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Graphical Abstract 

 

  

 
Figure The non-dominant solutions obtained by three algorithms on some small and large-scale instances 

In the above figure, the former two lines of figures are small-scale instances, in which DE-ICA shows the best convergence on 

2 instances compared with other two algorithms. Besides, on other 4 instances of small-scale instances, DE-ICA is not worse than 

D-MAENS and ID-MAENS. In general, DE-ICA shows a slightly advantage on small scale instances. The reason is that small 

scale instances have a smaller solution space and they are easier to solve. Consequently, other two compared algorithms have 

enough capacity to deal with it and get a similar performance with DE-ICA. 

In the latter two lines of figures, DE-ICA gets the best convergence on 5 instances (e4a, s1a, s4a, G1-A, G2-E). On these 

instances, DE-ICA can reach areas with both low total cost and the low makespan. As a result, the non-dominant solutions 

obtained by DE-ICA almost completely dominate the non-dominant solutions obtained by D-MAENS and ID-MAENS. On the 

remaining instances, DE-ICA is also not worse than the other two algorithms in convergence. In conclusion, DE-ICA 

demonstrates an obvious advantage in convergence on these large scale instances. The results above show that the DE-ICA is 

more suitable for the large-scale problems.  
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Highlights 

1. This paper proposes and Immune Clonal Algorithm Based 

on Directed Evolution for Multi-Objective Capacitated 

Arc Routing Problem.  

2. The proposed algorithm expands the scale of the initial 

population to increase the diversity. 

3. It helps the antibody populations to share the 

neighborhood information in time.  

4. It applies a brand-new kind of comparison operator.  

5. It can evolve in the direction of the better population.  



 
 

Abstract—The capacitated arc routing problem is playing an 

increasingly important role in our society, engendering 

increasing attention from the research community. Among the 

various models, multi-objective capacitated arc routing 

problem comes much closer to real-world problems. Therefore, 

this paper proposes an immune clonal algorithm based on 

directed evolution to solve this problem. Firstly, the proposed 

algorithm adopts the framework of the immune clonal 

algorithm and expands the scale of the initial antibody 

population in the initialization process to increase the diversity 

of the antibodies. Secondly, the proposed algorithm is combined 

with a decomposition strategy in the operations of the immune 

gene. Antibodies are classified to perform the immune genetic 

operations, which helps the antibody populations to share the 

neighborhood information in a timely manner. Thirdly, the 

proposed algorithm applies a novel kind of comparison 

operator to build the total population, which helps it to evolve in 

the direction of a better population and improves the quality of 

the antibodies. Experimental results suggest that the proposed 

algorithm can generate better non-dominant solutions than 

several compared state-of-the-art algorithms, especially for 

large-scale sets.  
Index Terms—Immune clone, decomposition algorithm, 

comparison operator, MO-CARP 

I. INTRODUCTION 

HE Arc Routing Problem (ARP) has wide applications to 
practical problems in daily life, such as snow removal in 

winter, urban rubbish collection, and sprinkler path planning, 
etc. [1~2]. One of the most important models is Capacitated 
ARP (CARP) which is much closer to many real-world 
problems. CARP aims to find the optimal routes which can 
serve all predetermined tasks under the condition of meeting 
the capacity of vehicles [3~4]. When CARP has only one 
objective (total cost), we refer to it as single objective CARP. 
For single objective CARP, researchers have proposed many 
effective algorithms, including heuristic algorithms and 
metaheuristic algorithms. Heuristic algorithms mainly 
include Path Scanning algorithm [5], Augment Assignment 
algorithm [6] and Ulusoy-Split algorithm [7]. Heuristic 
algorithms can converge to the local optimal solutions in a 
relatively short time, so the algorithms are effective for 
relatively small-scale instances. In contrast, for the 
large-scale instances, it is hard for the algorithms to escape 

from local optima, causing algorithms to fail to reach ideal 
solutions. Scholars have proposed advanced metaheuristic 
algorithms in order to improve this problem, which has been 
applied to solving ARP and Vehicle Routing Problems [8]. 
Typical metaheuristic algorithms are Simulated Annealing 
Algorithm for the salt in the wintertime problem [9], Tabu 
Search algorithm [10], Guided Local Search algorithm [11], 
Memetic Algorithm [12], Memetic Algorithm based on 
extended neighborhood search [13] and Cooperative 
Co-evolution with route distance grouping for large-scale 
CARPs [14]. These metaheuristic algorithms offer 
advantages in efficiency, optimal solutions and stability 
when solving the basic CARP. 

However, in practical applications, the relevant end-users 
not only want to minimize the total cost but also consider 
other factors. For example, in the rubbish collection example 
in Troyes, France mentioned in literature, end-users not only 
hope to minimize the total cost but also wish to complete the 
rubbish clean-up as rapidly as possible. Considering this 
case, Lacomme et al. set up a corresponding model which 
minimizes both the total cost and the makespan (the cost of 
the longest circuit) [15]. We consider the CARP with two 
objectives as Multi-Objective CARP (MO-CARP). It is clear 
that the two objectives are conflicting and they cannot both 
achieve optimal values at the same time. Therefore, there is 
no unique global optimal solution when solving MO-CARP 
and optimization methods usually attempt to retain solutions 
which provide a good balance between the two objectives.  

To solve MO-CARP, some algorithms have been 
proposed. In 2006, Lacomme [15] proposed an effective 
genetic algorithm (LMOGA) to overcome these problems for 
the first time. LMOGA combines fast non-dominant sorting 
with a selection strategy based on crowding distance. In 
2010, Grandinetti et al. proposed a constraint method, in 
which three objectives are considered and an 
optimization-based heuristic procedure is proposed to find a 
set of solutions belonging to the optimal Pareto front and a 
good performance is obtained [4, 16]. In 2011, Mei et al. put 
forward a more effective algorithm, namely Decomposition- 
Based Memetic Algorithm (D-MAENS) [17]. It adopts the 
framework of the multi-objective evolutionary algorithm 
based on the problem decomposition and embeds MAENS 
algorithm for the single objective CARP. Firstly, it 
decomposes the whole MO-CARP into several subproblems 
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and then it maintains a population during the searching 
process, in which each individual corresponds to a unique 
subproblem. Next, a crossover operator and local search, 
similar to this used in MAENS, are applied to solve each 
subproblem. Experimental results show that D-MAENS is 
better than LMOGA, but there is still room to improve the 
speed of convergence and the assignment of computing 
source. To overcome this issue, in 2014, an Improved 
Decomposition-Based Memetic Algorithm (ID-MAENS) 
was proposed which adds an elite strategy contributing to the 
reservation of good solutions [18]. The experimental results 
show that ID-MAENS can obtain better non-dominant 
solutions than other existing algorithms when solving 
MO-CARP. Furthermore, a multi-population cooperative 
co-evolutionary algorithm was proposed for MO-CARP. The 
algorithm applies a variety of elite storage mechanisms and 
adopts an evolutionary strategy and a local search strategy 
based on extended neighborhood. Experimental results show 
that the algorithm yields better performance and faster 
convergence speed [19]. In 2015, a multi-objective 
evolutionary algorithm, coined as Memetic NSGA-II [20], 
has been designed. It is a hybrid of non-dominated sorting 
genetic algorithm-II, which shows the energetic effects [21].  

Although these algorithms have their own advantages in 
solving MO-CARP, there are also some limits in the capacity 
of searching a more optimal solution because of the limited 
diversity, especially for the large sale MO-CARP. To 
overcome this issue and improve the capacity of searching a 
more optimal solution effectively, based on the advantages of 
some effective algorithms in the numerical multi-objective 
optimization problems [22~25], this paper proposes a novel 
algorithm for MO-CARP, which we refer to as an immune 
clonal algorithm based on directed evolution (DE-ICA). 
Firstly, DE-ICA uses the framework of the immune clonal 
algorithm and enlarges the size of the initial population, 
increasing the diversity of the population and improving the 
quality of solutions. Secondly, DE-ICA combines the 
immune gene manipulation with the decomposition 
algorithm. The algorithm performs reorganization and 
mutation operations under the framework of the 
decomposition algorithm. The decomposition operation 
helps to share information between adjacent populations and 
rapidly converge to ideal solutions [26]. Finally, DE-ICA 
applies a novel comparison operation to select the best 
individuals to join the next evolutionary iteration, which 
helps it to evolve in the direction of a better population and 
improves the quality of the antibodies. DE-ICA can 
constantly optimize in the specified direction and easily 
escapes from local optima. 

II. THE DESCRIPTION OF MO-CARP 

Basic CARP can be described as follows: given an 
undirected connected graph G (V, E, A), V={v0,v1,…,vn} is 

vertex set, where v0 is the depot. E={(vi, vj)∈V, i≠j} means 

two-way edge set connected by two vertices. Each edge has 
three non-negative attributes: service cost Sc, travel cost Tc 
which means the cost of shortest path [27] between two 
vertex and demand d. If d>0, then the edge is called a task 
edge. Also, each arc has three non-negative attributes: 

service cost Sc, travel cost Tc and demand d. If d>0, then the 
arc is called a task arc [13].  Some vehicles start from the 
depot and serve the task edges and the task arcs, under the 
condition of not exceeding the capacity of the vehicles, and 
finally return to the depot. All the task edges and task arcs 
should be served and be served only once and the goal is to 
minimize the total cost of the whole route [14]. Therefore, the 
definition of CARP is as follows: 
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where Tg represents the g-th service circuit and |Tg| means the 
length of the circuit. Tg can be expressed by the vertex 
sequence as Tg =(vg1,vg2,…,vg|Tg|). Here vgi denotes the i-th 
task in the g-th service circuit. If ygi=1, then the edge (vgi, 
vg(i+1)) should be served. If ygi=0, then the edge (vgi, vg(i+1)) is 
not a task edge and it has no service cost but does incur travel 
cost. n is the total number of the circuits in the solution and 
1 g n  . ER and AR represent the sets of the task edges and 

the task arcs respectively. Q is the capacity of the vehicles.

 

 
A simple basic CARP is shown in Fig. 1.  

 
Fig.1. A simple example of basic CARP 

In Fig. 1, the red node represents the depot and two black 
nodes form an edge. There are four circuits in Fig. 1 and in 
each circuit, the solid lines denote task edges and dotted lines 
denote non-task edges. The arrows represent the driving 
direction of the vehicles. 

Based on the mathematical model of single objective 
CARP and the same constraints in formula (1), the 
MO-CARP can be described as follows [6]: 
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In the mathematical model, the goals of established 
MO-CARP models are to minimize both the total cost of the 
route and the cost of the longest circuit. For a better 
understanding of the MO-CARP, we provide three useful 
definitions [28, 29]. 

Definition 1 Pareto-Dominance 
Based on the MO-CARP described in formula (2), given 

two feasible solutions x, x
*∈Ω, x

*
 known as the 



non-dominant solution dominates x (denoted *
x x ) only if 

the following conditions are met: 

1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

x x x x

x x x x

f f f f

f f f f

 

 

   
 

   

          (3) 

Definition 2 Pareto-Optimal and Pareto-Optimal Set 

Feasible solution x
*∈Ω is called Pareto-optimal solution 

only when the following formula is satisfied: 

,   x x x                                    (4) 

The Pareto-optimal set PS is the set of all the 

Pareto-optimal solutions. 

Definition 3 Pareto-Optimal Front [25] 

The set PF constituted by the function values of the two 

goals corresponding to the Pareto-optimal solutions in 

Pareto-optimal set PS is called Pareto-optimal front: 

 1 2( ) ( ( ), ( )) |T
F sP f f P  F x x x x                       (5) 

III. DESCRIPTION OF DE-ICA 

The Immune Clonal Algorithm Based on Directed 

Evolution (DE-ICA) adopts the process of immune clonal 

algorithm as a framework and draws on this effective 

decomposition algorithm. Meanwhile, DE-ICA analyzes and 

improves some defects of the current algorithms for 

MO-CARP. Compared with other algorithms, the immune 

clonal algorithm has advantages on quick convergence and 

global optimization [25, 30]. The immune clonal algorithm 

uses a heuristic algorithm to generate an initial antibody 

population, and then evaluates the fitness of the initial 

antibodies and determines the clonal ratio of the antibodies 

by calculating the affinities between antibodies and antigens 

[31]. Next, the immune clonal algorithm performs immune 

gene operations including gene recombination and gene 

mutation. Finally, the immune clonal algorithm selects 

offspring for the next iteration according to certain principles 

through the clonal selection operation [20]. Here, the antigen 

represents the objective function and constraint condition and 

the antibody is the solution that satisfies the objective 

function and constraint condition. Specific to MO-CARP, 

DE-ICA firstly initializes the antibody population. Compared 

with the existing algorithms for MO-CARP, DE-ICA 

enlarges the size of the initial population to increase the 

diversity of antibodies. Secondly, DE-ICA directly expands 

the population size according to the characteristics of 

MO-CARP, which is helpful for improving the quality of 

solutions and converging to Pareto-optimal solutions. 

Thirdly, DE-ICA decomposes the whole problem into 

several subproblems combining with the decomposition 

strategy which is conducive for sharing information between 

adjacent populations and convergence to a better solution. 

Then, antibodies in the population are divided into antibody 

sub-populations. Those sub-populations represent the 

solution of the corresponding subproblem to perform the 

immune gene operations.  As a result, the decomposition 

strategy facilitates the algorithm to converge fast on the two 

objectives. At the same time, this paper proposes a novel 

directed comparison operator to filtrate the antibodies 

produced in the previous process and the selected antibodies 

are added into the total population as candidates for the 

clonal selection. Finally, DE-ICA applies a fast non- 

dominant sorting and crowding distance method to evaluate 

the candidate antibodies and select offspring, which can 

ensure both the quality of solutions and the diversity of the 

antibody population. This constitutes a very effective 

strategy for choosing offspring. We will introduce each part 

of the DE-ICA algorithm below. In the following sections, 

the total population represents the enlarged candidate 

population for the next iteration. 

A. Antibody initialization 

The antibody initialization operation in DE-ICA adopts 

the path-scanning algorithm which is a classic heuristic 

algorithm proposed by Golden in 1983 [5]. The basic 

principle of the path-scanning algorithm for solving CARP 

can be described as follows. First we establish an empty 

route, and then insert tasks into the route according to certain 

principles. If the total demands of the route exceed the 

capacity Q after inserting some task, then we give up on that 

task and the vehicle returns to the depot directly from the end 

of the last inserted task. 

The size of the population has a great influence on the 

solutions [25], which also results in different performance of 

algorithms. The influence of the population size on the 

effectiveness of solutions is described below in detail. 

  
(a)                                        (b) 

Fig.2. The influence of population size on solutions’ diversity and 

quality. (a) Offspring E, F, G, and H produced by solutions A, B, C 

and D. (b) Offspring E, F, G, and H produced by solutions A, A’, B, 

B’, C, C’ and D, D’. 

In Fig. 2(a), f1 is the total cost and f2 stands for the longest 

route cost, and each sub-problem is assigned to one solution 

(A, B, C or D). According to the theory of the decomposition 

algorithm, A should produce an offspring solution (denoted 

E) with an adjacent solution. In a similar fashion, B, C and D 

produce offspring solutions (sequentially denoted F, G and 

H) with their adjacent solutions. By contrast, in Fig. 2(b), 

there are two representative solutions in each sub-problem 

(A, A’, B, B’, C, C’ and D, D’). We can use the roulette 

method to select individuals from the representative solutions 

as parents and the selected individuals produce offspring 

with their adjacent solutions. Clearly it is beneficial for the 

algorithm to find better solutions quickly because of the 

selectivity of solutions in each sub-problem. On the other 

hand, enlarging the size of the population can increase the 



diversity of the population to some extent, which is beneficial 

for improving the quality of the solutions. 

B. Immune clonal operation 

In the theory of artificial immune systems, the clonal 

operation is carried out by reproducing the antibodies in the 

population according to a certain proportion. The clonal 

operation makes various gene operations possible and 

facilitates antibodies to share information [32, 33]. The 

immune clonal algorithm usually regards the total cost of the 

whole solution as a key evaluation index of the affinity 

between antibody and antigen, when solving single objective 

CARP. For instance, we usually define the affinity between 

the antibody Si and the antigen as: 

 
 

3

_

_ cos
i

i

lower bound
Aff s

total t s

 
  
 

=                     (6) 

where, lower_bound represents the lower bound of the test 

instance which can be obtained from the reference literature. 

The bigger the affinity’s value is, the smaller the total cost of 

the solution is. Clonal proportion is not just about the affinity 

between antigen and antibody, but about the affinity between 

antibodies. The greater the affinity between antibodies is, the 

higher the similarity between antibodies and the easier it will 

be for antibodies to restrain each other. The immune clonal 

algorithm usually sets the clonal proportion based on the two 

values of affinities previously mentioned. 

In the process of solving MO-CARP, the goals are to 

minimize the total cost and the cost of the longest circuit at 

the same time. Because the calculation of affinities is very 

complex, the calculation of antibody clonal ratio is also 

complex, especially when solving large-scale CARP. From 

the literature [31], we can see that when the immune clonal 

algorithm is used for solving the CARP, the ratio of clone is 

set as 3 which helps increase the antibody’s diversity and 

promotes good performance under the premise of the lower 

computational cost. Therefore, we directly clone the 

non-dominant solutions in the initial population at the ratio 3 

in order to guarantee the speed and the simple calculation of 

DE-ICA, and then the clonal individuals are added into the 

initial population. This approach increases the proportion of 

the good solutions in the initial population, which is 

beneficial for improving the quality of the solutions. 

C. Immune gene operations 

Immune gene operations usually include genetic 

recombination and mutation. Immune gene operations can 

increase the diversity of the population, decrease the affinity 

between antibodies and improve the quality of the solutions. 

Decomposition algorithm is an effective method for 

MO-CARP [14], so DE-ICA uses this framework in the 

immune gene operations. 

1). Population decomposition operation 

The cooperative co-evolution algorithm was originally 

proposed by Potter et al. [34]. The main idea is to divide a 

problem into many sub-problems, and then solve the 

sub-problems independently. The application of the 

decomposition strategy in DE-ICA is inspired by the work of 

[17] and [35]. Uniformly distributed weight vectors w1,···,wR 

decompose the MO-CARP with two goals into R single 

objective sub-problems. The function expression can be 

described by the i-th weight vector as follows: 

1 1 2 2( ) ( ) ( ), 1i i iF x f x f x i R      
 
     (7) 

where, R is set to 60 and both f1(x) and f2(x) are normalized 

[17]. λi is a two-dimensional vector, which represents the 

weight vector of the i-th sub-problem and can be expressed 

as:
1 1

,1
1 1

  
  

  
i

i i

R R
 . When solving each of the single 

objective sub-problems, DE-ICA firstly assigns the new 

population composed by the cloned non-dominant solutions 

and the initial solutions into the corresponding sub-problems. 

Considering the expression of formula (7), the principle by 

which we assign the individuals is to sort them according to 

ascending order of the second objective function. We assign 

the (2i-1)-th sorted individual and the 2i-th sorted individual 

into the i-th sub-problem for the first iteration. Because we 

have cloned non-dominant solutions, the same individuals 

are also in the new population. We assign the same 

individuals into the same sub-problem to increase the 

probability of their election as parents, which also help to 

improve the quality of solutions. Algorithm 1 presents the 

pseudo code of the decomposition algorithm in DE-ICA. 

Algorithm 1: Decomposition operator in DE-ICA  

1: procedure Decomposition(popsize, R); 
2:Sort the antibodies in the initial population in ascending order    

according to the second goal;  
3: for i = 1 → popsize do 
4:       for j = 0→ R do 
5:            Assign the i-th antibody into the j-th sub-problem; 
6:       end for 
7: end for 
8: Match the cloned antibodies into the corresponding sub-problems; 
9:            for j = 0→ R do 

10:             Select antibodies in the j-th sub-problem by roulette method  
to perform the immune gene operations and get a new antibody; 

11:          end for 
     12:          Update the antibodies in the population; The new antibody  

population contains the candidates for the clonal selection; 
13: end procedure  
Where R means that the MO-CARP is decomposed into R single 

objective sub-problems, and popsize is the size of the initial antibody 
population. In this paper, R=60 and popsize=120. 

2). Gene recombination operator 

DE-ICA algorithm selects the effective Sequence Based 

Crossover (SBX) of the current recombination operators 

[13]. Appropriately selected parents can obtain new 

antibodies by the gene recombination operation. The process 

of SBX operator is shown in Fig. 3. 



 

Fig.3. The operation process of SBX gene recombination operator 

In Fig. 3, first, we randomly select a route K1 from the 

parent X1 and a route K2 from the parent X2. Next, we 

randomly divided K1 and K2 into two sub-routes expressed as 

K1=(K11, K12), K2=(K21, K22). Finally, we replace the route K12 

with the route K22 and the new antibody X1´is formed. It may 

be the case that there are repetitive tasks or missing tasks in 

the new antibody X1´. If X1' has repetitive task, then we only 

retain the positions of the tasks in K22. If X1´has missing 

tasks, then we insert the missing tasks into the routes under 

certain conditions. In order to guarantee the quality of 

solutions, the locations of the insertions should meet the 

condition that at least one of the produced extra cost and the 

violations is smaller than inserting other location.  

3). Gene mutation operator 

Gene mutation provides the possibility of obtaining 

various kinds of antibodies. Gene mutation improves the 

quality of antibodies and helps the algorithm to escape from 

local optima. Because the search range of a single gene 

recombination operator is small, gene mutation is very 

helpful to search the related area comprehensively [13]. 

DE-ICA performs the gene mutation operation with a 

probability of 0.2 on the basis of gene recombination. The 

algorithm adopts four traditional gene mutation operators, 

namely Single-Insertion, Double-Insertion, Swap and 2-opt. 

Here, we introduce the four operators briefly. 

(1) Single-Insertion: where the operator randomly selects a 

route and then randomly selects a task from the route when 

performing the gene mutation operation. Next, the task is 

reinserted into another location or directly connected with the 

depot to build a new route. If the task is an edge task, then the 

situation where the task is inserted in the opposite direction 

should be considered and the corresponding antibody with 

least total cost will be reserved. 

(2) Double-Insertion: where the principle of the operator is 

similar to that of Single-Insertion. The difference between 

Single-Insertion and Double-Insertion is that Double- 

Insertion randomly selects a route and randomly selects two 

continuous tasks in the route. Then the two continuous tasks 

are reinserted into other locations. Similarly, if the selected 

tasks are edge tasks, then the situation that the tasks are 

inserted in the opposite direction should also be considered. 

(3) Swap: where the operator randomly selects two 

different tasks in the sequences of an antibody, and swaps the 

locations of the two tasks. 

(4) 2-opt: consists of two different kinds of operators. One 

of them is for single route, and another is for double routes 

[25]. DE-ICA applies the 2-opt operator for double routes. 

The operator first randomly selects two routes (denoted K1 

and K2) in an antibody. Next, K1 and K2 are randomly 

decomposed into two parts (respectively denoted K11, K12 and 

K21, K22). Finally, there will be two candidate antibodies 

formed by reconnecting the four routes through different 

ways of connection. One of the two antibodies is made up of 

K11, K22 and K12, K21. Another antibody is made up of K11 and 

the opposite direction of K21, K22 and the opposite direction 

of K12. Fig. 4 describes a simple example of 2-opt working on 

double routes. 

 
Fig.4. A simple example of 2-opt working on double routes 

In Fig. 4, the solid lines show the task lines and the dotted 

lines mean travel lines. Arrows indicate the directions of 

vehicles to serve tasks. Each task has two serial numbers. The 

serial numbers outside the parentheses represent the current 

driving direction, and the serial numbers inside the 

parentheses represent the opposite of the current driving 

directions. Select the two circuits before the action of 2-opt 

operator, expressed as S=(0,1,2,3,4,0,5,6,7,0), where 0 

represents the depot and two circuits are K1=(0,1,2,3,4,0) and 

K2=(0,5,6,7,0). The previous route is divided into four 

sub-routes after 2-opt operator has acted on them, namely 

K11=(0,1,2,3,0), K12=(0,4,0), K21=(0,5,0) and K22=(0,6,7,0). 

There will be two different antibodies according to the way 

of connecting above. The two antibodies are respectively 

expressed as S1=(0,1,2,3,6,7,0,4,5,0) and S2=(0,1,2,3,12,0, 

6,7,11,0). The antibody with less total cost will be output as 

the result of the 2-opt operator. 

These gene mutation operators are simple and effective. In 

DE-ICA, we select one of the four operators to generate a 

new antibody with a probability of Pm and apply the four 

operators at the same time to get four new antibodies with a 

probability of (1-Pm). Then we select the antibody with least 

total cost as the output antibody. Choosing one of the four 

algorithms randomly is helpful for increasing the diversity of 

antibodies, while the application of four algorithms to 



generate antibodies can improve the affinity of antibodies. Pm 

is set to 0.6 based on the above consideration. On the one 

hand, it is beneficial to keep antibodies with high affinity. On 

the other hand, it helps the algorithm to maintain the diversity 

of antibodies to help avoid local optima. The pseudo code of 

the gene mutation operator is shown in Algorithm 2. 

Algorithm 2: gene mutation operator 

1: procedure gene mutation (Pm) 
2:    Randomly generate a number v between 0 and 1; 
3:    if  v<Pm   then 
4:         Randomly select one of the four operators to obtain a new 

antibody, denoted Bout; 
5:    else 
6:         Achieve a new antibody by Single-Insertion, denoted A; 
7:         Achieve a new antibody by Double-Insertion, denoted B; 
8:         Achieve a new antibody by Swap, denoted C; 
9:         Achieve a new antibody by 2-opt, denoted D; 
10:        Compare the four antibodies (A, B, C, D) and select one 

according to certain rules, denoted Bout; 
11:    end if 
12:    Bout is the final antibody produced in this process; 
13: end procedure 
Where Pm represents the probability of obtaining new antibodies by a 
randomly selected operator. In this paper, Pm=0.6. 

4). Directed comparison operator 

The current algorithms for MO-CARP usually add the 

individuals obtained by gene recombination or the 

individuals obtained by the gene mutation. However, we 

know that evolutionary algorithms are highly random. 

Suppose that we have obtained a good individual after the 

gene recombination of parents, at this point, the individual 

undergoes gene mutation. After mutation, we may get an 

individual which is worse than the one before the gene 

mutation, so such operations might not necessarily be 

beneficial to the reservation of good solutions and the fast 

convergence of the algorithm. In order to overcome the 

deficiencies of this method, we compare the individual 

before gene mutation with the individual after gene mutation 

and incorporate the better solution into the total population. 

For MO-CARP, the process of individual selection is 

usually more complicated than for single objective CARP. In 

this paper, MO-CARP needs to optimize both the total cost 

and the cost of the longest circuit. Considering the objective 

function of the single objective CARP, we usually pay more 

attention to the optimization of the total cost when solving 

practical problems. And for the cost of the longest circuit 

subjective to the capacity of vehicles, the potential of the 

optimization of total cost is greater. Therefore, for simplicity, 

DE-ICA compares the total cost of the individual before gene 

mutation with that of the individual after gene mutation and 

selects the one with smaller total cost first. If the total cost of 

the two individuals is equal, then we compare the cost of the 

longest circuit of the two individuals and the individual with 

smaller cost of the longest circuit will be the first choice. This 

approach forms a state of directed evolution and the whole 

population evolves fast in the direction of the reduction of the 

total cost. This method adopts four kinds of gene mutation 

operation which enhance the diversity of solutions so as to 

help DE-ICA to find a better solution. The use of the directed 

comparison operator guides the whole evolution to the global 

optimal solution improving the searching efficiency. The 

pseudo code of the directed comparison operator in DE-ICA 

is shown in Algorithm 3. 

Algorithm 3: Directed comparison operator in DE-ICA 

1: procedure Directed comparison operator (R, Pn) 
2:    for i = 0 → R do 

3:          Mark the antibody gotten by the gene recombination as Aout; 
4:          Randomly generate a number w between 0 and 1; 
5:         if w<Pn then 
6:              Randomly select one of the four gene mutation operators to 

obtain an antibody, denoted Bout; 
7:         else 

8:             Achieve a new antibody by Single-Insertion, denoted A; 
9:             Achieve a new antibody by Double-Insertion, denoted B; 
10:           Achieve a new antibody by Swap, denoted C; 
11:           Achieve a new antibody by 2-opt, denoted D; 
12:           Compare the four antibodies (A, B, C, D) and select one 

according to certain rules, denoted Bout; 
13:      end if 

14:     Compare the total cost of Aout and Bout and add the one with smaller 
total cost into the total population. If the total cost of the two antibodies 
is equal, then we add the individual with smaller cost of the longest 
circuit into the total population; 
15:    end for 
16: end procedure 
Where Pn =0.2means the probability of gene mutation and in this paper. 

5). Clonal selection operator 

The clonal selection is a reverse process of the clonal 

proliferation. Its purpose is to select the antibodies with 

higher affinity from the offspring obtained by cloning and 

proliferation. For single objective CARP, random sorting 

method is known to be an effective method [36]. It adopts the 

basic frame of bubble-sort, the difference is that there is a 

probability pf. When comparing the quality of two solutions, 

a number is generated randomly. If this number is smaller 

than pf or both two compared solutions are feasible, the 

criterion of sorting is the objective function value. Otherwise, 

the criterion is the violation. It balances objective and penalty 

functions directly and explicitly in optimization. For MO- 

CARP, considering we always use the total cost as the 

primary criteria to select new individuals in directed 

comparison operator, we apply the fast non-dominant sorting 

and crowded distance method, mentioned in [17], to avoid 

convergence on local optima. Fast non-dominant sorting and 

crowded distance method can ensure not only the quality of 

solutions but also the diversity of the antibody population. 

This forms a very effective strategy for choosing offspring 

and plays an important role in the DE-ICA algorithm. 

6). The processing flow of DE-ICA 

This paper proposes a novel immune clonal algorithm 

based on directed evolution to solve MO-CARP. It applies 

the main idea of the immune clonal algorithm. It first 

initializes an antibody population and then carries out the 

immune clonal operation. Next, the algorithm performs 

immune gene operations and draws lessons from the 

framework of the effective decomposition algorithm during 

the process of immune gene operations. At the same time, a 

directed comparison operator is added into the algorithm. 



Finally, it performs the clonal selection operation. The main 

steps of DE-ICA can be described in Algorithm 4. 

Algorithm 4: DE-ICA for MO-CARP 
1: procedure DE-ICA (R, Pn) 
2:     Set the termination condition and initialize the iteration ite=0, then 

set the size of the initial antibody population to Psize; 
3:     Initialize the initial population P by path-scanning algorithm; 
4:     while ite<200 do 
5:           Perform fast non-dominant sorting on the population P and clone 

the non-dominant solutions to obtain a new antibody 
population, namely the total population, denoted P1; 

6:           Allocate the antibodies in the population P1to the corresponding 
sub-problems according to certain rules. 

7:           for i = 0 → R do 
8:                 Perform gene recombination operation on antibody Anti1 in the 

i-th sub-problem according to the theory of decomposition 
algorithm to achieve a new antibody, denoted Anti2; 

9:               Randomly generate a number u between 0 and 1; 
10:             if u<Pn then 
11:                Perform gene mutation operation on antibody Anti2 to achieve  

a new antibody, denoted Anti3; 
12:              Compare antibody Anti2 and antibody Anti3 then select one  

according to certain rules to add into the population P1; 
13:             end if 
14:              Put antibody Anti2 into the population P1; 
15:          end for 
16:           Sort the antibodies in the population P1 by fast non-dominant 
sorting and crowded distance method then put the top Psize different 
antibodies into the population for the next iteration, denoted P; 
17:           ite=ite+1; 
18:           Perform fast non-dominant sorting on the population P1and 

output the non-dominant solutions into the population P2; 
19:  end procedure 

D. Time complexity analysis of the algorithms 

With the purpose of testing the proposed algorithm more 

objectively, we analyze the computational complexity of 

DE-ICA and make a comparison with D-MAENS and 

ID-MAENS. In each iteration of evolution of DE-ICA, we 

assume that the scale of the population is N, the number of 

objectives is r, the scale of antibody corresponding to the 

non-dominated solution set is Nn, the number of non- 

dominated solutions to maintain in each iteration is M, the 

colon ratio is q, and the probability of gene mutation is Pm. 

Therefore, the computational complexity of initializing the 

antibody population and calculating each objective is O(Nr) 

and the colony operation’s computational complexity is 

O(Nnq), the computational complexity of gene recombination 

is O(Nn
2
q

2
), the computational complexity of gene mutation 

is O(NnqPm), the computational complexity of selecting M 

non-dominated solution from Nn non-dominated solutions is 

O(rMNnlogNn). Thus, the total computational complexity in 

each iteration of DE-ICA is O(Nr+Nnq+Nn
2
q

2
+NnqPm+ 

rMNnlogNn) and the time complexity of DE-ICA becomes 

O((q*Nn)
2
) after simplified.  

As for D-MAENS and ID-MAENS, they have the same 

time complexity as O(Nr+N
2
+N

2
Pm+r(2N-1)

2
/2) and it is 

simplified as O(N
2
). Especially, in all tested instances we 

found that the value of Nn ranges from N/5 to N/2. At the 

time, the ratio of colon q in DE-ICA is 3, so the 

computational complexity of DE-ICA ranges from 

O((3*N/5)
2
)=O((3/5*N)

2
) =O(9/25*N

2
) to 

O((3*N/2)
2
)=O((3/2*N)

2
)=O(9/4*N

2
). Therefore, compared 

with the computational complexity of D-MAENS and 

ID-MAENS, these three algorithms are similar.  

IV. EXPERIMENTAL STUDIES 

A. Test problems and the compared algorithms 

In order to evaluate the effectiveness of DE-ICA, a 
small-scale test set Beullens [11], a medium-scale test set egl 
[37~39] and a large-scale test set EGL-G [40] are included to 
compare DE-ICA and D-MAENS [17] and ID-MAENS [18]. 
For strengthening the generalization ability of the 
comparison among three algorithms, three algorithms are 
tested on artificial sets Kshs [41]. Besides, one artificial data 
set named Art1 with 80 vertexes and 90 tasks is produced. 
Each algorithm runs 30 times independently.  

B. Statistical test 

The Kruskal-Wallis test (KW-test) [42] is a 

non-parametric statistical test, which has been used to 

compare the difference among three algorithms. Here, the 

KW-test returns a p-value with a significance of 95%. If p is 

smaller than 5%, we can surely reject the null hypothesis at 

the 5% significance level, and it means that there is a 

significant among three compared algorithms.  

C. Performance metrics 

We select indicators to measure the performance of the 
algorithms for MO-CARP. Three measures are commonly 
used in the literature [21]: 1) measuring the convergence of 
the algorithms; 2) measuring the diversity of the 
non-dominant solutions obtained by algorithms; 3) 
measuring the convergence and the diversity of the 
non-dominant solutions. The convergence refers to the 
proximity between the non-dominant set obtained by the 
algorithm and the Pareto-optimal set. The diversity means 
the distribution of the non-dominant solutions. Because the 
solution space of CARP is discrete, the Pareto-front of the 
test instances is not evenly distributed. Therefore measuring 
the diversity of the non-dominant solutions has no practical 
significance [43]. We adopt three criteria to measure the 
performance of the algorithms for MO-CARP. 

1) The distance to the reference set (ID): The measure 

standard (ID) was first proposed in literature [44]. ID is 

defined by Equation (8): 
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where, x1,…, xM are points in the test set X. y1,…, yN are 

points in the reference set S. d(xi, yj) means the Euclidean 

distance. ID(X) is the average distance between the points in 

the reference set S and the closest points in X. The smaller the 

distance, the closer the test set X to the reference set S. It is 

difficult for us to obtain the accurate Pareto-optimal set when 

solving practical MO-CARP, so we select a new 

non-dominant set as the reference set S. We first merge the 

non-dominant sets obtained by the three algorithms and then 

get a new non-dominant set, namely the reference set S. 

2) Purity: Purity was first proposed in literature [45] and 

is defined by Equation (9). 
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where, X is the non-dominant set obtained by the test 

algorithm. |X| means the total number of the solutions in X. S 

is the reference set. |X∩S| denotes the number of the same 

solutions in X and S. Purity is a ratio and the greater the value, 

the better the convergence of the algorithm. 

3) Hypervolume (HV): HV describes the area in the 

object space formed by the non-dominant solutions of the test 

algorithms [46] and is defined by Equation (10). 

1( ) ( )N
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There is a reference point during the calculation. We select 

the point formed by the two maximal objective function 

values of all the non-dominant solutions obtained by the 

three algorithms as the reference point. HV can also reflect 

the proximity between the Pareto-front and the obtained 

non-dominant. The greater the HV, the closer the 

non-dominant set obtained by the test algorithm is to the 

Pareto-front. If the value of HV is zero, it implies that there is 

only one non-dominant solution.  

D. Parameter settings 

The main parameters in DE-ICA are set as follows： the 

maximum iteration number Gmax is set as 200, the probability 

of local search Pls is 0.1, the clone ratio q is 3. In practical 

applications, MO-CARP is usually a medium-scale or 

large-scale problem and algorithms can obtain a large 

number of solutions. According to the principle in Fig. 2, one 

of the important influence factors on how to find the 

solutions which are closer to the Pareto-front is the 

population size. The influence of initial population size is 

analyzed in Fig. 5.  

 
      (a) Purity 

   

       (b) Distance 

Fig.5 The purity and distance to the reference set with different 

popsize 

In Fig.5, the test problems egl-s1-C is used to test the 

performance with popsize changing from 30 to 180 with an 

interval of 30. In Fig.5 (a), the purity increases rapidly when 

popsize is less than 120. Then, the rate of increasing becomes 

slowly. The same situation is also shown in Fig.5 (b), when 

popsize is greater than 120, the rate of decreasing is also 

slower than before. The expanded scale of the initial 

population will increase the diversity during the process of 

evolution. However, if the population size is too large, it will 

cost more computing resources. Therefore, the initial popsize 

is set at 120 in DE-ICA to achieve better results.  

E. Simulation Results and Analysis 

Because of the characteristics of MO-CARP, the 

algorithms will generate a non-dominant set rather than a 

solution. So it is difficult for us to evaluate the solutions. In 

practical applications, we usually prefer to greatly optimize 

the total cost than the cost of the longest circuit. So in the 

experiments, we compare the non-dominant solutions 

obtained by the three algorithms. In the following tables, we 

select one non-dominant solution with the least total cost 

obtained from the non-dominant set by each algorithm, 

denoted by optimum. Vertices mean the total number of 

vertices. Edges mean the total number of edges. Tasks mean 

the total number of tasks. Winner represents the superior 

algorithm among the three compared algorithms, D is short 

for D-MAENS, ID is short for ID-MAENS, and DE is short 

for DE-ICA. (a, b, c) represents the results of non-dominant 

solutions, in which a is the total cost and b denotes the cost of 

the longest circuit and c means the violation of capacity. Here, 

an ideal value (fa,   fb) is given as a reference. Because all the 

results in following tables are presented without any 

violation, we simply list the values of fa and fb. Where fa is the 

optimal value of total cost so far, which can be obtained from 

the literatures [11][40][47~50] and fb denotes the optimal 

cost of the longest route cost. We use bold fonts to denote the 

best non-dominant solution. 

1) The comparison of the optima 

Table 1 shows the non-dominant solutions obtained by the 

three algorithms in 30 runs on Beullens, egl, EGL and 

artificial sets. Because of limited space, we only list some of 

instances according to a certain interval. 

Table 1 THE COMPARISON OF THE OPTIMA GENERATED BY THREE ALGORITHMS  

Name Vertices Edges Tasks D-MAENS ID-MAENS DE-ICA Ideal value winner 

C01 69 98 79 (4195,655,0) (4170,610,0) (4170,610,0) (3215, /) ID、DE 

C09 76 117 97 (5265,525,0) (5260,525,0) (5260,525,0) (4120, /) ID、DE 

C17 43 56 42 (3595,640,0) (3585,650,0) (3575,665,0) (2620, /) All 

C25 37 50 38 (2310,560,0) (2310,560,0) (2310,560,0) (1815, /) All 

D01 69 98 79 (3235,680,0) (3235,680,0) (3235,680,0) (3215, /) All 

D09 76 117 97 (4120,700,0) (4120,695,0) (4120,695,0) (4120, /) ID、DE 



D17 43 56 42 (2620,710,0) (2620,710,0) (2620,710,0) (2620, /) All 

D25 37 50 38 (1815,760,0) (1815,760,0) (1815,760,0) (1815, /) All 

E01 73 105 85 (4930,620,0) (4940,605,0) (4910,600,0) (4045, /) DE 

E09 91 141 103 (5970,590,0) (5935,590,0) (5905,600,0) (4730, /) ID, DE 

E17 38 50 36 (2755,670,0) (2755,670,0) (2740,700,0) (2055, /) All 

E25 26 35 28 (1615,565,0) (1615,565,0) (1615,565,0) (1615, /) All 

F01 73 105 85 (4045,850,0) (4045,850,0) (4045,850,0) (4040, /) All 

F09 91 141 103 (4810,775,0) (4810,775,0) (4810,775,0) (4730, /) All 

F17 38 50 36 (2055,825,0) (2055,825,0) (2055,825,0) (2055, /) All 

F25 26 35 28 (1390,695,0) (1390,695,0) (1390,695,0) (1390, /) All 

e1-A 77 98 51 (3548,943,0) (3548,943,0) (3548,943,0) (3548, /) All 

e1-B 77 98 51 (4525,839,0) (4525,839,0) (4525,839,0) (4498, /) All 

e1-C 77 98 51 (5621,836,0) (5595,836,0) (5595,836,0) (5595, /) ID, DE 

e2-A 77 98 72 (5018,953,0) (5018,953,0) (5018,953,0) (5018, /) All 

e2-B 77 98 72 (6347,871,0) (6347,871,0) (6321,870,0) (6317, /) DE 

e2-C 77 98 72 (8339,854,0) (8354,854,0) (8335,854,0) (8335, /) DE 

e3-A 77 98 87 (5916,942,0) (5910,999,0) (5898,929,0) (5898, /) DE 

e3-B 77 98 87 (7801,872,0) (7787,872,0) (7787,872,0) (7777, /) ID, DE 

e3-C 77 98 87 (10365,827,0) (10309,827,0) (10311,827,0) (10292, /) ID 

e4-A 77 98 98 (6491,968,0) (6476,929,0) (6473,941,0) (6461, /) ID, DE 

e4-B 77 98 98 (9060,853,0) (9057,926,0) (9031,853,0) (8975, /) DE 

e4-C 77 98 98 (11764,820,0) (11699,822,0) (11634,820,0) (11594, /) DE 

s1-A 140 190 75 (5113,1027,0) (5073,1023,0) (5018,1023,0) (5018, /) DE 

s1-B 140 190 75 (6435,984,0) (6435,984,0) (6435,984,0) (6388, /) All 

s1-C 140 190 75 (8519,1018,0) (8518,1018,0) (8518,1018,0) (8518, /) ID, DE 

s2-A 140 190 147 (10134,1061,0) (10089,1063,0) (10040,1058,0) (9909, /) DE 

s2-B 140 190 147 (13397,1040,0) (13365,1040,0) (13283,1040,0) (13124, /) DE 

s2-C 140 190 147 (16836,1040,0) (16755,1020,0) (16691,1016,0) (16425, /) DE 

s3-A 140 190 159 (10516,1077,0) (10453,1099,0) (10402,1040,0) (10242, /) DE 

s3-B 140 190 159 (14009,1060,0) (13956,1040,0) (13841,1040,0) (13715, /) DE 

s3-C 140 190 159 (17575,1040,0) (17416,1040,0) (17324,1040,0) (17216, /) DE 

s4-A 140 190 190 (12616,1080,0) (12446,1058,0) (12422,1060,0) (12293, /) ID, DE 

s4-B 140 190 190 (16683,1047,0) (16540,1027,0) (16430,1027,0) (16262, /) DE 

s4-C 140 190 190 (21363,1027,0) (21072,1027,0) (20964,1027,0) (20530, /) DE 

G1-A 255 375 347 (1039145,73909,0) (1022714,72182,0) (1012078,70605,0) (1001210, /) DE 

G1-B 255 375 347 (1158572,65050,0) (1142797,65050,0) (1138229,65050,0) (1118596, /) DE 

G1-C 255 375 347 (1296432,67327,0) (1275182,67327,0) (1258065,65050,0) (1245398, /) DE 

G1-D 255 375 347 (1438323,65050,0) (1434618,65050,0) (1426809,65050,0) (1380711, /) DE 

G1-E 255 375 347 (1603107,65050,0) (1588101,65050,0) (1584395,65050,0) (1521171, /) DE 

G2-A 255 375 375 (1148660,71074,0) (1132914,68328,0) (1125827,67955,0) (1101797, /) DE 

G2-B 255 375 375 (1272569,69858,0) (1243212,65050,0) (1240357,65050,0) (1213093, /) DE 

G2-C 255 375 375 (1429768,65050,0) (1431715,65050,0) (1424978,65050,0) (1342537, /) DE 

G2-D 255 375 375 (1569517,65050,0) (1549876,65050,0) (1535056,65050,0) (1486584, /) DE 

G2-E 255 375 375 (1719771,65050,0) (1690044,65050,0) (1679487,65050,0) (1624438, /) DE 

Kshs1 8 15 15 (14661, 4171) (14661, 4171) (14661, 4171) / All 

Kshs2 10 15 15 (9863, 2646) (9863, 2646) (9863, 2646) / All 

Kshs3 6 15 15 (9320, 2670) (9320, 2670) (9320, 2670) / All 

Kshs4 8 15 15 (11498, 3349) (11498, 3349) (11498, 3349) / All 

Kshs5 8 15 15 (10957, 4195) (10957, 4195) (10957, 4195) / All 

Kshs6 8 15 15 (10197, 4032) (10197, 4032) (10197, 4032) / All 

Art1 80 90 90 (6127, 911) (7956, 973) (7925, 941) / DE 

Art2 140 70 70 (4546, 1018) (5167, 1050) (5167, 1050) / DE 
 
Table 1 shows that DE-ICA performs best on 27 instances 

of the 58 instances. On these instances, the optima obtained 

by DE-ICA can completely dominate the optima yielded by 

D-MAENS and ID-MAENS.  In addition, if two solutions of 

two algorithms cannot dominate each other, then we consider 

both algorithms to be winners. There are 10 instances, on 

which DE-ICA and ID-MAENS are both winners. And we 

can see that there are 21 of 58 instances on which all three 

algorithms can obtain the same optima. Overall, DE-ICA 

shows a better performance than D-MAENS and ID-MAENS 

on these test instances. Beullens and Kshs are small-scale test 

set and the number of the non-dominant solutions for 

small-scale MO-CARP is limited, so it’s comparatively 

simple to solve. As a result, the solutions obtained by 

D-MAENS and ID-MAENS are good enough and DE-ICA 

does not show a significant advantage. Compared with 

D-MAENS and ID-MAENS on egl, Art 1 and EGL-G, 

DE-ICA can obtain better non-dominant solutions. This is 

because the search space grows as the scale of the tests 

increases gradually. The immune clonal algorithm can focus 

more searching resource on the effective space, and DE-ICA 

shows an obvious advantage on large scale instances.  



2) The comparison of the non-dominant solutions 

Next, we will present the non-dominant solutions of three 

algorithms. Solutions of each algorithm presented below are 

selected according to the following rule. At first, one group of 

non-dominant solutions can be acquired from an independent 

run. Then after 30 runs, there will be 30 groups of 

non-dominant solutions. Finally, we put these 30 groups 

together, from which we select the non-dominant solutions to 

present. Especially, all the optima in Table 1 will appear in the 

following figure. Due to limited space, we select some small 

scale instances and some large instances in Fig. 6 to show the 

non-dominant solutions. 

In Fig. 6, the former two lines of figures are small-scale 

instances, in which DE-ICA shows the best convergence on 2 

instances compared with other two algorithms. Besides, on 

other 4 instances of small-scale instances, DE-ICA is not 

worse than D-MAENS and ID-MAENS. In general, DE-ICA 

shows a slightly advantage on small scale instances. The 

reason is that small scale instances have a smaller solution 

space and they are easier to solve. Consequently, other two 

compared algorithms have enough capacity to deal with it and 

get a similar performance with DE-ICA. 

In the latter two lines of figures, DE-ICA gets the best 

convergence on 5 instances (e4a, s1a, s4a, G1-A, G2-E). On 

these instances, DE-ICA can reach areas with both low total 

cost and the low makespan. As a result, the non-dominant 

solutions obtained by DE-ICA almost completely dominate 

the non-dominant solutions obtained by D-MAENS and 

ID-MAENS. On the remaining instances, DE-ICA is also not 

worse than the other two algorithms in convergence. In 

conclusion, DE-ICA demonstrates an obvious advantage in 

convergence on these large scale instances. The results above 

show that the DE-ICA is more suitable for the large-scale 

problems.  
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Fig.6 The non-dominant solutions obtained by three algorithms on some small and large-scale instances 

3) The statistical analysis of performance metrics 

To compare the performance of the three algorithms more 

objectively, we adopt the three criteria mentioned above to 

measure the characteristics of three algorithms for 

MO-CARP. As a result of the limited space, we only list some 

of instances according to a certain interval. Besides, we also 

adopt K-W test mentioned above to analysis the algorithms’ 

performance. Table 2 to Table 4 show the simulation results 

on some instances.

Table 2 THE PERFORMANCE OF D-MAENS, ID-MAENS AND DE-ICA ON ID

 C01 C25 D01 D25 E01 E25 F01 F25 E1a E2a E3a 

A
lg

o

ri
th

m
 DE Mean 31.70 4.4 45.8 5.8 92.5 0 52.1 0.5 11.5 34.4 85.4 

D Mean 21.90 10.1 53.2 7.9 118.4 1.1 59.4 1 11.2 45.5 91.8 

ID Mean 63.00 6.4 529.7 256.2 224.6 1.4 1190.4 47.2 12.8 42.5 96.4 

K-W test 0.365 0.04 0.031 0.001 0.302 0.168 0.001 0.002 0.028 0.526 0.742 

 

 E4a S1a S2a S3a S4a G1a G1e G2a G2e Kshs5 Art1 

A
lg

o

ri
th

m
 DE Mean 93.9 0 154.6 89.8 68.9 29502 17841 37175 24972 37175 24972 

D Mean 113.5 0 171 92.3 205.9 62895 32347 48062 38180 48062 38180 

ID Mean 110.2 0 218.1 111.6 108.0 25346 21873 59393 30163 59393 30163 

K-W test 0.437 1 1 0.38 0.003 0.008 0.185 0.014 0.185 0.119 0.633 
 

From Table 2, as for average value, we can see that 

DE-ICA performs better than the other two algorithms on 19 

of 22 instances. It means that DE-ICA is much closer to the 

Pareto-front than other two algorithms on these 19 instances. 

As for the K-W test, it returns a p-value smaller than 0.05 on 9 

instances, which indicates there is a significant difference 

among three algorithms on these instances. When it considers 

both average value and K-W test, three are 8 instances (C25, 

D01, D25, F01, F25, E1a, S4a, G2a) on which DE-ICA 

obtains a significantly better performance than the compared 

algorithms. Meanwhile, on 1 (G1a) instance DE-ICA gets a 

significantly worse performance than other algorithms.   

Table 3 THE PERFORMANCE OF D-MAENS, ID-MAENS AND DE-ICA ON HV 

 C01 C25 D01 D25 E01 E25 F01 F25 E1a E2a E3a E4a 

A
lg

o

ri
th

m
 DE Mean 133 7643 60250 126803 4497 22311 171733 99778 85951 129957 129066 85951 

D Mean 17 6938 60665 127975 2910 34194 181778 99525 78862 142545 135890 78862 

ID Mean 78 8106 1589 23515 1668 37007 19604 57115 85813 133738 151214 0 

K-W test 0.44 0.215 0.001 0.001 0.178 0.304 0.001 0.003 0.028 0.599 0.433 0.895 

 

 S1a S2a S3a S4a G1a G1e G2a G2e Kshs5 Art1 

A
lg

o

ri
th

m
 DE Mean 355597 170610 189932 16399 938296822 16000902 520514180 17846311 5474203 94393 

D Mean 355597 149874 194042 12150 929365659 11636352 492830781 5165689 5538078 97346 

ID Mean 351881 176560 180188 11751 930326759 14233229 446000709 9559093 5706647 74103 

K-W test 0.898 0 0.599 0.237 0.23 0.281 0.403 0.033 0.633 0.491 
 
From Table 3, as for average value, we can see that 

DE-ICA performs better than the other two algorithms on 13 

of 22 instances. It means that DE-ICA have a better diversity 

than other two algorithms on these 15 instances. When it 

refers to the K-W test, it returns a p-value smaller than 0.05 

on 7 instances, in which there are 4 instances (D01, F25, E1a, 

G2e) that DE-ICA is significantly better than other two 

algorithms. Meanwhile, DE-ICA gets a significantly worse 

performance than the compared algorithms on 3 instances 

(D25, S2a, F01). The statistical analysis results show that the 

difference on most instances is not significant.    

Table 4 THE PERFORMANCE OF D-MAENS, ID-MAENS AND DE-ICA ON purity 

 C01 C25 D01 D25 E01 E25 F01 F25 E1a E1c E2a E2c E3a E3c E4a E4c 

A l g o  r i t h m
 

DE Mean 0.67 0.84 0.88 0.95 0.81 1 0.75 0.92 0.92 0.89 0.62 0.57 0.62 0.67 0.73 0.63 



D Mean 0.56 0.59 0.43 0.93 0.41 0.95 0.46 0.91 0.91 0.28 0.29 0.31 0.42 0.06 0.16 0 

ID Mean 0.67 0.71 0.71 0.34 0.3 0.85 0 0.88 0.88 0.06 0.45 0.47 0.34 0.35 0.30 0.39 

K-W test 0.887 0.059 0 0.001 0.044 0.356 0 0.967 0.023 0.001 0.027 0.268 0.002 0.003 0.817 0.014 

 

 S1a S1c S2a S2c S3a S3c S4a S4c G1a G1b G1e G2a G2b G2e Kshs5 Art1 

A
lg

o
 

ri
th

m
 DE Mean 0.62 0.59 0.73 0.63 0.78 0.87 0.73 0.44 0.50 0.79 0.45 0.73 0.58 0.78 0.92 0.97 

D Mean 0.42 0.17 0.16 0.02 0.11 0.11 0.16 0.22 0.03 0.06 0.15 0.02 0 0.11 0.91 0.71 

ID Mean 0.34 0.55 0.30 0.50 0.28 0.24 0.30 0.33 0.73 0.24 0.40 0.33 0.49 0.17 0.88 0.73 

K-W test 0.005 0.005 0 0.003 0 0.001 0 0.618 0 0.005 0.007 0.015 0.004 0.061 0.03 0 
 
In Table 4, DE-ICA performs better on average value than 

D-MAENS and ID-MAENS on 31 of 32 instances. On these 

31 instances, DE-ICA can produce more non-dominate 

solutions than other two algorithms. On 4 instances (D01, 

D25, E01, F01) of Bullens’ set, 13 instances (E1a, E1c, E2a, 

E3c, E4c, S1a, S1c, S2a, S2c, S3a, S4a) of egl set, 5 instances 

(G1a, G1b, G1e, G2a, G2b ) of EGL-G set, 2 instances 

(Kshs5, Art1) of artificial set, the KW-test returns a p-value 

smaller than 0.05 on these 24 instances, which means that 

there is a significantly difference among three algorithms. In 

addition, in these 24 instances, DE-ICA is significantly better 

than other compared algorithms on 23 (except the G1a) 

instances and only one result obtained by DE-ICA on G1a is 

significantly worse than other algorithms. 

In conclusion, from the performance about 3 metrics and 

the statistical results, the DE-ICA demonstrates a satisfactory 

performance compared with other two algorithms. On the 

metric of HV, it presents a slightly advantage and shows a 

certain advantage on ID. Especially, it demonstrates an 

absolutely advantage on purity. 

 5). Graphic summary for tables of simulation results 

To improve the clarity of the comparison among three 

algorithms, we make a graphic summary for the tables of the 

simulation results about the times of winners on optimal 

solution of each algorithm. The results are shown in Fig. 7. 

 
Fig. 7 The statistic of experimental results of three algorithms 

From Fig. 7, we can see that DE-ICA shows a significant 

advantage on optima when compared with other algorithms 

on 58 instances. All the experimental results show DE-ICA 

has an effective performance in solving MO-CARP 

especially on large scale problems. 

V. CONCLUSIONS 
This paper has proposed a new algorithm for the popular 

MO-CARP, comprising an immune clonal algorithm based on 

directed evolution (DE-ICA). DE-ICA increases the scale of 

the initial population and then performs the clonal operation 

of the non-dominant solutions. DE-ICA also draws lessons 

from the effective decomposition operation. This paper also 

proposes a novel directed comparison operator which can 

constantly improve the quality of the non-dominant solutions 

on the basis of increasing the diversity of the population. 

Simulation results show that DE-ICA is competitive with 

respect to improving the quality of the non-dominant 

solutions. Additionally, DE-ICA demonstrates better 

performance than D-MAENS and ID-MAENS on most of 58 

instances, especially for the large-scale problems. Meanwhile, 

we have demonstrated that DE-ICA has good convergence 

properties, by observing the distribution of the non-dominant 

solutions of the three algorithms. In future work, we will 

study versions of the CARP that closely resemble real-world 

problems, for example: CARP with time windows and CARP 

with a variety of vehicle capacities. 
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