingly
the pre-processed speech data can be a multi-dimensional vector or a single quantised
value. bj(Ot) is known as the observation probability.

Such a model can only generate an observation sequence O O O OT= 1 2, ... via a

state sequence of length T, as a state only emits one observation at each time t. The
set of all such state sequences can be represented as routes through the state-time
trellis shown in Fig. 1. The (j,t)th node (a state within the trellis) corresponds to the
hypothesis that observation Ot was generated by state j. Two nodes (i,t-1) and (j,t) are
connected if and only if aij > 0.

As described above, we compute P(M|O) by first computing P(O|M). Given a state
sequence Q q q qT= 1 2, ... , where the state at time t is qt, the joint probability, given a

model M, of state sequence Q and observation sequence O is given by:

P O Q M b O a b Oq q q t
t

T

t t t
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−
=
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(1)

assuming the HMM is in state 1 at time t = 1. P(O|M) is then the sum of all possible
routes through the trellis, i.e.

P O M P O Q M
Q

( | ) ( , | ) .= ∑
all

(2)

Fig. 1. Hidden Markov Model, showing the finite state machine for the HMM (left), the
observation sequence (top), and all the possible routes through the trellis (arrowed lines)
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2.3 Viterbi Decoding

In practice, the probability P(O|M) is approximated by the probability associated with
the state sequence which maximises P(O,Q|M). This probability is computed efficiently
using Viterbi  decoding.

Firstly, we define the value δt(j), which is the maximum probability that the HMM is
in state j at time t. It is equal to the probability of the most likely partial state sequence
q q qt1 2, ... , which emits observation sequence O O O Ot= 1 2, ... , and which ends in

state j:

δt
q q q

t t tj P q q q q j O O O M
t

( ) max ( , ... ; ; , ... | ) .
, ...

= =
1 2

1 2 1 2 (3)

It follows from equations (1) and (3) that the value of δt(j) can be computed
recursively as follows:

δ δt
i N

t ij j tj i a b O( ) max[ ( ) ] ( ) ,= ⋅
≤ ≤

−
1

1 (4)

where i is the previous state (i.e. at time t-1).
This value determines the most likely predecessor state ψt(j), for the current state j

at time t, given by:

ψ δt
i N

t ijj i a( ) arg max[ ( ) ].=
≤ ≤

−
1

1 (5)

Each utterance has an HMM representing it, and so the most likely state sequence
not only describes the most likely route through a particular HMM, but by
concatenation provides the most likely sequence of HMMs, and hence the most likely
sequence of phones uttered.

3 Parallel Implementation

3.1 Previous Implementations

Parallel implementations of speech recognition systems have been produced before,
most using HMMs. In contrast to the approach described here, previous
implementations have generally used multiple processing elements (PEs) of varying
sophistication, either at the board or ASIC level, rather than a programmable logic
device.

Typically, the recognition problem has been broken down with each PE dealing with
one HMM node. For example, [4] has an array of PEs that mirrors the structure of the
trellis. One issue that has arisen with some previous parallel implementations is the
problem of balancing the workload among a limited number of PEs, which results in a
speedup that is less than linear. Steps can be taken to avoid redundant calculations
(e.g. “pruning” paths whose probabilities fall below a threshold [9]), but this is more



difficult on parallel architectures than on serial ones [4]. Other approaches to parallel
implementation include processor farms to automatically balance the load [1], [10], a
more coarse-grained distributed computing model [3], [10], a tree-based architecture
[9], or custom ICs with fine-grained PEs [7].

By using programmable logic, not only do we effectively have as many PEs as we
want, but each PE can be optimised to handle the calculations for a single node. In
addition, devices with (global) on-chip RAM are particularly suitable, as a buffer is
needed to store the best predecessor states at each stage, for the purposes of
backtracking.

Hence programmable logic, having not been applied to speech recognition in this
way, has properties that may give it an edge over previous parallel implementations.

3.2 Proposed Structure

As described above, in order to perform Viterbi decoding, the trellis must be traversed
forwards to find the best path, then once the observation sequence has ended,
backtracking takes place, during which the best path is traced in reverse in order to
extract the state sequence taken.

Forward Computation. Each node in the trellis must evaluate equations (4) and (5).
This consists of multiplying each predecessor node’s probability δt-1(i) by the
transition probability aij, and comparing all of these values. The most likely is
multiplied by the observation probability bj(Ot) to produce the result.

After a number of stages of multiplying probabilities in this way, the result is likely
to be very small. In addition, without some scaling method, it demands a large dynamic
range of floating point numbers, and implementing floating point multiplication
requires more resources than for fixed point.

A convenient alternative is therefore to perform all calculations in the log domain.
This converts all multiplications to additions, and narrows the dynamic range, thereby
reducing all the arithmetic to (ideally) fixed point additions and comparisons, without
in any way affecting the validity of the results obtained. Hence equation (4) becomes

δ δt
i N

t ij j tj i a b O( ) max[ ( ) log ] log[ ( )].= + +
≤ ≤

−
1

1 (6)

The result of these changes mean that a node can have the structure shown in Fig.
2. The figure highlights the fact that each node is dependent only on the outputs of
nodes at time t−1, hence all nodes in all HMMs at time t can perform their calculations
in parallel.

The way in which this can be implemented is to deal with an entire column of nodes
of the trellis in parallel. As the speech data comes in as a stream, we can only deal with
one observation vector at a time, and so we only need to implement one column of the
trellis. The new data values (observation vector Ot and maximal path probabilities
δt-1(j)) pass through the column, and the resulting δt values are latched, ready to be
used as the new inputs to the column when the next observation data appears.



Backtracking. Each node outputs its most likely predecessor state ψt(j), which is
stored in a sequential buffer external to the nodes. When the current observation
sequence reaches its end at time T, a sequencer module reads the most likely final state
from the buffer, chosen according to the highest value of δT(j). It then uses this as a
pointer to the collection of penultimate states to find the most likely state at time T-1,
and continues with backtracking in this way until the start of the buffer is reached. In
the event that the backtracking buffer is filled before the observation sequence ends,
techniques exist for finding the maximal or near-maximal path.

As the resulting state sequence will be produced in reverse, it is stored in a
sequencer until the backtracking is complete, before being output. This state sequence
reveals which HMMs have been traversed, and hence which words or sub-word units
have been uttered. This information can then be passed to software which assembles
the utterances back into words and sentences.

The structure of the decoder is shown in Fig. 3. Note that there will be additional
logic in order to initialise the system, and to scale the values of δt in order to prevent
overflow.

Fig. 2. Block diagram of a node representing state j in a 4-state finite state machine, with all
calculations performed in the log domain. δt-1(i) are the outputs of previous nodes; Ot is the
current observation vector. The transition probabilities aij and the observation probability
distribution bj(Ot) are fixed for a specific node

Fig. 3. Decoder structure. The nodes’ outputs from time t−1 are supplied as their inputs at time
t, along with the new observation vector Ot. The most likely predecessors of each state ψ t(j) are
stored in the backtrack buffer until the speech data ends, then sent to the sequencer which
traces the most likely path in reverse, before outputting it in the correct order
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4 Implementation in Programmable Logic

4.1 Discrete HMM-Based Implementation

Parameters for a discrete HMM-based system have been obtained using speech
recognition tools and real speech waveforms. In this case, each speech observation
takes the form of an 8-bit value, corresponding to the address in a 256-entry table
which describes the observation probability distribution bj(Ot) as a set of 15-bit
vectors. Each node in the state-time trellis has a table associated with it. The transition
probabilities are encoded in the same format.

We are using 49 HMMs, each one representing a monophone, i.e. an individual
English vowel or consonant. Each HMM has 3 emitting states, so there are 3×49=147
nodes. Treating the speech observation data as an address, we need to obtain the
value at this address for each node. If we do all this for each node in parallel, we need
a 2205-bit-wide data bus.

The choice is therefore whether to store this data in on-chip RAM, use the LUTs as
distributed RAM/ROM, or to store it off-chip.

Off-Chip RAM. If we were to store the data off-chip, we would have to perform several
reads per observation vector, as the kind of data width required would not be
realisable. In addition, off-chip RAM is likely to be slower than any on-chip
alternative. However, dedicated RAM can provide more data storage than is available
on an FPGA, which becomes particularly relevant as the recognition system is made
more complex.

On-Chip RAM. On-chip RAM can offer increased speed, and very high data width. A
trellis column containing 11 of the 49 HMMs has been implemented on a Xilinx Virtex
XCV1000. It requires 31 of the 32 Block RAMs on the FPGA, plus around 4000 of the
24,500 LUTs (16%) for the addition and compare logic, and allows all 33 nodes to
obtain their observation probabilities in parallel at an estimated clock frequency of
50MHz.

From these figures, we can predict that an XCV1000 could store around 70 HMMs.
If more were required, we would have to use reconfiguration or off-chip RAM, and
split the HMM column up, processing it in sections. At 50MHz, even allowing for a
deep pipeline and access or reconfiguration delays, this would permit of the order of
thousands of HMMs to be handled within the 10ms allowed for real-time speech
processing.

While this gives a useful prediction of resource usage, clearly a larger FPGA is
required for a full implementation, not least because the above figures do not include
the resources needed for the backtracking buffer (which is likely to require on-board
RAM as well), scaler, and other control logic.



Distributed RAM/ROM. LUTs can typically be configured as distributed RAM or
ROM. While using these for storing the observation probabilities is likely to result in
faster accesses than for Block RAM, it is at the expense of resources that need to be
used for other parts of the system - whereas using Block RAM does not incur this
penalty.

4.2 Reconfiguration vs. RAM [5]

A larger device may alleviate some of these problems, but speech recognition systems
can easily be made more complex and so eat into any spare resources (explicit duration
modelling [4], [6], [8] is one such resource-hungry improvement). It is therefore
necessary to consider early on which of the above options should be used.

One possible solution is to use distributed ROM with run-time reconfiguration
(RTR). Focussing on the observation probabilities, the only parts of the FPGA that
need to be reconfigured are some of the LUTs; the associated control logic is identical
for each node, and does not need to be changed (the transition probabilities would be
different, but require significantly less data, and so could, in theory, be stored on-
chip). In addition, the system control logic can remained fixed.

Given this situation, an FPGA which is too small to store all the required data could
perhaps be repeatedly reconfigured at run-time by overlaying the LUTs holding the
probabilities, so that each new observation vector is passed through all the HMMs in
the system.

If on-chip RAM is too small, the only alternative is to perform a number of reads
from off-chip RAM. A key deciding factor in whether to do this rather than RTR is the
speed with which each can be performed. For RAM in particular, we are limited by the
width of the data bus, which will obviously determine how many reads we need to do
for each speech observation.

It remains to be seen which method will be the more suitable for this application.

 5 Speech Recognition Systems

5.1 System Structure

At present, we are using an XCV1000-6 BG560, which resides on an ESL RC1000-PP
prototyping board. The board is a PCI card which sits inside a host PC.

Recorded speech waveforms are pre-processed in software, and stored as
quantised data. Once the initial system is completed, the speech data will be sent to
the FPGA via the PCI bus; the FPGA will then perform the decoding and output a state
sequence to the PC, which will map it back into phones.

In other words, the FPGA will be acting as a coprocessor, dealing with the most
computationally-demanding part of the recognition process, thereby reducing the load
on the PC’s processor.



5.2  Performance

A significant and unique property of speech is that for the purposes of recognition,
we can sample it at a mere 100Hz, giving us 10ms to process each piece of data -
assuming that we are always aiming to do recognition in real-time. This means that
whether we use RTR or off-chip RAM, there is a large period available to perform
these operations, which provides a lot of flexibility when it comes to making the
decoding algorithm more complex.

At this data rate, the pre-processing can be done in software in real-time. While this
does not rule out eventually doing this on the FPGA as well, for the time being the
FPGA will be used purely for the decoding.

 6 Conclusion

 So far, we have investigated Hidden Markov Model Viterbi decoding as a method of
speech recognition, and have broken down the process in such as a way so as to take
advantage of a parallel computing architecture.

 Based on this analysis, we have begun work on an implementation of a real-time
monophone speech decoder in programmable logic, which is expected to fit
comfortably within an XCV1000, while utilising off-chip RAM. We believe that even if
future FPGAs (or other similar devices) have the capacity to deal with a basic HMM-
based algorithm, improvements can be made which, while making recognition more
effective, would require off-chip RAM access or run-time reconfiguration in order to
deal with the increase in processing resources needed.

 7 Future Work

 This research is clearly at an early stage, and so there are a number of issues which
still need to be dealt with, including:

• Integrate the recogniser into a complete system: merely synthesising a recogniser
will provide useful information on resource usage, but we need to able to test it!
This will require using the FPGA prototyping board mentioned above, and writing
software for the PC that houses it. It is envisaged that only recorded speech will be
used for the time being. The results will then be tested against the output of an
already completed software version of the recogniser.

• Improve the recognition system: once a monophone recogniser is completed, the
next logical step is to move on to a bigram- and trigram-based system (pairs and
triples of monophones). Whereas a monophone recogniser requires 49 HMMs, a
bigram/trigram version uses around 500-600, another reason why being able to cope
with limited resources is very important for this application.

• Use of semi-continuous and continuous HMMs : FPGAs are particularly well suited
to dealing with discrete (quantised) speech data. However, use of continuous data



has been shown to produce better results in terms of recognition accuracy.
Implementing this requires computing sums of Normal distributions (Gaussian
mixtures) on an FPGA.
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