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Highlights 

 
 Cd-Zn sulphide films synthesized via chemical bath deposition technique were 

investigated for photovoltaic and optoelectronic applications. 

 XRD studies show that Cd-Zn sulphide films are composed of nanocrystalline structure 

surrounded by the amorphous grain boundaries. 

 Nanocrystalline structures of the films were confirmed by the SEM.  

 The band gap of these films is a combination of composition and size  

 EU and σ studies ascribed the shrinkage of the solar absorption edges around the optical 

band-gaps.   

 

 

 

ABSTRACT 

In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical 

bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized 

films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and 

ultraviolet visible (UV-Vis) spectroscopic methodologies. A higher degree of crystallinity of the 

films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial 

crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. 

The optical absorbance and absorption coefficient of the films were also enhanced significantly 

with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in 

direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct 

and indirect transitional energies due to the exponential falling edges of the absorption curves 

may either be due to the lack of long-range order or to the existence of defects in the films. The 

declination of the optical absorption edges was also confirmed via Urbach energy and steepness 

parameters studies. 

 

Keywords: XRD; SEM; UV-Vis; crystallinity; band gap, absorption edges.   
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1. Introduction 

Over the years, group II–VI  semiconducting compounds have enjoyed a continuous 

interest by many research groups around the world due to a wide array of unque applications [1-

4]. Generally these types of compounds are extensively used in solid-state physics especially in 

optoelectronics, photodetectors, low-voltage electroluminescent cathodes, heterojunction solar 

cells and photovoltaic cells with different polycrystalline absorber materials [5-11]. Within these 

classes, Cd-Zn sulphide based compounds have shown unique attraction due to their easy tuning 

of energy gap and lattice parameters [12, 13]. Furthermore, the energy gap of these films lies 

approximately 40 eV which is very optimal for photo-conducting materials, non-linear optics, and 

other optoelectronic devices. Remarkably, Cd-Zn sulphide films possess a band gap between CdS 

(2.42 eV) and ZnS (3.66 eV) which can be tuned by varying the ratio of Cd and Zn [14]. This 

spectacular energy band gap of these films guided them into window absorption losses and turned 

out a rise in short-circuit current in the solar cell. In addition to that, they are used in fabrication of  

p-n junctions without lattice mismatches but with the help of  quaternary materials, like 

CuInGaSe2 and CuInS2Se2 [15]. A large number of  techniques such as chemical bath deposition 

(CBD) [16-19], dip-coating [20, 21], spray pyrolysis [22], proton exchange membrane [23], 

electro-active polymer [24], co-evaporation [25], thermal evaporation [26], solution growth 

technique [27], plasma polymerization [28, 29], reactive diffusion [30], sol-gel [31-34], chemical 

vapor deposition [35],  unbalanced magnetron sputtering [36-39], and successive ionic layer 

adsorption and reaction [40] are extensively used for the deposition of film based products. 

Including the various deposition methods, extensive efforts are currently undergoing to 

comprehend fundamental properties of these films and their improvement using few of the above 

mentioned techniques. For example, effects of deposition parameters on the physical properties of 

CdxZn1−xS films deposited by spray pyrolysis method were investigated by Ilican et al. [41] and 

the film structures were found to be polycrystalline in nature. The same technique was also 

utilized by Selvan et al. for understanding the aging effect of Cd-Zn sulphide films [42]. Abbas et 

al. [43] reported the effect of thickness on structural and optical properties of ZnxCd1-xS thin films 

prepared by chemical spray pyrolysis. Patidar et al. studied the structural, optical and electrical 

properties of such films developed by vacuum evaporation [44]. Dzhafarov et al. have 

investigated the structural, composition and optical absorption properties of Cd-Zn sulphide thin 

films deposited by Zn diffusions [30].    

However, CBD method still retains wide usages due to combinaed advantages such as a 

non-vacuum, cost effective, reproducible, minimum material wastage, independent of 

sophisticated instrument and applied in large area of deposition at low temperature as well. The 
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basic principle of CBD is the deposition of thin films by controlled chemical reaction. Usually 

substrates are immersed in a solution containing the chalcogenide source, metal ion, and 

complexing agents. Ravangave et al. [45] studied the structural, morphological and electrical 

properties of CdxZn1-xS thin films deposited by CBD technique. XRD spectra demonstrated  the 

hexagonal crystal structure of CdxZn1-xS. The dark resistivity measurement showed that the films 

have high resistivity. The dark resistivity at room temperature was found to be of the order of 

≥105 Ω cm for pure CdS and ≥106 Ω cm for CdxZn1-xS thin films. The dark resistivity was 

observed increased with Zn content as well. The similar method was also used to synthesize 

Cd1−xZnxS thin films by Isah [46] and found that the films had a transmittance between 75% and 

85% and and an optical band gap within the range 2.8 - 3.4 eV. In view of the above, it is realized 

that Cd-Zn sulphide based films are of great interests to the scientific community. Even though 

large volumes of literature are available on Cd-Zn sulphide based films and related issues are 

comprehensively discussed both in experimental and theoretical view points however a clear 

understanding of the retrenchment of the optical absorption edges around the optical band-gaps is 

scant. Keeping these realities in mind, in the present work, we adopted CBD method to synthesize 

Cd-Zn sulphide films and carried out systematic studies on their structural, morphological, and 

various optical parameters to realize their variations with the film thicknesses. XRD, SEM and 

UV-Vis techniques were employed to investigate the Cd-Zn sulphide films and identifying the  

potential applications in photovoltaic and optoelectronic devices. In this regard, it is worth 

mentioning that a few other related work have been extensively reported in earlier studies [47, 

48]. 

                                                                                       

2.  Materials and methods 

2.1 Film synthesis process  

All the glass wares were cleaned with both aqueous (HCl) and organic media (acetone, 

methanol) followed by an ultrasound bath and drying in oven. Cadmium acetate, zinc chloride, 

ammonium chloride and thiourea were dissolved together with the deionized water in a chemical 

bath (vessel) to make their corresponding 0.005 M, 0.02 M, 0.02 M and 0.04 M solution 

respectively. The pH of the solution was adjusted to 11 by the addition of 0.2 M ammonium 

hydroxide with constant stirring. The temperature of the chemical bath was kept at 80 °C with the 

aid of a hot plate stirrer. A thermometer was used for continuous monitoring of the temperature of 

the chemical bath. For thin film synthesis, the soda lime glass substrates were vertically placed 

into the chemical bath containing a solution of 120 ml and allowed them for deposition for the 

periods of 1.0 h, 1.5 h and 2.0 h respectively. After elapsing the desired deposition time, the glass 
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substrates were removed from the chemical bath solution and immediately rinsed with deionized 

water in such a way that no loosely-bound powder was left onto the films surface. Finally, the 

films were dried in an open atmosphere for a period of couple of hours. The thicknesses of the 

deposited films were measured by the weigh difference method.    

The chemical processes involved in the formation of ZnS and CdS are shown in the 

following chemical reactions: 

                       NH3   + H2O =  NH4
+ + OH- 

 

                           Zn2+ +4NH3  =   [Zn(NH3)4]
2+  

 

                           CS(NH2)2+ 2OH-   =  S2- + CN2H2+ 2H2O 

 

                          [Zn(NH3)4]
2+   +S2-  =  ZnS (s) + 4NH3 

                 

                         Cd2+ +4NH3 = [Cd(NH3)4]
2+ 

                  

                          [Cd(NH3)4]
2+ +S2-  =  CdS (s) + 4NH3 

 

2.2 Measuring the films thicknesses 

Thickness of the films can be measured either by in-situ monitoring of the rate of 

deposition, or other techniques after fabrication. There are several methods to estimate the 

thickness of the deposited films with varying degree of accuracy. One can choose a method on the 

basis of their convenience, simplicity and reliability. Since the film thicknesses are generally in 

the order of wavelength of light, various types of optical interference phenomena are involved in 

thickness measurements. Nowadays commonly used in-situ film thickness measurement systems 

are, multiple-beam interferometry, Michelson interferometer, and using a hysteresis graph. In this 

study, we have adopted a Multiple-beam interferometry method to measure the thickness of the 

films. A UV-1200 spectrophotometer (Shimadzu Corporation, Japan) was used to measure the 

film thickness using a programmable data pack. Table 1 displays the thickness values of CdZnS 

films deposited for 1.0 hr, 1.5 hr, and 2.0 hr.  

 

2.3 XRD measurements 

XRD is a non-destructive analytical tool primarily used for phase identification of a 

crystalline material to provide information with the crystallinity, orientation, lattice constants and 

phase of crystals. X-ray diffraction (XRD) data of the films were collected out using PANalytical 

X’Pert Pro diffractometer that uses a Cu-Kα X-ray source of wavelength, λ = 0.15418 nm. 

PANalytical X’Pert Pro diffractometer consists of three equally important parts namely X-Ray 

tube (X-Ray source), rotating sample platform (goniometry) and detector. The other three parts of 

this machine are the collimator, filter and monochromator. X-rays were emitted from an X-ray 
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tube which sits at one end of one arm of goniometer stage. Generally, X-rays are incident onto the 

films at an angle θ with respect to the film surface, and collected by a detector situated in the 

goniometer arm at 2θ distance along the direction of the incident [49]. The XRD machine was 

operated at a power of 40 kV and 40 mA, with high temperature attachment up to 1600 °C. The 

XRD data were recorded in the angular range of 10°≤2𝜃≤60° in steps of 0.02°.  

 

2.4 SEM imaging of the films 

The surface morphology of the as deposited Cd-Zn sulphide films was performed via a 

high resolution (3 nm) and low vacuum analytical scanning electron microscope (JEOL JSM-

6490LA) installed at IPD, BCSIR in Dhaka. The low vacuum mode of the system allows to 

observe the specimens which cannot be viewed at high vacuum due to excessive water content or 

due to nonconductive surface. The take-off angle for the JSM-6490ALA was 35°, with an 

analytical working distance of 10 mm. Prior to SEM imaging, the film surfaces were coated with 

a thin layer of gold by sputtering (AGAR Auto Sputter Coater).   

  

2.5 Optical measurements technique  

            The optical properties of Cd-Zn sulphide thin films were conducted by a dual beam UV-

Vis spectrophotometer (SHIMADZU UV-1601, JAPAN), installed at PP and PDC, BCSIR in 

Dhaka, in the wavelength range of 190-1100 nm at room temperature. Prior recording the 

absorption data of the films, a blank glass substrate was used as the reference. After base line 

correction, the films were placed vertically onto the sample holder and illuminated by a 

monochromatic beam of light to record the absorption spectra. Acquired absorption spectra were 

used to calculate the energy band-gap values and other optical studies such as Urbach energy, and 

steepness parameters.  

 

3. Results and discussion 

3.1 XRD studies of the Cd-Zn sulphide films 

XRD spectra of the Cd-Zn sulphide films with different thicknesses are displayed in Fig. 

1. The XRD spectra did not reveal well-defined peaks, indicating a disordered state of the 

materials having a mixture of nanocrystalline and amorphous phases. Inspection of XRD spectra, 

from all three films, show that the intensity of the diffraction peaks significantly increased with 

the increase in film thicknesses. This feature confirms the nanocrystalline phases of the films are 

attained with the increased thicknesses. Film deposited for 1 hour shows the principal peak at 2θ = 

26.53° due to a (002) reflection, and another peak at 2θ = 28.50° corresponding to a (101) 

reflection. Few other reflection peaks (such as (100), (110), (103) and (112)) at lower and higher 
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angle sides were also identified. All these features are consistent with the JCPDS 00-049-1302, 

with a hexagonal lattice system of space group P63mc (186). Similar features were also realized 

with the films deposited for 1.5 and 2 hrs. However, for 2 hr deposited films, the peaks detected 

for (002), (110) and (112) reflection planes possess significantly higher intensity then those 

deposited for 1 and 1.5 hr. This clearly states that the higher degree of crystallinity has been 

achieved with films deposited for the period of 2 hr. The (002) peak gives the lattice matching to 

the chalcogenide semiconductor, such as CuInGaSe2 and CuIn(SexS1-x)2 , that have wide-spread 

applications in solar cell devices for a superior cell performance [50].  

The average crystallite size, D of the films were calculated via Scherrer’s formula, 

    𝐷 =  
C𝜆

𝛽𝐶𝑜𝑠𝜃
       (1) 

where C is a constant equal to 0.94, λ is the X-ray wavelength of CuKα radiation (= 0.15418 nm),  

β (in radian) is the full width at half maximum (FWHM), and θ is the Bragg’s diffraction angle. 

The lattice constants a and c of Cd-Zn sulphide films were calculated using XRD data via 

following Eq. (2).  

1

𝑑2
=  

4

3
(

ℎ2+ℎ𝑘+𝑘2

𝑎2 ) +
𝑙2

𝑐2
     (2) 

 

The lattice constants and average crystallite size of these films at different film thicknesses 

are enumerated in Table 1. Accoring to the crystallite size and lattice constant values presented in 

Table 1, it clearly indicates that the synthesized Cd-Zn sulphide films are in nanocrystalline 

phases.  

 

3.2 Surface morphology of Cd-Zn sulphide films 

Scanning electron microscopy (SEM) studies were carried out to inspect the surface 

morphology, grain size and uniformity of Cd-Zn sulphide films. Fig. 2 includes the SEM images 

of Cd-Zn sulphide films deposited onto glass substrates for 1, 1.5 and 2 hrs in air. The grain 

morphology of the films were examined at different magnifications. It has been observed that the 

grain size increases with increasing deposition times. For 1 hr period deposited films, the average 

grain sizes are about 150 nm while the films deposited for 2 hr have an average grain size of 205 

nm. This reveals that more materials are dumped onto the glass substrates to yield a thicker thin 

films together with larger grain size and surface area. The grains seem to be isolated from each 

other with a well-defined gaps in between. It is assumed that the white grains are originated from 

cadmium material whereas the black grains arisen due to from Zn-content. Further investigations 

demonstrated that the number of grains of Cd-content is remarkably less than that of Zn material. 
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This is because of the replacement of Zn atoms by the Cd atoms. Nanostructure formations of 

CdSe0.6Te0.4 films, deposited via electrochemical route at different deposition times, were 

confirmed using FESEM studies [46]. As a result of these nanostructures these films were found 

to facilitate the light absorption behaviour and thus can participate in multiple scattering and 

absorption processes which  in turn demonstrate promising improvement in the power conversion 

efficiency of solar havesting devices [47]. In another report, the surface morphological study of 

electrochemically synthesized Cd0.3Zn0.7S films was conceded by FESEM imaging. Nanospheres 

like nanocrystalline morphologies of the films were observed all over the substrate’s surface. 

Authors argued that these nanospheres like surface morphologies of these films are responsible 

for altercation of electron–hole couple in electrolytic bath that is also viable for solar energy 

harnessing [48]. Since, in solar cell applications, the surface of p-type layer is kept exceedingly 

thin that solar radiation can easily penetrate the surface of the films. This thin layer is connected 

to the positive terminal of the solar device. Observed granular like surface morphology is 

responsible for the densely packed surface morphology and a larger number of grains can be 

accommodated in smaller surface area of the films that is potentially ideal for a solar cell 

application view point [45]. 

 

3.3 Optical studies of as deposited Cd-Zn sulphide films  

3.3.1 Solar absorbance and absorption coefficient of Cd-Zn sulphide films 

The optical absorption edges of the films were analyzed via UV-Vis spectroscopy. Fig. 3 

illustrates the UV-Vis absorbance spectra, acquired in the wavelength range of 250-1100 nm, of 

the films for various thicknesses at room temperature. The optical absorbance values of these 

films are displayed in Table 2.  

From Fig. 3 and Table 2, it is seen that the optical absorbance of the films increases 

significantly with the increase in thicknesses of the films. Broadening features of the absorption 

peaks are also observed with the increase of thickness.  The absorption intensities rise sharply in 

the wavelength region of 250-420 nm, attains its maximum value of 95.4% and then drops rapidly 

up to 850 nm. Strong absorption around 260-320 nm is ascribed to electronic inter-band 

transitions from the filled sulphide (S3p) valence band through to the empty conduction band 

[51]. Well-defined absorption edges indicate a good quality of the films, and the ternary films are 

comprised by a solid solution [52]. This is because of the higher degree of crystallizations of the 

films is attained with the higher deposition times. The UV-Vis spectra also demonstrate that, with 

the increase in film thicknesses, the absorption edges of the films shift to high frequency end (or 

so called “blue shifted”). At the same time, a clear increase in the magnitudes in the absorption 
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edges is noticed with the increase in deposition times of the films. The increase in absorption 

intensities at higher deposition times reveals the thicker depositions of the Cd-Zn sulphide films. 

It is also assumed that higher degree of optical absorption and blue shifting of the absorption 

edges with increased film thickness are associated with quantum size effect [53]. The higher 

values of solar absorption at higher film thickness are due to the presence of defects and vacancies 

as reflected from SEM images (see Fig. 2). Optical studies attribute that all the films are highly 

absorptive with both direct and indirect types of transitions. These features are extensively 

discussed in the optical band gap (Eg) analysis section (see section 3.3.2).  

The absorption coefficient, α of the films was estimated, from absorbance data 

corresponding to different photon energies at room temperature, using the following relation [54], 

                                    𝛼 = 2.3026 
𝐴

𝑑
        (3) 

where, 𝐴 = 𝑙𝑜𝑔10 (
𝐼0

𝐼
) is the absorbance at a specific wavelength, and d is the thickness of the 

films. The spectral dependence of α on the photon energy, h are presented in the following Fig. 

4. The spectral dependence of the absorption coefficient on the photon energy helps to understand 

the band structure and electronic transitions involved in the absorption processes. Absorption 

edges evolved at 1.3eV and sharply rises from 2.5eV. The absorption spectra have two slopes in 

the observed photon energy range that indicate the presence of direct and indirect optical 

transitions in the Cd-Zn sulphide films. These falling edges are assumed to be either due to lack of 

long-range order, or due to the presence of localized defects around the film surfaces. 

 

3.3.2 Optical band-gaps in Cd-Zn sulphide films  

            In crystalline and amorphous materials, the involved optical transition can be determined 

on the basis of the dependence of α on photon energy, hν, via Tauc relation [28], 

 𝛼ℎ𝜈 = 𝐶(ℎ𝜈 − 𝐸𝑜𝑝𝑡)
𝑛

        (4)              

where, h is the incident photon energy, h Planck’s constant,  the frequency of the incident solar  

radiation, C an energy independent constant and is a measure of the steepness of band tail density 

of states (Urbach region), Eopt the energy of optical band-gap, and n is an index depending on the 

type of optical transition involved in the photon absorption process. The index n equals 0.5, 2, 1.5 

and 3 for allowed direct, allowed indirect, forbidden direct and forbidden indirect transitions, 

respectively [55]. Thus, the indirect band-gap energy, Ei can be estimated by plotting (αh)1/2 

versus h curves and extrapolating the linear portion of the curve to (αh)1/2 = 0. The direct band-

gap energy, Ed is computed by plotting (αh)2 with respect to the photon energy and extrapolating 

the linear portion of the curve to (αh)2 = 0 along the photon energy axis. 
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                In Fig. 5, (αh)2 is plotted as a  function of h to estimate Ed of Cd-Zn sulphide films. 

The direct band-gap energy of Cd-Zn sulphide films was calculated using the intercept of the 

linear part of the curves extrapolated to zero along the X-axis [56]. The direct energy band-gap 

values of as deposited Cd-Zn sulphide thin films with various thicknesses are documented in 

Table 3. In a similar fashion mentioned above, using Fig. 6 (plots of (αh)1/2 vs h) , the indirect 

energy band-gap values of as deposited Cd-Zn sulphide films with various thicknesses are 

computed and presented in Table 3. It is found that the energy band gap is thickness dependent. 

This may be due to the possibility of structural defects in the films that took place during the time 

of their preparation, which could give rise to the defect states near the conduction band in the 

band gap. The linear landscape of the Tauc plots (see Fig. 5 and Fig. 6) at the absorption edges 

established that the Cd-Zn sulphide films possess semiconductor nature. The direct band gaps of 

the as-deposited films varied from 3.10 to 2.45 eV; whereas, indirect band gaps varied from 1.60 

to 1.20 eV. The decreased band gap is due to the increased crystalline nature of the films [57]. It 

is also proposed that the increase of energy band-gaps of these films is due to the increase in grain 

size. The reduction of the direct energy band-gap is related to the band tailing triggered by the 

disorder of the films.  The optical band-gaps of the films are, generally, affected by two factors: 

the inherent band gap of the material and a tail due to disorder [58]. In semiconducting materials 

optical band-gaps are significantly influenced by the defects, residual strain, impurities, and 

disorders of grain boundaries [59]. It is also known that the tensile strains result in a decrease in 

energy band-gaps due to the extended lattice, while compressional strains result to enhance the 

optical band-gaps because of the lattice compressions. By using longer deposition times the 

carrier concentration increases and the optical band-gap decreases. As a result, shrinking in the 

optical band-gaps of CdZn-sulphide films come into play. It is also believed that the higher 

deposition times results to increase the particle size and thereby reducing the optical band-gaps 

owing to the decreasing contribution of particle size confinement effect [60].  

 

3.3.3 Urbach energy and steepness parameters in Cd-Zn sulphide films  

Generally, the spectral dependence of the absorption coefficients are studied at photon 

energies less than the energy band-gap of the films i.e., in a region so called Urbach spectral 

tail that characterizes the slope of the exponential edge and is expressed as [61], 

                                           𝛼 =  𝛼0exp (
𝐸

𝐸𝑈
)       (5) 

where α0 is a temperature dependent constant and EU,  the Urbach energy.  
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The EU can be evaluated as the width of the exponential absorption edge or as the width of 

the tails of localized states. Urbach plots of log(α) vs hν for Cd-Zn sulphide films of different 

thicknesses are shown in Fig. 7. An emperical relationship, EU = [d(lnα)/d(hν)]-1 was used to 

estimate the Urbach energies. The corresponding Urbach energy values as estimated via this 

relationship are listed in Table 4. The plots of log(α) vs hν give out linear curves whose slope 

provide with the Urbach energy (EU), typically known as the width of the tails of localized states 

in the energy band-gaps of the films. It is clearly seen that the values of EU, which essentially 

indicates the band width of the localized states, increases as the thicknesses of the films are 

increased. An increase in the energy band-gaps of an amorphous structure is, generally, 

associated with the decrease of the band tails around the energy band-gaps. This phenomena 

is associated with the increase in the degree of crystallinity and a decrement in density of defect 

states [62].  

             The steepness parameter, σ characterizing the broadening of the optical absorption edges 

due to electron-phonon or exciton-phonon interactions, was calculated by the following equation 

[63], 

                                  𝜎 =  
𝑘𝐵𝑇

𝐸𝑈
  (6) 

where kB is the Boltzmann constant and T is the absolute temperature in kelvin. The calculated 

room temperature steepness parameters, σ , are listed in Table 4. From Table 4, it is seen that 

the absorption edges of the Cd-Zn films are narrowed down with the gradual increase in film 

thicknesses. The ‘steepness parameter’ σ indicates the broadening or shrinkage of the optical 

absorption edges arise from the electron-phonon/exciton–phonon interactions. The increase in 

the Eu values is associated with the increase of localized states originated from the non-radiative 

recombination centres [64]. These localized states might be resulted either from the vacancies or 

dislocation defects of the films. It is established that optical absorption response of these films 

are strongly dependent on the presence of localized states in the forbidden band gap of 

materials. The shapes of absorption edges provides with substantial evidence on the localized 

states and disorder effects. In amorphous structures, these localized states play even more 

important roles.  Since Urbach energy indicates the measure of the width of localized states 

associated with nanocrystalline or amorphous films around the optical band-gap, the exponential 

dependence EU on hν is assumed to be initiated from the random variations of internal fields 

related to the structural disorders [65]. With longer deposition times, the carrier concentration 

increases and the energy band-gap decresases. This phenomenon is well supported by Moss–

Burstein effect [66]. The red shift of the absorption edges is related to the p–d spin-exchange 

interactions between the band electrons and the localized d electrons of Cd2+ ions as reported by 
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Diouri et al. [67]. Consequently, the optical absorption edges of the Cd-Zn sulphide films are 

shrinking around the optical band-gaps.  

 

4.       Conclusions 

          Cd-Zn sulphide films, synthesized onto soda lime glass substrates via chemical bath 

deposition technique, were investigated for their structural morphology and optical analysis. X-

ray diffraction studies showed that Cd-Zn sulphide films are composed of nanocrystalline 

structure embedded by the amorphous grain boundaries. Nanocrystalline structures of the films 

were confirmed by the SEM studies where the grain sizes were in the nanoscale range. The solar 

absorption of a material resembles the electron excitation from valance band to conduction band 

is successfully used to regulate the nature and value of the optical band gap. The band gap of 

these films is a combination of alloying effect (composition) and quantum confinement effect 

(size) and fluctuates largely at low crystallite size. The solar absorbance, absorption coefficient 

were increased  with the increase in deposition time while optical band gaps of the films were 

significantly altered. Urbach energy values and steepness parameter studies ascribed that with 

the monotonic increase in films thicknesses, the shrinkage of the solar absorption edges of the 

films become predominant around the optical band-gaps. This information would play a crucial 

role in the utilization of these materials to design a suitable window material for solar cell 

devices and optoelectronic applications.  
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Figure 1. X-ray diffraction patterns of as deposited Cd-Zn sulphide films of different thicknesses. 
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Figure 2. SEM images of Cd-Zn sulphide films deposited for (a) 1 hr, (b) 1.5 hr, and (c) 2 hr.  
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Figure 3.  UV-Vis absorbance spectra of Cd-Zn sulphide films deposited for 1 hr, 1.5 hr, and 2 hr. 
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Figure 4.  Absorption coefficient vs photon energy spectra of Cd-Zn sulphide films deposited for 

1 hr, 1.5 hr, and 2 hr. 
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Figure 5. Tauc plots of (αhν)2 vs hν for as deposited Cd-Zn sulphide films of different thicknesses. 
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Figure 6. Tauc plots of (αhν)1/2 vs photon energy for as deposited Cd-Zn sulphide films of 

different thicknesses. 
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Figure 7. Urbach plots of Ln(α) vs hν for as deposited Cd-Zn sulphide films of different 

thicknesses. 
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Table 1. Thicknesses, crystallite size and lattice constants of the Cd-Zn sulphide films at various 

deposition times. 

 

Film deposition 

times (hr) 

Film thickness, 

d (nm) 

Crystallite size, 

D (nm) 

Lattice constants (nm) 

a c 

1.0 1320 18.23 4.101 6.810 

1.5 1420 15.12 4.121 6.952 

2.0 1510 11.05 4.259 6.996 
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Table 2. Optical absorbance values of Cd-Zn sulphide thin films at various film thicknesses. 

 

 

  

Film deposition times 

(hr) 
Film thickness, d (nm) 

Maximum optical 

absorbance, A (%) 

Wavelength at 

maximum absorbance, 

λ (nm) 

1.0 1320 74.20 320 

1.5 1420 89.10 310 

2.0 1510 95.40 290 
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Table 3. Energy band-gaps of as deposited Cd-Zn sulphide films at various film thicknesses. 

 

Film deposition times 

(hr) 

Film thickness, d 

(nm) 

Direct band-gap, Ed 

(eV) 

Indirect band-gap, Ei 

(eV) 

1.0 1320 3.10 1.60 

1.5 1420 2.65 1.30 

2.0 1510 2.45 1.20 

 

 

 

 

 

 

Table 4. Urbach energy and steepness parameters of Cd-Zn sulphide films at various film 

thicknesses. 

 

Film deposition times (hr) 
Film thickness, 

d (nm) 
Urbach energy, EU (eV) Steepness parameters, σ  

1.0 1320 1.25 0.020 

1.5 1420 1.57 0.016 

2.0 1510 1.58 0.015 

 


