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ABSTRACT 

The relative accuracy of static and dynamic water treatment works models was examined. Case study 

data from an operational works were used to calibrate and verify these models. It was found that 

dynamic clarification, filtration and disinfection models were more accurate than static models at 

predicting the final water quality of an operational site but that the root mean square errors of the 

models were within 5% of each other for key performance criteria. A range of abstraction rates at 

which the water treatment works was predicted to operate adequately were identified using both types 

of models for varying raw water qualities. Static clarification, filtration and disinfection models were 

identified as being more suitable for whole works optimisation than dynamic models based on their 

relative accuracy, simplicity and computational demands. 

Key words | accuracy, dynamic, model, Monte-Carlo, static, water treatment works 

INTRODUCTION 



 

 

Numerical modelling of water treatment works (WTWs) offers a means by which designers and 

operators can assess the likely impact of changes to raw water quality or process modifications on 

treated water quality. These assessments can be carried out with no risk posed to operational 

performance or consumer health and usually at lower cost than alternative pilot plant studies. The 

production of these models can result in a greater understanding of the treatment processes’ 

mechanisms and the models themselves can be used for optimisation (van Leeuwen et al. 2005; 

Rietveld et al. 2010) and training purposes (Rietveld et al. 2004; Worm et al. 2010). 

Due to the complex, multiple, non-linear relationships between raw water quality, WTW design, 

operating regime, final water quality and operating costs, the prediction of acceptable WTW 

performance is challenging. Existing water treatment modelling programs, such as OTTER (WRc), 

Stimela (Delft University of Technology) and Metrex (Duisberg University of Technology) have been 

found to be capable of modelling whole works comprehensively and have been successful when used 

in previous studies (Rietveld & Dudley 2006; Dudley et al. 2008). The accuracy of these models, 

although sufficient to offer interesting insights into potentially effective treatment options and rough 

design parameters, has not historically been sufficiently accurate to replace laboratory or pilot plant 

testing for operational purposes (Dharmappa et al. 1994; Gupta & Shrivastava 2006). Models used in 

previous studies have also required relatively extensive calibration data (Rietveld & Dudley 2006; 

Dudley et al. 2008) and have only had their accuracy assessed over limited periods, usually less than 

one month (Adin & Rebhun 1977; Saatci & Oulman 1980; Edzwald et al. 1992; Head et al. 1997). 

Water treatment models previously developed are based on a mixture of fundamental scientific 

principles and empirical relationships with the processes simulated using either static or more 

computationally demanding dynamic methods. This paper compares the accuracy of static and 

dynamic clarification, filtration and disinfection models to predict the performance of an operational 

WTW over multiple seasons, using data historically recorded for quality control purposes. The models 

were also used to predict under what conditions an operational works was expected to produce water 



 

 

of an acceptable quality. This method provides simple guidance from a WTW model that can be 

applied by operational staff in real time. 

METHODS 

Site description 

The WTW from which case study data were used (see Figure 1) is based in a rural location with water 

abstracted from a lowland reach of a river which is impounded in a reservoir prior to treatment. An 

overview of the reservoir water quality and chemicals dosed in 2011 is provided in Table 1. The water 

treated is divided into two treatment streams, one of which has hopper bottomed clarifiers (HBC) and 

the other dissolved air flotation (DAF) to effect clarification. In both streams, ferric sulphate is dosed 

as coagulant before flocculation and clarification take place. Post-clarification, the waters are blended 

before being filtered through dual media (anthracite/sand) rapid gravity filters (RGFs). The water then 

passes through a balance tank, to reduce the fluctuations in discharge that are caused by the 

backwashing of the filters, before being treated by granular activated carbon (GAC) adsorbers. 

Chlorine gas is dosed upstream of the contact tank controlled by a feedback loop linked to the free 

chlorine concentration entering and exiting the contact tank. Sodium bisulphite is dosed to disinfected 

water to reduce the free chlorine to a residual concentration for distribution. Throughout the WTW, 

in-line sensors measure specific water quality parameters at 15 minute intervals. These data are 

transferred to an electronic supervisory control and data acquisition (eSCADA) system, stored on site, 

and archived off site. A maximum treatment capacity of 2500 m
3
/h (60 ML/d) is achievable at the site. 

Further treatment process details are provided in Table 2. 

Table 1 | Raw water quality and chemical dosing conditions observed 2011 

Parameter Mean 

Standard 

deviation 

Alkalinity (mg CaCO3/L) 78 28 

Bromide (µg/L) 63 12 

Turbidity (NTU) 4.7 7.5 

TOC (mg/L) 4.7 0.8 

Temperature (ºC) 12 5 



 

 

Ultraviolet absorption (cm
–1

) 0.18 0.05 

pH 7.7 0.4 

Ferric sulphate dosed to DAF stream (mg as Fe
3+

/L) 16 2 

Ferric sulphate dosed to hopper bottomed clarifier stream (mg as 

Fe
3+

/L) 

14 2 

Contact tank inlet free chlorine concentration (mg/L) 1.6 0.1 

 

Figure 1 | WTW schematic. 

 



 

 

Table 2 | Treatment process details 

Process Hopper bottomed clarifiers 

Dissolved air flotation 

clarifiers Rapid gravity filters Contact tanks 

Number of units Ten in continuous use Seven available, brought into 

service as required 

Eight in continuous use Two in parallel 

Dimensions Surface length: 10 m 

Surface width: 10.00 m 

Depth top square section: 1.83 m 

Depth hopper section: 7.62 m 

Base length and width: 2.00 m 

Volume: 498 m3 

Width: 5.12 m 

Initial depth: 1.65 m 

End depth: 2.23 m 

Contact zone length: 1.09 m 

Contact zone volume: 9.2 m
3
 

Separation zone length: 6.78 m 

Total volume: 78 m
3
 

Length: 13 m 

Width: 4.5 m 

Top anthracite depth: 0.60 m 

Middle sand depth: 0.80 m 

Base gravel depth: 0.40 m 

Length: 32.18 m 

Width: 7.5 m 

Operational depth: 5 m 

Total volume: 2400 m
3
 

Individual tank 

discharge  

Discharge: 65 m
3
/h Discharge: 240 m

3
/h Discharge: 180 m

3
/h Discharge: 635 m

3
/h 

Contact time Contact time: 7.5 h Contact time: 20 min Superficial velocity: 3 m/h Contact time: 115 min 

Chemical dose 

and other 

operational 

parameters 

Ferric sulphate: 15 mg/L Ferric sulphate: 17 mg/L 

Air supply: 7 mg/L 

Saturator pressure: 4 absolute bar 

Recycle rate: 10% 

Backwash duration: 48 hours; 

Head loss limit: 2 m; 

Turbidity limit: 0.5 NTU 

Free chlorine dose: 1.6 mg/L 

Residual chlorine: 1.3 mg/L 

Number of baffles: 2 

 



 

 

Static and dynamic modelling approaches 

Where the parameter values within a model have no dependency on past events, the model is 

described as static or steady state. An example of a steady state model is an algebraic equation where 

the current input values are all that is needed to calculate the output value, irrespective of any 

previous input or output values. Conversely, a dynamic model is time-dependent and previous 

parameter values of the model influence current values. The use of differential equations in a finite 

difference approach to model the accumulation of solids in filter layers is an example of a dynamic 

model. In this case, previous solids accumulation within the filter would reduce the solids removal 

efficiency of the filter. Other parameters which can only be modelled dynamically include the solids 

concentration of sludge blankets or chemicals in mixed containers where initial concentrations 

fluctuate. The benefits and limitations of both type of model are listed in Table 3. 

Table 3 | Benefits and limitations of dynamic and static models 

Characteristic Dynamic Static 

Computational demand Greater Less 

Suitability for modelling fluctuating conditions Greater Less 

Sampling frequency of conditions required Yes No 

Ease of application / understanding Less Greater 

Operational data 

15-minute eSCADA and monthly water quality assurance test data from 2011 were used for 

calibration and data from the first nine months of 2012 were used for verification. Data covering the 

whole of 2012 was not used as some of the required parameter data did not cover the entire period. 

The specifications of the sensors used is provided in Table 4 and a review of the accuracy of the 

manual measurements in comparison to Analytical Quality Control (AQC) samples is given in Table 

5. 

  



 

 

Table 4 | Sensor specification 

Parameter Specification 

Temperature (ºC) YSI Sonde multi-head unit 

Resolution 0.01 ºC 

Accuracy ± 0.15 ºC  

Discharge (ML/d) Siemens’ Magflo 3000 electromagnetic flow meter 

Accuracy ± 0.25%  

Turbidity (NTU) Sigrist AquaScat WTM used throughout WTW except at filters and final waters 

where Hach 1720D is used 

Hach 1720D 

Accuracy ± 2% or ±0.02 NTU (whichever greater) from 0–40 NTU 

Sigrist AquaScat WTM turbidity meter 

Resolution 0.001 FNU 

Accuracy not specified  

Head loss 

(m) 

Endress + Hauser Deltabar PMD 130 

Accuracy ±1%  

Free chlorine 

(mg/L) 

Capital Controls Series 1930 

Sensitivity 0.004 mg/L 

Display resolution 0.01 mg/L 

Accuracy ±0.1 mg/L  

 

Table 5 | Accuracy of manual measurements 

Parameter Basis of analytical procedure 

Current bias from 

routine AQC 

(regulatory limit) 

Current precision 

from routine AQC 

(regulatory limit) 

Alkalinity as 

CaCO3 

Acid titration to end point of pH 4.5 

using auto-titrator 

–0.9% (5%) 2.4% (5%) 

Bromide Ion chromatography with 

conductimetric detection 

0.3% 2.3% 

pH pH electrode 0.03 pH units 

(0.1 pH units) 

–0.02 pH units 

(0.2 pH units) 

Specific 

Absorbance at 

254nm 

UV Spectrophotometry –2.0% 4.0% 

TOC TOC analyser – UV/persulphate 

digestion of organic carbon and 

detection of released CO2 by Infra-Red 

(NDIR) 

–1.0% (5%) 2.0% (5%) 

THM Headspace GCMS (Gas 

Chromatography Mass Spectrometry). 

Total THM is the sum of four individual 

compounds: 

(a) chloroform 

(b) bromoform 

(c) bromodichloroform 

(d) dibromochloroform 

(a) –2.3% (12.5%) (a) 4.7% (12.5%) 

(b) 1.1% (12.5%) (b) 5.2% (12.5%) 

(c) –5.0% (12.5%) (c) 3.3% (12.5%) 

(d) 2.7% (12.5%) (d) 4.0% (12.5%) 

  



 

 

Process models 

The models were programmed using Simulink, an extension of MATLAB that provides an interactive 

graphical environment for modelling time-varying systems. Process models were built as modules that 

could be grouped together to represent whole WTWs. The ODE45 solver was used with a variable 

time step for all of the models in this work with a minimum time step of 15 minutes, which is 

commonly the eSCADA data time step observed at the case study works. The mechanisms used to 

model the works both dynamically and statically are described below and an illustration of the model 

structure is shown in Figure 2. 

The clarification (DAF and HBC), filtration and disinfection processes were all modelled statically 

and dynamically for comparative purposes. The coagulation and GAC processes, which were only 

modelled statically, were included so that the influence of varying organic matter concentrations on 

the solids removal and disinfection models could be assessed. 



 

 

Figure 2 | MATLAB/Simulink model. 

Degree of mixing 

Continuous stirred tank reactors (CSTRs) were used to model the degree of mixing that occurs within 

processes in the dynamic models. A single CSTR models perfect mixing. The more tanks there are, 

the more the tanks act like a plug flow system. Ordinary differential Equation 1, Equation 5 and 

Equation 12 were used to model decay processes where mixing occurred. The static models assumed 

plug flow conditions and decay was represented using exponential decay Equation 2, Equation 4 and 

Equation 13. 

Correlation between suspended solids and turbidity 

Many water treatment solids removal models use suspended solids (XTSS) as a performance parameter. 

Most WTWs however, routinely measure turbidity as a surrogate parameter for XTSS concentration. 

The ratio between suspended solids (mg/L XTSS) and turbidity (NTU) was set at 2:1. This ratio was 

used as the default value in the OTTER program (WRc 2002) and is suggested by Binnie et al. 



 

 

(2006), where sufficient data are not available to define it more accurately. This ratio was used so the 

accuracy of WTW models which only use conventionally collected measurements could be assessed. 

This ratio may vary temporally and spatially in practice but is likely to range from 0.7 to 2.2 for low 

colour water that predominantly required turbidity removal treatment (Cornwell et al. (1987) cited by 

AWWA (1999)). 

Coagulation by metal based coagulants 

Assuming that all of the metal ions in the ferric or aluminium based coagulants form metal 

hydroxides, which precipitate out of solution, then by stoichiometric analysis, the amount of 

suspended solids added by ferric sulphate is 1.9 g/g Fe
3+

 and by alum 2.9 g/g Al
3+

. Additional solids 

loading caused by the precipitation of metal-NOM complexes or adsorption of total organic carbon 

(TOC) on to the surface of the metal hydroxides were not calculated. This was a limitation of the 

method. 

Edwards’ (1997) model, based on the Langmuir equation, was used to model dissolved organic 

carbon (TOC) removal due to coagulation. The extent of TOC removal is predicted by the raw water’s 

TOC concentration, ultraviolet absorption at 254 nm and the coagulated water’s pH. In the Edwards 

(1997) model, organic matter is assumed to be adsorbed onto the surface of metal hydroxide flocs that 

are formed by ferric or alum coagulants. The metal hydroxide ions Fe
3+

 and Al
3+

 are considered to be 

almost completely insoluble over the operational pH range and so the available sorbent surface is 

considered to be proportional to the dose of coagulant (Edwards 1997). Some of the organic matter is 

assumed to be non-adsorbable and the rest exists in equilibrium, between solution and adsorption, 

which is described by a Langmuir isotherm. The removal of TOC occurs during clarification but is 

considered to be dependent on the coagulation process. This assumes effective flocculation and 

clarification are occurring. 

The “general low DOC” parameters reported by Edwards (1997) are used to model TOC in this work. 

The application of these parameters for TOC application is considered to be appropriate as TOC 



 

 

typically approximates to DOC to within 2–17% for low turbidity water sources (Owen et al. 1995). 

The standard error of the model is estimated as being approximately ±20% or 0.5 mg/L (Swan 2015). 

The influence of chemical addition on pH is calculated using the carbonate chemistry described in 

Stumm & Morgan (1970) and Snoeyink & Jenkins (1980) and is similar to the method described in 

Najm (2001), which was independently developed. The coagulation process is treated as a closed 

system and ionic strength effects are assumed to be negligible due to the low concentrations of 

chemicals found in water treatment. Instabilities in this carbonate model are limited through the 

application of the Newton–Raphson method to iteratively calculate pH. 

Hopper bottomed clarification 

In the dynamic model, the floc blanket clarifiers are modelled using a similar method to that presented 

in Head et al. (1997). The model’s application differs from Head et al. (1997), firstly by not using 

works specific Barnea & Mizrahi (1973) equation parameters. Values from Head et al. (1997) were 

used to see how effectively modelling of a works could be achieved using only existing data collected 

from a WTW (shape factor s = 1, exponent factor n = 2.425, maximum settling velocity vmax = 

5.65 m/h and minimum suspension concentration Cmin = 10%). Secondly, the settlement of flocs was 

not modelled due to the relative dominance of blanket removal (approximately 1% of solids removed 

were found to be due to settlement under the conditions observed). Finally, two CSTRs were used 

rather than one, as this gave a more accurate replication of works performance (Swan 2015). 

Head et al.’s (1997) model was found to give good predictions of plant performance based on it 

predicting blanket concentration to ±5% and clarified turbidity to ±0.5 NTU. HBCs are represented by 

a series of homogeneous CSTR sections. Within a CSTR, solids either pass through or are absorbed 

into a sludge blanket. The model is based on the assumption that the flocs are bimodal, with smaller 

initial flocs and larger flocs within the blanket. All initial flocs are also assumed to be equally well 

removed by the sludge blanket. The suspended solids removal within each CSTR of the dynamic 

model are calculated using Equation (1): 



 

 

 𝑑𝑋𝑇𝑆𝑆

𝑑𝑡
=

𝑄

𝑉
(𝑋𝑇𝑆𝑆0

− 𝑋𝑇𝑆𝑆) − 𝑋𝑇𝑆𝑆(𝑘𝑓Φ 𝐻𝑏 𝐿⁄ ) 

 

(1) 

where Q = flow rate (m
3
/h); V = volume CSTR = 249 m

3
; XTSS0 = flocculated suspended solids (mg/L); 

XTSS = clarified suspended solids (mg/L); Kf = floc factor (h
–1

); Hb = height of blanket (m); Hb/L = 

proportion of CSTR beneath blanket; Φ = mean blanket concentration (%V/V). 

Making the assumptions that the blanket concentration and height remain consistent and the flow 

through the clarifier is plug flow, the removal of solids was modelled as an exponential decay 

equation in the static model: 

 𝑋𝑇𝑆𝑆 = 𝑋𝑇𝑆𝑆0
× 𝑒𝑥𝑝−𝑘𝑡 (2) 

where t = contact time (h) and k = clarification efficiency parameter (h
–1

). 

Dissolved air flotation clarification 

The attachment efficiency of bubbles onto suspended solids by dissolved air flotation was based on 

Equation (3) (Edzwald 2006). These are based on the plug flow assumption of flow through the 

contact zone which was found to be approximately true (Haarhoff & Edzwald (2004), reported in 

Edzwald (2006)). Removal is modelled in the static model using Equation (4) where attachment is 

assumed to occur only in the initial contact zone. In order to make the Edzwald model dynamic, 

mixing is applied through the use of a representative number of CSTRs and the entire tank is 

modelled as a contact zone. This is represented by Equation (5) as used in the OTTER program (WRc 

2002). In this model no flocculation occurs within the DAF tank and the removal performance is 

unaffected by the accumulation of floating sludge. 

 

𝑏 =  

3
2 𝛼𝜂𝑇𝜙𝑏𝜐𝑏

𝑑𝑏
 

(3) 

 𝑋𝑇𝑆𝑆 = 𝑋𝑇𝑆𝑆0
× 𝑒𝑥𝑝−𝑏𝑡 

(4) 



 

 

 𝑑𝑋𝑇𝑆𝑆

𝑑𝑡
=

𝑄𝑋TSS0

𝑉
− (

𝑄

𝑉
+ b) 𝑋𝑇𝑆𝑆 (5) 

where XTSS = clarified suspended solids (mg/L), XTSS0 = raw water suspended solids (mg/L), t = time 

(h), Q = flowrate (m
3
/h), V = volume of flotation tank = 78 m

3
, b = floc flotation parameter (h

–1
), α = 

attachment coefficient (dimensionless), ηT = individual bubble collision efficiency =0.72, ϕb = bubble 

volume concentration (dimensionless), vb = bubble rise rate (m/h), db = bubble diameter =40 µm. 

Rapid gravity filtration 

The removal of solids by filtration was modelled using the Bohart & Adams model (1920) as 

shown in Equation (6), which is based on the following assumptions: 

 the capacity of a media to remove substances reduces in proportion to the media 

capacity and the initial concentration of the substance being removed; and 

 the rate of media capacity reduction is equal to the rate of substance removal. 

 𝑋𝑇𝑆𝑆

𝑋𝑇𝑆𝑆0

=
1

𝑒xka0 v⁄ −tr𝑡SS0 + 1
 

(6) 

where XTSS0 = flocculated SS (mg/L); XTSS = clarified SS (mg/L); x = depth of filter media = 

1.4 m; rt = attachment coefficient at time t (h
–1

); a0 = filter capacity = 1000 mg/L; v = 

superficial velocity of water through filter media (m/h) and t = time since last backwash (h). 

As insufficient breakthrough was observed in the operational data, it was necessary to use a 

conservative estimate of the filter capacity (a0) of 1000 (mg/L). Filter ripening was modelled 

by adjusting the attachment coefficient (k) using an empirical relationship (Equation (7)). 

WRc (2002) found that this method gave a good fit to operational data. Through trial and 

error appropriate values were identified for the initial attachment factor and the ripening time 

to minimise root mean square error (RMSE) (Swan 2015). 



 

 

where rt = attachment coefficient at time t; r = attachment coefficient; α = initial attachment 

factor = 1; tr = ripening period = 1 h and t = time since last backwash (h). 

The static model used the Bohart & Adams (1920) model as described above. In the dynamic 

model, the input suspended solids concentration and the superficial velocity were taken as 

running means over a filtration run. This acted to dampen the response of the output turbidity 

to fluctuating water quality. Backwashes could also be triggered by head loss or filtered 

turbidity exceeding maximum limits in the dynamic model. 

In the dynamic model, clean bed head loss was estimated on the assumption of Darcy flow 

(using the Kozeny–Carman Equation (8)) and head loss due to solids accumulation was 

calculated using Equation (9) (Adin & Rebhun 1977). The static model did not require head 

loss to be calculated as unscheduled backwashes were not modelled. 

  

 𝑟𝑡 = 𝑟(1 − 𝛼𝑒−𝑡/𝑡𝑟) (7) 



 

 

 

ℎ𝐿0
=

𝜅𝑘𝜇 [
6(1 − 𝜀)

𝜓𝑑
]

2

𝑣𝐿

𝜌𝑤𝑔𝜀3
 

(8) 

where hL0 = clean bed head loss (m); Kk = Kozeny coefficient = 5; μ = water dynamic viscosity 

(Ns/m
2
); ε = voidage = sand 0.4, anthracite 0.5;  = sphericity of filtration media = sand 0.8, 

anthracite 0.6; d = media diameter = sand 0.58 mm, anthracite 1.3 mm; ν = filtration rate (m/h); L = 

filter bed depth = sand 0.8 m, anthracite 0.6 m and ρw = water density (kg/m
3
). 

 
ℎ𝐿 =

ℎ𝐿0

(1 − 𝛽√𝜎)
3 

(9) 

where hL = head loss (m); σ = accumulated solids concentration (mg/L) and β = rate of head 

loss coefficient = 0.1 l/mg. 

Granular activated carbon 

The GAC model predicted the removal of TOC, as a surrogate for natural organic matter. It was not 

possible to directly measure the influence of GAC on TOC removal at the examined WTW so TOC 

removal due to GAC adsorption and filtration was modelled as a reduction of 25%. This degree of 

removal was identified as suitable based on an assessment of Brown et al.’s (2011) data for six large 

WTWs, in the same region, for the summers of 2006 and 2007, with varying source waters and 

treatment processes. 

Suspended solids (SS) removal by GAC was not be modelled, as although it has been shown to be at 

least as effective as conventional filtration media at removing SS from water (Love & Symons 1978), 

this is not the process’s principal purpose at works where it is conventionally used as a tertiary 

treatment for removing a multitude of different dissolved organic compounds. 

Chlorination 

Flow within contact tanks resembles plug flow with a degree of dispersion. The flow regime of the 

contact tank is defined by the tanks hydraulic efficiency (t10:tθ). The hydraulic efficiency of a tank was 



 

 

defined as the ratio of the time taken for 10% of the concentration of a tracer chemical to be detected 

at the outlet of the tank (t10) to the theoretical contact time if perfect plug flow conditions were present 

(tθ). 

A first order decay equation was used with decay constants based on values reported in Brown (2009) 

for six WTWs in the same region as the WTW examined in this work. The decay models used from 

Brown (2009) were for decay between 5 and 120 minutes (Equation (10) and Table 6). The initial 

decay was not modelled in this work as the initial chlorine recorded by the eScada system was at the 

inlet to the concentration tank after dosing occurred upstream: 

𝐾b = A + (a × 𝑆𝐶𝑙0
) + (b × T) + (c × Tot𝑂𝐶) + (d × SBr) 

(10) 

where Kb = decay rate parameter (h
–1

); SCl0 = chlorine dose = 1.6 mg/L; T = temperature (ºC); TotOC = 

total organic carbon (mg/L) and SBr = Bromide (µg/L). 

Table 6 | Mean parameters for initial five minute decay and bulk decay parameters, adapted from 

Brown (2009) 

Relationship A a b c d 

Kb ~ 5–120 mins 0.104 –0.134 0.0064 0.0504 0.00083 

In the dynamic model, a representative number of CSTRs was identified by using an estimate of 

contact tank hydraulic efficiency (t10:t) using Equation (11) (Michalewicz 1996). A t10:t efficiency 

of 73% (as determined by a tracer test) resulted in 21 CSTRs being identified as being representative 

of the mixing that occurs. The decay within each CSTR was then calculated using Equation (12): 

 
𝑓 = 1 − 𝑒

−𝑛
𝑡
𝑡̅ [1 + 𝑛

𝑡

𝑡̅
+ ⋯ + (𝑛

𝑡

𝑡̅
)

𝑛−1 1

(𝑛 − 1)!
] (11) 

where f = fraction of tracer that has passed through after time t; n = representative number of CSTRs; 

t = time since beginning of tracer test (min) and 𝑡̅ = mean residence time (min). 

  



 

 

 𝑑𝑆𝐶𝑙𝑖+1

𝑑𝑡
=

𝑄 × (𝑆𝐶𝑙𝑖
− 𝑆𝐶𝑙𝑖+1

)

𝑉𝐶𝑆𝑇𝑅
− 𝐾𝑏 × 𝑆𝐶𝑙𝑖+1

 
(12) 

where SCli+1 = end free chlorine (mg/L), t = time (h), Q = contact tank discharge (m
3
/h), SCli = start free 

chlorine (mg/L), VCSTR = volume of CSTR = 114.3 m
3
 and Kb = bulk chlorine decay parameter (h

–1
). 

The decay within the static model was calculated using Equation (13): 

 𝑆𝐶𝑙 = S𝐶𝑙0
𝑒−𝐾𝑏𝑡 (13) 

The formation of trihalomethane (THMs) was modelled as being proportional to free chlorine 

consumption (Equation (14)) following Clark & Sivaganesan (1998), Hua (2000) and Brown et al. 

(2010). As the chlorine consumption was calculated using different methods, the predicted 

concentration of THMs was also model type dependent: 

 𝑇𝑜𝑡𝑇𝐻𝑀 = 𝐾𝑇𝐶(𝑆𝐶𝑙0
− 𝑆𝐶𝑙) 

(14) 

where KTC = coefficient of proportionality between TotTHM and chlorine consumption = 45 µg/L per 

mg/L. 

Suspended solids removal efficiency parameters 

In order to improve the accuracy of the clarification and filtration models, a cross comparison of mean 

monthly reservoir water quality parameters (WQPs): temperature, UV254, TOC, SUVA, turbidity, 

coagulant dose and estimated coagulated suspended solids concentration was made against monthly 

mean empirical removal efficiency parameters during 2011. Correlations were identified between raw 

turbidity and the removal efficiency parameters (two thirds of relationships had R
2
 values greater than 

0.5) and these relationships were used to estimate the removal parameters temporally. 

The adjustment of the removal efficiency parameters indicates that the models were otherwise failing 

to replicate some mechanisms sufficiently to account for the higher removal rates observed for more 

turbid raw waters. The empirical removal parameters used are given in Table 7. The use of these 

relationships was found to reduce the RMSE of turbidity prediction for the static and dynamic model 



 

 

by between 16 and 74% for the calibration data. When applied to the verification data, RMSE was 

reduced by between 5 and 21% (Swan 2015). 

Table 7 | Empirical removal parameters  

Parameter Empirical relationship Applied to  

Dynamic Kf (HBC) 0.307*NTUReservoir + 3.689 (for 2 CSTRs) Equation (1) 

Dynamic α (DAF) 0.017*NTUReservoir + 2.05 (for 1 CSTR) Equation (4) 

Dynamic r (FILT) 0.0003*NTUReservoir + 0.0038 Equation (7) 

Static k (HBC) 0.016*NTUReservoir + 0.494 Equation (2) 

Static α (DAF) 0.007*NTUReservoir + 0.234 Equation (4) 

Static r (FILT) 0.0005*NTUReservoir + 0.0034 Equation (7) 

Simulations 

The performance of the works was simulated using time series input data described above and also 

coagulant doses from a predictive algorithm dependent on reservoir organics concentration and 

composition. 

The predictive algorithm operated in the following way. Based on the reservoir TOC and ultraviolet 

adsorption at 254 nm (UV254), the fraction of non-sorbable TOC was calculated using Edwards’ 

(1997) model. This was then combined with a representative target clarified TOC concentration to 

calculate a target equilibrium concentration of adsorbate in solution (Ceq) using Equation (15): 

 𝐶𝑒𝑞 = 𝑇𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑇𝑂𝐶𝑛𝑜𝑛 (15) 

The coagulant dose was then calculated using Equation (16) derived from Edwards (1997): 

 
𝑀 =

(1 + 𝑏𝐶𝑒𝑞)(𝑇𝑂𝐶0 − 𝑇𝑂𝐶𝑛𝑜𝑛 − 𝐶𝑒𝑞)

𝑎𝑏𝐶𝑒𝑞
 

(16) 

where Ceq = equilibrium concentration of adsorbate in solution (mg/L); TOCtarget = target TOC = 

2.5 mg/L; TOCnon = non-sorbable TOC (mg/L); M = dose of coagulant (mMol Me
3+

); b = Langmuir 

adsorption equilibrium parameter = 0.107 L/mg adsorbate; TOC0 = initial TOC (mg/L); a = maximum 

adsorbent-phase concentration of adsorbate at saturation (mg/L adsorbate/mMol/L adsorbent). 

The coagulant doses observed and predicted using the dosing algorithm can be seen in Figure 3. Only 

a single predicted coagulant dose was predicted for both clarification processes as an “enhanced 



 

 

coagulation” dose should not be clarification process dependent. The RMSE between the predicted 

dose and that applied to the DAF process was ±3.5 mg Fe/L. 

In order that the performance of the WTW could be assessed for conditions other than those observed, 

synthetic time series data were produced using a Monte-Carlo approach. In the Monte-Carlo 

simulations, the model inputs were varied each simulated day for a simulated year, using randomly 

produced values from representative probability distributions. 

Figure 3 | Observed and modelled coagulant doses 2012 

Assessment 

The accuracy of the models was assessed through an assessment of how closely the clarified and 

filtered turbidity, product of disinfection concentration and contact time (CT) and THM production 

were replicated. This assessment was achieved using RMSEs, mean values and how often the key 

performance parameters failed to achieve target values representing “good” performance for the 

WTW (as shown in Table 8). The “failure” assessment gave an indication of how effective the model 

was at identifying the likelihood of unacceptable WTW performance for a given set of conditions. 

Table 8 | “Good” operating performance criteria 

Failure parameter Failure condition 

Blended clarified turbidity >1 NTU 

Filtered turbidity >0.1 NTU 

CT <60 mg.min/L 



 

 

THM >25 µg/L 

A final set of simulations was carried out to identify an “operating zone” for which the WTW was 

expected to produce water of an acceptable water quality. In defining the operating zone for the 

WTW, temperature and TOC concentration were selected as variable parameters alongside 

abstractions rate, due to their influence on both the solids removal and disinfection processes. Other 

water quality, design and operational parameters were assigned set values approximately equivalent to 

those observed in 2011. The values applied are given in Table 9. The coagulant dosing algorithm was 

applied. 

The models were simulated for every combination of reservoir TOC concentration, temperature and 

abstraction rate listed in Table 9 (7750 combinations) and operating zones were identified. Surface 

plots were then produced of the minimum and maximum abstraction rates which achieved the “good” 

performance criteria. 

Table 9 | Operating zone parameters used 

Parameter Value 

HBC units 10 

DAF units 7 

RGF units 8 

Contact tank volume 2400 m
3
 

Filtration run length 48 hours 

Proportion of abstracted water treated by 

DAF 

0.55 

DAF compressor pressure 400 kPa 

Contact tank inlet free Cl concentration 1.6 mg/L (1.56 mg/L observed) 

Reservoir turbidity 5 NTU (4.7 NTU observed) 

Reservoir alkalinity 80 mg/L as CaCO3 (78 mg/L observed) 

Reservoir UV254 0.17 cm
–1

 (0.173 cm
–1

 observed) 

Reservoir pH 7.7 (7.72 observed) 

Reservoir bromide 50 (63 µg/L observed) 

Reservoir TOC concentration 1–10 mg/L in single unit increments (3.3 to 6.2 mg/L 

observed) 

Reservoir temperature 0–30 ºC in single unit increments 

Abstraction rate 100–2500 m
3
/h in 100 m

3
/h increments 

Clarified TOC target 2.5 mg/L 

Time simulated 50 hours spin up, 50 hours measured 

RESULTS AND DISCUSSION 



 

 

The ability of the dynamic and static models to replicate the performance of the examined WTW in 

2012 using time-series and Monte-Carlo conditions is shown in Tables 10 and 11. Figure 4 shows the 

operating zones identified. 

Results 

Table 10 | Dynamic model accuracy 

Parameter 

DAF 

(NTU) 

HBC 

(NTU) 

FILT 

(NTU) 

CT* 

(mg.min/L

) 

THM 

(µg/L) 

2012 Observed �̅� 0.68 0.44 0.079 109 9.9 

Failure 6.8% 0.1% 30.7% 0.1% 0.0% 

Time series 

simulations 

Simulated 

using 

observed 

coagulant 

dose 

RMSE 0.28 0.18 0.035 24 3.0 

�̅� 0.63 0.45 0.077 114 7.8 

�̅� absolute 

error 

–0.05 0.01 –0.002 5 –2.1 

Failure 0.2% 0.1% 18.1% 0.2% 0.0% 

Failure 

absolute 

error 

–6.6% 0.0% –12.6% 0.1% 0.0% 

Simulated 

using 

coagulant 

dose 

algorithm 

RMSE 0.29 0.22 0.037 23 3.4 

�̅� 0.67 0.53 0.087 114 7.5 

�̅� absolute 

error 

–0.01 0.09 0.008 5 –2.4 

Failure 1.0% 2.4% 27.0% 0.2% 0.0% 

Failure 

absolute 

error 

–5.8% 2.3% –3.7% 0.1% 0.0% 

Monte-Carlo simulations �̅� min 0.66 0.48 0.078 121 6.4 

�̅� mean 0.66 0.48 0.079 121 6.7 

�̅� max 0.66 0.49 0.081 122 7.1 

�̅� absolute 

error 

–0.02 to 

–0.02 

0.04 to 

0.05 

–0.001 to 

0.002 

12 to 13 –3.5 to 

–2.8 

Failure 

min 

0.3% 0.2% 10.2% 0.0% 0.0% 

Failure 

mean 

1.0% 1.6% 13.6% 0.0% 0.0% 

Failure 

max 

2.2% 2.3% 15.3% 0.0% 0.0% 

Failure 

absolute 

error 

–6.5 to 

–4.6% 

0.1 to 

2.2% 

–20.5 to 

–15.4% 

–0.1 to –

0.1% 

0.0 to 

0.0% 

*To prevent disproportionate skew, 0.2% of outliers were removed from the original 

observed data set as they were outside of three standard deviations of the mean value.  



 

 

Table 11 Static model accuracy 

Parameter 

DAF 

(NTU) 

HBC 

(NTU) 

FILT 

(NTU) 

CT* 

(mg.min/L

) 

THM 

(µg/L) 

2012 Observed �̅� 0.68 0.44 0.079 109 9.9 

Failure 6.8% 0.1% 30.7% 0.1% 0.0% 

Time series 

simulations 

Simulated 

using 

observed 

coagulant 

dose 

RMSE 0.34 0.26 0.045 25 3.4 

�̅� 0.62 0.33 0.065 113 7 

�̅� absolute 

error 

–0.06 –0.11 –0.014 4 –2.9 

Failure 5.0% 1.1% 14.2% 0.2% 0.0% 

Failure 

absolute 

error 

–1.8% 1.0% –16.5% 0.1% 0.0% 

Simulated 

using 

coagulant 

dose 

algorithm 

RMSE 0.35 0.26 0.049 22 3.5 

�̅� 0.66 0.4 0.074 113 7.2 

�̅� absolute 

error 

–0.02 –0.04 –0.005 4 –2.7 

Failure 5.7% 4.0% 21.5% 0.0% 0.0% 

Failure 

absolute 

error 

–1.1% 3.9% –9.2% –0.1% 0.0% 

Monte-Carlo simulations �̅� min 0.68 0.33 0.064 121 5.9 

�̅� mean 0.68 0.33 0.065 121 6.5 

�̅� max 0.69 0.34 0.067 122 7.0 

�̅� absolute 

error 

0.00 to 

0.01 

–0.11 to –

0.10 

–0.015 to 

–0.012 

12 to 13 –4.1 to 

–3.0 

Failure 

min 

13.7% 0.8% 10.9% 0.0% 0.0% 

Failure 

mean 

15.6% 1.7% 14.0% 0.0% 0.0% 

Failure 

max 

18.7% 2.6% 15.9% 0.0% 0.0% 

Failure 

absolute 

error 

6.9 to 

11.9% 

0.7 to 

2.5% 

–19.8 to –

14.8% 

–0.1 to –

0.1% 

0.0 to 

0.0% 

*To prevent disproportionate skew, 0.2% of outliers were removed from the original 

observed data set as they were outside of three standard deviations of the mean value.  



 

 

Figure 4 | Predicted operating zone 

DISCUSSION 

The dynamic clarification, filtration and disinfection models were found to be more accurate than the 

static models at replicating key performance parameters (clarified and filtered turbidity, CT and THM 

production) under time-series conditions with observed coagulant doses being applied. The RMSE of 

the dynamic model was at least 5% less than that of the static model for the solids removal processes 

(HBC and DAF clarified and RGF turbidity) and 1–3% less for the disinfection models (residual 

chlorine concentration, CT and THM formation) (see Tables 10 and 11). 

It was necessary to predict coagulant dose as operators varied it substantially over the year based on 

observed clarified turbidity (dependent on floc formation) and judgement. As floc formation was not 

modelled and operator judgement was prohibitively complex to replicate, coagulant dose prediction 

allowed future or stochastic conditions to be modelled representatively. The coagulant dosing 

algorithm was found to show correlation with operator specified doses (see Figure 3). This suggests 



 

 

that TOC concentrations could be used to specify coagulant doses using a method derived from 

Edwards (1997) TOC adsorption isotherm. If this type of coagulant dosing was applied at the 

investigated WTW, it is possible that coagulant could be dosed more efficiently. This could result in 

less variation in chlorine demand and THM production, due to a more stable pre-disinfection water 

organic content. The model predicted that the use of the dosing algorithm would also reduce 

coagulant costs by approximately £250,000 per year and sludge disposal costs by approximately 

£20,000 per year at the examined works. 

The RMSE of the more computationally demanding dynamic clarification models were lower than the 

static models, but of a similar magnitude (RMSE ± 0.1 NTU). A lower degree of accuracy is achieved 

in predicting DAF, in comparison to HBC clarified turbidity, using both types of models. The lower 

degree of accuracy is thought to be influenced by individual DAF tanks being brought in and out of 

service and tanks appearing to have substantially different removal efficiencies in practice. The 

influence of these effects needs to be considered when assessing the likelihood of unacceptable WTW 

performance for different treatment processes and operating regimes. 

The dynamic filter model was found to be more accurate than the static model with RMSEs of 0.035 

and 0.045 NTU respectively. Some of the additional error of the static filtration model is due to 

unrepresentative turbidity fluctuation. This fluctuation is due to the static model not having a 

mechanism to dampen the influence of short term changes in operating conditions. The certainty in 

modelled filtered turbidity was limited, due to performance variation between filters in the same bank 

and difficulty in identifying robust process parameters such as attachment/detachment coefficients or 

filter capacities. Applying dynamic aspects to the static logistic curve approximation of filter 

performance improves predictive ability marginally. It is possible that a conservative estimation of 

filter performance could be achieved using the static Bohart & Adam (1920) equation with the time 

since last backwash parameter set as the filter run duration (in Equation (7)). 



 

 

The dynamic model’s RMSEs for predicting CT, THM formation and residual free chlorine 

concentration were found to be lower than those predicted using the static model, but of the same 

magnitude (±3%). The accuracy of the models for predicting CT, THM formation and residual free 

chlorine concentration is approximately ±10, ±20 and ±30%, respectively. 

When Monte-Carlo conditions were applied, the mean of the key performance parameters altered by 

up to 15% for the dynamic model and up to 20% for the static model, in comparison with the 

application of time series data (see Tables 10 and 11). This variation in performance is likely to be 

caused by the random nature of the Monte-Carlo process, inexact representation of operating 

conditions and lack of modelling of correlations between operating conditions (i.e. higher TOC 

concentrations may be expected when raw turbidity is greater) (Clark et al. 2011). 

The range of mean key performance values, produced from three separate Monte-Carlo runs, was 

found to be less than 5%, with the exception of THM production. Application of the Monte-Carlo 

technique to assess the performance of WTWs has the potential to give insight into their robustness 

but with potentially reduced accuracy and precision. 

The accuracy of the static and dynamic models to predict the likelihood that “good” treatment could 

be achieved by the WTW under time-series and Monte-Carlo conditions was found to be comparable. 

The relative failure rates predicted by the static and dynamic models for the different performance 

parameters were found to be dependent on the treatment process modelled and the simulation method. 

The percentage of the time that WTW key performance parameters failed their target values was 

found to be predicted with an accuracy of ±20%. The disinfection and disinfection by-product 

formation failure rates were predicted with the greatest accuracy (±0.1%), followed by clarified 

turbidity (±12%) and finally filtered turbidity. The failure rates predicted using Monte-Carlo methods 

had precisions of 6% for both models for all parameters and simulation methods. 

The “operating zone” identified using the dynamic and static models had similar minimum and 

maximum profiles (see Figure 4), indicating that the same causes of failure are likely to limit 



 

 

abstraction rates for both models. The models had comparable maximum abstraction rates for low 

initial TOC concentration conditions whilst the dynamic model had significantly lower maximum 

abstraction rates for higher initial TOC concentrations (>4 mg/L). The maximum abstraction rates 

predicted by the two models had disparities of up to ±25% for similar conditions. 

The models predict that as initial TOC concentration increases it is necessary to increase coagulant 

dose to limit the filtered residual TOC concentration (to reduce the impact on the adsorption and 

disinfection processes). The increased solids loading caused by metal hydroxides from coagulants 

being precipitated out of solution results in the maximum abstraction rate of the WTW reducing (due 

to elevated clarified or filtered turbidity at higher abstraction rates). It was predicted that minimum 

abstraction rates have greater influence at temperatures above 18 ºC and initial TOC concentrations 

above 6 mg/L. Under these conditions, the maximum and minimum abstraction rates were predicted 

to converge, making acceptable treatment unachievable for the defined treatment regime. 

Although the models in the operational zone analysis predicted that warmer water would result in an 

increase in the maximum possible abstraction rate, global warming will not necessarily result in lower 

turbidity final waters. Climate change could influence other water properties such as alkalinity, 

hardness, TOC and ammonia concentrations. Clark et al. (2011) reported that for the Ohio River, 

TOC was predicted to increase in the future by 0.03 mg/L per annum. It is shown that controlling 

TOC concentrations using enhanced coagulation could reduce the maximum abstraction rate of a 

WTW considerably and so there is uncertainty as to the influence of climate change on the operation 

of WTWs. 

As the data used to calibrate and verify the models came from an operational WTW, a limited range 

of performance was observed, due to the operators striving to provide a satisfactory water quality for 

consumers. When unsatisfactory performance was predicted, the model was likely to be operating at, 

or beyond, the range of the calibration and verification data, limiting confidence in the models’ 

accuracies. However, the use of computational models can allow a wide range of treatment options to 



 

 

be initially assessed with no risk posed to operational performance or consumer health and at lower 

cost than alternative pilot plant studies. 

CONCLUSIONS 

The use of dynamic clarification, filtration and disinfection models using observed time-series initial 

conditions were found to be more accurate than static models. The RMSE of the dynamic model was 

at least 5% lower than the static model for clarified and filtered turbidity and 1–3% lower for CT 

disinfection and THM production (see Tables 10 and 11). 

The application of Monte-Carlo conditions resulted in the predicted mean of key performance 

parameters (clarified and filtered turbidity, CT and THM production) adjusting by up to 15% for the 

dynamic model and up to 20% for the static model. The precision of these values over three runs was 

found to be less than ±5%. 

The accuracy of the static and dynamic models to predict the likelihood that “good” treatment (where 

the key performance parameters met set criteria) could be achieved by the WTW under time-series 

and Monte-Carlo conditions was found to be comparable. 

The dynamic and static models identified similar “operating zones” (see Figure 4). For temperatures 

above 18 ºC and initial TOC concentrations above 6 mg/L, acceptable treatment was predicted not to 

be achievable for the required final water quality and defined treatment regime due to either 

insufficient solids removal or excessive THM production. 

The justification for the complexity of the dynamic models assessed, along with the considerable 

amounts of calibration data they require, is limited for whole works modelling as their accuracies are 

comparable to their static alternatives. The application of static models calibrated using process and 

telemetry data is considered to be more suitable for application to whole works modelling. 
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