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Graphical abstract 13 

fx1 14 

Highlights 15 

 Ultrasound improves protein extraction yield during soymilk production. 16 
 Ultrasound did not cause cell disruption. 17 
 Solubility and separation efficiency are both accountable for improved yields. 18 
 Particle size regime of 2–35 μm experienced greatest impact of ultrasound. 19 
 Phytic acid stores were localised in protein bodies of dry soybeans using SEM. 20 

  21 
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Abstract 22 

During soymilk production, aqueous extraction conditions are utilised resulting in suboptimal protein 23 

extraction yields.  This research focuses on the intensification of extraction yields from soybeans using 24 

ultrasound and understanding the reasoning behind the results.  Milled soybean slurry and okara samples 25 

were treated with ultrasound using a lab-scale probe system (20 kHz, 400 watts) for 0, 0.5, 1, 5 and 15 26 

min.  Ultrasound increased the protein, oil and solids extraction yield from soy slurry by ca. 10% after 27 

1 min treatment, especially due to improved solubility and in a less extent to enhanced separation 28 

efficiency.  Particles in the size range of 2-35 μm, corresponding to insoluble protein bodies in the 29 

continuous phase, were reduced in frequency but surprisingly not a stepwise decline in size upon 30 

ultrasound treatment, as shown by both laser diffraction and confocal laser scanning microscopy.  No 31 

effects of ultrasound were observed on intact cells present in okara solution and soy slurries.  Scanning 32 

electron microscopy could not reveal a hypothesised internal organisation of protein bodies within cells, 33 

although phytic acid stores were localised which have not been reported before.  In conclusion, 34 

ultrasound has been identified as a technology with promise in soybean extraction systems where 35 

solubility requires improvement. 36 

Keywords  37 

 Soybeans 38 
 Ultrasound-assisted extraction 39 
 Acoustic cavitation 40 
 Process intensification 41 
 Confocal laser scanning microscopy 42 

Nomenclature 43 

S Soybase mass 44 

O Okara mass 45 

Y I Primary extraction yield 46 

Y II Secondary extraction yield, resulting from okara treatment 47 

xi Mass fraction of component i 48 

xi,j Mass fraction of component i in stream j 49 

i p Protein 50 
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 o Oil 51 

 w Moisture 52 

 s Solids 53 

j S Soybase 54 

 O Okara 55 

Abbreviations 56 

CLSM – confocal laser scanning microscopy 57 

EDX – energy dispersive X-ray spectroscopy 58 

SEM – scanning electron microscopy 59 

1. Introduction  60 

Plant-based protein products are currently gaining much interest as a more sustainable alternative to 61 

animal-based protein products.  One such product gaining popularity across the world is soymilk, due 62 

to its complete set of essential amino acids, cholesterol-lowering attributes and lactose free nature [1].  63 

Soymilk production consists of aqueous extraction from soybeans using alkaline conditions at elevated 64 

temperatures, followed by removal of insoluble material to produce the resulting soybase.  This soybase 65 

is then used as a precursor to produce soymilk by adding other ingredients such as sugar, gums, flavours, 66 

minerals and vitamins.  The extraction of various components from soybeans is suboptimal; after 67 

extraction, a significant amount of protein resides in the insoluble fraction, termed okara.  Thermal 68 

treatment during processing is often employed to reduce the activity of lipoxygenase; which, if left in 69 

its native state, results in off-flavour production [2].  Vishwanathan et al. [3] show that alkaline 70 

conditions (optimal pH 8+) gave enhanced protein solubility when compared to acidic conditions due 71 

to the proteins isoelectric points.  Assistance during protein extraction from soybeans is supported by 72 

industry for reasons including: less expenditure on raw materials, less waste and lower costs associated 73 

with its subsequent treatment. 74 

An alternative energy source that has been commonly studied for laboratory scale extraction assistance 75 

in the food industry is ultrasound [4-12].  The mechanism involved in enhancing extraction yields is 76 

attributed to the cavitation phenomenon.  Upon the application of ultrasound, alternating mechanical 77 



4 
 

waves cause microbubbles located in the liquid medium to form and grow up to a sufficiently negative 78 

threshold pressure, where bubble collapse occurs [5].  As a consequence of bubble implosion, local 79 

physical effects may result in very high temperatures (5000 K) and pressures (2000 atm) [6].  Local 80 

regions of turbulence occur as a result of cavitation aiding mass transfer in solid-liquid extraction [7].  81 

Many lab-scale studies claim that ultrasound can also enhance extraction yields of intracellular materials 82 

from vegetal tissue due to cell disruption [5;6;10;13-15].  This intensification of extraction yield caused 83 

by cell disruption is attributed to liquid jets of solvent resulting from asymmetric microbubble collapse 84 

[16]. 85 

More recently, this technology has begun to show promise for implementation at industrial scale [17;18].  86 

Pilot scale studies have shown the positive effects of ultrasound on a number of food extraction systems.  87 

One such study by Pingret et al. [19] show the comparable results for ultrasound-assisted aqueous 88 

extraction of polyphenols from apple pomace at pilot-scale to those improvements observed at lab-scale.  89 

Boonkird et al. [20] showed the positive effects of ultrasound treatment on the extraction of 90 

capsaicinoids from chilli peppers at pilot scale.  Within the food industry, there has been implementation 91 

of ultrasonic processing on an industrial scale for assistance during extraction from vegetal materials 92 

[10].  Ultrasound-assisted extraction has been regarded as a green extraction process, for reasons 93 

including reductions in processing times, energy consumption and enhanced rates of extraction [21;22].  94 

These factors are of interest when considering protein extraction during soymilk production: protein that 95 

is currently used for low quality functions, such as animal feed, is made available for human 96 

consumption. 97 

A key factor to be explored when considering the effects of ultrasound is the microstructure of the 98 

processing materials.  It is important to understand the matrix from which the extraction occurs and the 99 

diffusion pathway by which protein can escape the solid, but so far little information is available in the 100 

literature about processed soybean microstructures.  The soybean is composed of approximately 90% 101 

cotyledon cells, with the length range of 70-80 μm and a diameter of 15-20 μm once hydrated [23;24].  102 

These cells contain protein bodies (5-20 μm) and a cytoplasmic network containing oil bodies (0.2-0.5 103 

μm) stabilised by proteins termed oleosins [24].  The physical restraints for non-optimal protein 104 
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extraction yields upon preparation of soybase in an aqueous environment have been studied in previous 105 

work [25].  Barriers for extraction included intact cotyledon cells, aggregated protein bodies within the 106 

extraction medium caused by thermal treatment and a considerable amount of okara containing 80% 107 

moisture in which soluble proteins reside [25]. 108 

Earlier studies of soy-based systems investigating ultrasonically-assisted extraction have been shown to 109 

improve extraction yields or to enhance the functionality of components [26-32].  Fukase et al. [24] 110 

investigated the effects of ultrasound on soybeans that underwent defatting using ether prior to protein 111 

extraction.  The ultrasound-assisted extraction from defatted soybean flakes yielded 50% more protein 112 

versus the control sample (no US) after 10 min treatment at ultrasonic pressure of 106 kPa in an aqueous 113 

system [24].  Another system showed the extraction of oil from soybeans using hexane was enhanced 114 

by 20% with the application of ultrasound for 30 min (20 kHz) compared to a control sample [31].  115 

However, there are very limited studies investigating the effects of ultrasound on aqueous extraction 116 

from soybean as the starting material, without pre-treatment.  One study by Fahmi et al. [33] investigated 117 

the effects of ultrasound treatment (35 kHz, up to 60 min) on soy slurry protein extraction from pre-118 

soaked soybeans.  The protein extraction was intensified: the protein content of soymilk increased by 119 

6.3% [33]. 120 

This study investigates the effects of ultrasound-assisted extraction, after initial grinding of soybeans at 121 

elevated temperatures.  We hypothesise that ultrasound assistance will improve the extraction yields of 122 

protein, oil and solids due to increased cell disruption, as discussed above.  Ultrasonic treatment of both 123 

the soy slurry and okara solution is investigated and extraction yields, solubilisation and separation 124 

efficiencies will be discussed.  In addition, confocal laser scanning microscopy (CLSM) and scanning 125 

electron microscopy (SEM) has been used to study the microstructure of the soybeans, to understand 126 

the target of ultrasound in our soybean extraction system. 127 



6 
 

2. Experimental 128 

2.1 Slurry preparation 129 

Preece et al. [25] describe a method for aqueous extraction to produce soy slurry and okara for 130 

subsequent treatments.  Figures 1 (A) and (B) show the process schematically.  Firstly, (‘Milling 1’ in 131 

Figure 1(A) and (B))  commercially available soybeans were ground in demineralised water at a ratio of 132 

1:6 (w/w) and at 80°C using a commercial blender (Varoma Thermomix, Vorwerk, Germany) for 10 133 

min (stepwise levels 2-8). Then the ground soybeans were treated (‘Milling 2’) with a high shear mixer 134 

(Silverson L4RT, Silverson Machines International, UK) for 20 min (stepwise 3000-6500 rpm) to 135 

produce a slurry with a volume-weighted mean diameter (D4,3) of less than 300 μm. 136 

2.2 Okara solution preparation 137 

The slurry was centrifuged (4330 × g, 10 min) to produce soybase S (supernatant) and okara O (pellet).  138 

The solid content of okara was measured using methods described in Section 2.4.  A solution of 2.85% 139 

solids was then made by diluting the okara with demineralised water. 140 

2.3 Ultrasonic treatment 141 

After sample preparation, 100 g of sample (slurry or okara solution) was weighed and added into in a 142 

water bath at 50 ± 1°C whilst stirring at 200 rpm using a magnetic stirrer bar (25 mm in length, 10 mm 143 

in diameter cylindrical bar with central ring).  Once the sample achieved the desired temperature, the 144 

sample was either subjected to sonication or held at 50°C in the water bath (control).  Various times of 145 

exposure to ultrasound were investigated to understand the effects of sonication on extraction. 146 

 147 

Figure 1A. Schematic diagram of preparation and treatments applied to slurry during processing. 148 
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 149 

Figure 1B. Schematic diagram of okara preparation and subsequent treatments. 150 

 151 

Sonicated samples were treated with an ultrasonic probe (Branson Sonifier 450, Branson Ultrasonics 152 

Corporation, Danbury, CT), (400 watts, 20 kHz, output level 7 which translates to a power output of 65 153 

W, 13 mm probe tip) for various time periods; 0.5 min, 1 min, 5 min & 15 min.  In the data presented, 154 

no temperature control was employed during ultrasonic treatment, however the temperature was 155 

recorded prior and post treatment (Table 1).  From the recorded temperature increase, it was possible 156 

to calculate the actual ultrasonic energies and power inputs introduced using calorimetry: 푄 =157 

푚퐶 ∆푇, where Q is the energy input as heat (J), m is the mass of sample (kg), CP is the specific heat 158 

capacity (assumed to be that of water, (4181 J kg-1 K-1) [22]) and ΔT is the temperature change (Table 159 

1).  The power input was calculated by dividing the energy input by the treatment time (in s), assuming 160 

that all energy was transferred to heat energy in the system.  Those powers quoted are less than those 161 

detailed by the probe manufacturer as 65 W, which might indicate that especially at high temperatures 162 

some of the heat energy was transferred from the system into the environment. 163 

  164 
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Table 1. Temperature increase reported during ultrasound (US) treatment of soy slurry and corresponding energy 165 
and power input calculated using calorimetry. 166 

US 
treatment 
time (min) 

Start T 
(°C) 

End T 
(°C) 

ΔT 
(°C) 

Energy 
input (J) 

Power 
input (W) 

0 49 - - - - 
0.5 49.7 49.9 0.2 84 3 
1 50.2 54.8 4.6 1923 32 
5 50 80.5 30.5 12752 43 

15 50.2 90.4 40.2 16808 19 
15 (No US) 49.5 49.8 0.3 - - 

 167 

After reaching the desired process time, the samples were immediately centrifuged (4330 × g, 10 min) 168 

to prevent further extraction occurring.  Pellets and supernatants were weighed and analysed to 169 

determine extraction yields. 170 

2.4 Protein & solids content determination  171 

To determine protein extraction yields, the protein content on a wet basis (w.b.) was defined in the 172 

pellets and supernatants using the Dumas method (Vario MAX CNS, Elementar Analysensysteme 173 

GmbH, Germany).  L(+)-glutamic acid (VWR International BVBA, Belgium) was used as a standard 174 

sample and UHT milk (3.5% fat) (muva kempten, Germany) as a reference material.  For soy samples, 175 

a protein conversion factor of 6.25 × N was utilised to determine protein content from the measured 176 

nitrogen content.  From the protein concentrations and masses of streams, the protein extraction yield 177 

into the soybase could be calculated using equation 1. 178 

Protein	extraction	yield = 푌	(%) = ∙ ,

∙ , ∙ ,
× 100                                                                (1) 179 

Here S (soybase) and O (okara) represent the total weight of samples and xp is the mass fraction of 180 

protein.  To analyse the effects of ultrasound on okara solution, it was necessary to consider the total 181 

protein extraction yield calculated using equation 2.  In this equation the nomenclature is that shown in 182 

Figure 1(B); yield I refers to the primary extraction and centrifugation for the production of soybase and 183 

okara; yield II corresponds to the okara solution treatment described. 184 
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Total	protein	extraction	yield	(%) = 푌	퐼 + (100% − 푌	퐼) × 푌	퐼퐼                                                (2) 185 

In addition to the extraction yields, the separation efficiency (equation 3) was derived to show the 186 

efficiency of deliquoring of okara during centrifugation.  The solubility of protein was also calculated 187 

using equation 4.  In these calculations, it was assumed that the moisture content found in okara retained 188 

the same protein concentration (xp,s) as the soybase, so that (O ∙ xw,o ∙ xp,s) is the amount of protein in the 189 

water fraction of the okara. 190 

Separation	efficiency	(%) = ∙ ,

∙ , ∙ , ∙ ,
× 100                                                                   (3) 191 

Solubility	of	protein	(%) = ∙ , ∙ , ∙ ,

∙ , ∙ ,
× 100                                                                       (4) 192 

Note that the extraction yield (equation 1) is equal to separation efficiency multiplied by the solubility 193 

of protein. 194 

Fat and solid contents were measured using a microwave moisture analysis system equipped with NMR 195 

for direct detection of fat content (SMART System5, CEM GmbH, Germany).  Oil and solid extraction 196 

yields were also determined using equation 1, replacing the masses of protein, with the respective 197 

masses. 198 

2.5 Particle size analysis 199 

The particle sizes of soy slurries after extraction were determined using laser diffraction (Mastersizer 200 

2000 Hydro S, Malvern Instruments Ltd, UK).  To determine particle size distributions, refractive 201 

indices of 1.33 and 1.45 were used for the water and the particles, respectively [19].  Protein, moisture 202 

and particle sizes were measured in triplicate for each sample. 203 

2.6 Confocal laser scanning microscopy (CLSM) 204 

A Leica TCS-SP5 microscope in conjunction with DMI6000 inverted microscope (Leica Microsystems 205 

Inc., Germany) was used with the dye nile blue A (Janssen Chimica, Belgium) to visualise the effects 206 

of ultrasound treatment on soy slurries.  One drop of dye stock solution (1% w/v nile blue) was added 207 

to 1-1.5 mL of sample and mixed well before adding the sample to the slide.  For visualisation using 208 
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nile blue, sequential scanning was employed to prevent the excitation laser occurring in the emission 209 

signals.  Table 2 shows the scans utilised and the corresponding colours assigned to the emission 210 

channels. 211 

Table 2. Excitation and emission conditions when acquiring CLSM images 212 

Sequential 
scan 

Excitation 
wavelength 

(nm) 

Emission 
wavelengths 

(nm) 

Illustrated 
colour in 

micrograph 

1 488 520-626 Green 

2 633 662-749 Red 

 213 

2.7 Cryo-scanning electron microscopy (cryo-SEM) 214 

A soy bean was cut into 2 pieces using a razorblade. One piece was placed in an aluminium sample cup 215 

and plunged into liquid nitrogen. The sample was then cryo-planed using a cryo-ultramicrotome 216 

(Ultracut UCT EM FCS, Leica Microsystems Inc., Germany), to obtain a freshly prepared cross-section. 217 

The sample was freeze-etched for 2 min at -90°C to reveal the microstructure and then sputter coated 218 

with platinum (120 s) in order to obtain a better image contrast. Samples were imaged using a Zeiss 219 

Auriga field emission SEM (Carl Zeiss Microscopy GmbH, Germany) at -125°C and an accelerating 220 

voltage of 3 kV.  The microscope was equipped with an energy dispersive X-ray spectroscopy (EDX) 221 

unit; therefore, it was possible to chemically characterise regions visualised using the microscope. 222 

  223 
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3. Results & Discussion 224 

3.1 Extraction yields 225 

3.1.1 Soy slurry treatment 226 

To understand the mechanisms of ultrasound on the soy slurry matrix, it was necessary to determine the 227 

extraction yields for the components of interest.  Extraction yields were calculated from measurements 228 

of oil, protein and solid contents of samples after treatment.  Figure 2 shows the effect of ultrasound 229 

treatment time versus extraction yield for the treatment of soy slurry.  Ultrasound was shown to improve 230 

the extraction of oil, proteins and solids vs. the control sample.  After 1 min treatment time, protein and 231 

oil extraction yields had improved by approximately 10% versus the 0 time point.  It was shown that 232 

there was no benefits to perform ultrasound-assisted extraction for more than 5 min as the maximum 233 

yields had been achieved.  A control sample was also analysed at 15 min to show the thermal treatment 234 

with stirring was not responsible for the increases in extraction yields observed.  An improvement in 235 

extraction yields was also observed for control samples; however, not as much as those observed for 236 

respective ultrasound treatments. 237 

Temperature control was not employed for the data shown within this study.  Without temperature 238 

control, 15 min ultrasonic treatment caused the temperature of the solution to increase by 40.2 ± 0.8°C.  239 

In a separate study, the effect of temperature was determined by controlling the temperature of the 240 

sample using a jacketed vessel cooled using counter-current flow of water at 20 ± 1°C.  The protein 241 

extraction yields for US-treated samples (0.5-5 min, without temperature control) yielded insignificant 242 

differences when compared to US-treated samples with temperature control (data not shown).  243 

Considering the effects of ultrasound with temperature control for the 15 min US-treated sample, the 244 

protein extraction yield was approximately 5% lower (absolute value) when the temperature of the 245 

sample was held at 50°C. 246 
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 247 

Figure 2. Improvement of extraction yields of slurry, oil (▲), protein (x) and solids () at various sonication times. 248 
Non-filled shapes correspond to control samples with corresponding component labels.  Each data point is an average 249 
of three separate experiments and the error bar represents its standard error. 250 

 251 

3.1.2 Okara solution treatment 252 

It has been previously reported that ultrasound has a significant effect on the extraction yield of protein 253 

from okara during soymilk production [34].  Total extraction yield refers to the addition of initial 254 

extraction yield during soybase production (soybase I and okara I production in Figure 1B) plus the 255 

extra materials which solubilised after subsequent okara treatments.  Figure 3 shows that an increase in 256 

protein extraction yield upon ultrasound treatment was indeed achievable in comparison to the control 257 

samples, recorded for each time point in this instance.  Total oil and solid extraction yields were also 258 

intensified during ultrasound treatment.  In contrast, the total extraction yields from the control samples 259 

(no ultrasound) remained unchanged during all time periods.  In this study, no temperature control was 260 

employed during the ultrasonic treatment of okara solution.  It was previously shown that the 80°C 261 

thermal treatment included with the milling of the soybeans in water (detailed in section 2.1) for okara 262 

preparation affected the protein extraction yield [25].  Based on the limited effect of temperature control 263 

shown for the slurry data, the effect of subsequent thermal treatments after sample preparation was 264 

considered to be negligible. 265 
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 266 

Figure 3. Effect of ultrasound treatment when applied to okara solution.  Oil (▲), protein (x) and solids () extraction 267 
yields are presented.  Non-filled shapes are corresponding control samples.  Data points are averages of three separate 268 
experiments. Error bars represent standard error of the mean from 3 separate experiments. 269 

 270 

3.2 Protein solubility and separation efficiencies 271 

During treatments of soy slurry using ultrasound, it was possible to identify whether the solubility of 272 

protein was attributed to the increase in protein extraction yield and/or in the separation efficiency 273 

(deliquoring of okara).  For the control sample, it was observed that the solubility and separation 274 

efficiency of protein were approximately 60% and 65%, respectively.  As can be seen from Figure 4, 275 

the solubility of protein had the greatest impact on the protein extraction yield during ultrasound 276 

treatment.  Separation efficiency was also positively influenced (to a lesser extent) by increasing 277 

ultrasonic treatment time; less water was present within the waste stream (okara), reducing the amount 278 

of soluble proteins entrapped within the matrix. 279 
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 280 

Figure 4. Protein extraction yield, solubility of protein and separation efficiency as a function of ultrasonic treatment 281 
time on soy slurry.  Error bars represent standard error from 3 separate experiments. 282 

 283 

3.3 Particle size distribution 284 

During ultrasound treatment, it has been well-documented that a reduction in particle size is observed 285 

for many systems [5;11;14;35].  During the present study, particle size distributions of the treated 286 

samples were recorded and are shown in Figure 5A.  The control slurry sample (0 min) showed a bimodal 287 

distribution of particles in the size range 2.5-2000 μm.  The peak in the range of 2.5-35 μm is caused by 288 

the insoluble protein bodies located in the continuous phase of the sample, which have been visualised 289 

previously under the same processing conditions [25].  The larger size particles include fibres, intact 290 

cells and seed coat materials.  Upon treatment with ultrasound, the peak in the 2.5-35 μm range (Figure 291 

5A) containing insoluble protein bodies was visibly reduced after 0.5 min and a stepwise reduction was 292 

observed with increasing treatment time. Interestingly, no stepwise peak shift to smaller sizes was 293 

observed.  Using the Malvern Mastersizer software, it was possible to perform a number transformation 294 

on the particle size data, resulting in a plot of number fraction versus particle size (Figure 5B).  The 295 

greatest number of particles in the control sample (0 min) were within the size range of 2.5-30 µm.  The 296 

number-based particle size distribution confirms that ultrasound caused the particles to disintegrate; 297 

even after 0.5 min ultrasound treatment, the number of particles shifted to a smaller particle size (in the 298 

range 0.3-1.1 µm).  Particles within this size range can be found within the soybase after centrifugation. 299 
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300 

Figure 5. Particle size distributions of soy slurry after ultrasound treatment for 0 min (control), 0.5 min, 1 and 15 min 301 
based on volume fraction (A) and number fraction (B). 302 

 303 

The instrumentation used to determine the particle size was based on laser diffraction technology.  304 

During the determination of the size, the particles are estimated to be spherical, which was not the case 305 

for this system, as confirmed by laser scanning confocal microscopy (detailed in section 3.4).  Particle 306 

size measurements are thus to be used for comparisons to one another, and not as absolute values. 307 

3.4 CLSM 308 

Confocal laser scanning microscopy was employed to observe the visual effects of the ultrasound 309 

treatment.  To highlight the apolar features in the soy samples of interest, nile blue was employed.  Nile 310 

blue can be excited by two excitation wavelengths; emission at shorter wavelengths (520-626 nm) was 311 

highlighted green in this study, visualising oil.  Longer wavelengths (662-749 nm) of emission are 312 

depicted in red and correspond to protein and fibrous materials.  Figure 6 shows typical images that were 313 

observed by CLSM.  Within the control micrograph (i.e. the unprocessed material) intact cells were 314 

seen, each containing complete protein bodies, shown as red within the cells (Figure 6A).  Protein was 315 

also present in the continuous phase of the sample with the same size range observed within the intact 316 

cells (again coloured red in this instance).  Submicron oil droplets were also observed in the continuous 317 

phase (highlighted in green).  With increasing ultrasonic treatment time, the presence of the protein 318 

bodies free in solution reduced in concentration.  Interestingly, no reduction in particle size of the protein 319 

bodies was observed, which correlates with the particle size distribution data (Figure 5). Intact cells 320 

were observed throughout all samples, even after 15 min of treatment (Figure 6E). If the cells are intact, 321 
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the materials present within are unavailable for extraction. Protein bodies within the intact cells were 322 

not affected by the ultrasound treatment; CLSM visualises intact cells containing protein bodies 323 

including after 15 min US treatment (Figure 6E).  Upon the application of ultrasound at a frequency of 324 

20 kHz, it is proposed that transient cavitation will be the main cause of effects in a liquid system [4].  325 

Liquid jet formation occurs as a result of asymmetric bubble collapse during transient cavitation and 326 

this phenomena is independent of the frequency of applied ultrasound [5].  In the soybean slurry system, 327 

the cell wall disruption force was apparently much higher than that supplied with liquid jet impingement 328 

on the cell wall surface, as no change in the number of intact cells was observed via CLSM.  The force 329 

required to overcome the energy holding together the insoluble protein must be lower than supplied with 330 

liquid jet impingement. 331 

 332 

Figure 6. CLSM images of soy slurry after various ultrasound treatments visualised with nile blue A: (A) Control (0 333 
min); (B) 0.5 min; (C) 1 min; (D) 5 min; (E) 15 min.  Oil is presented in the green channel and other apolar material 334 
such as agglomerated protein, protein entrapped within intact cells and fibres are highlighted in red.  335 

 336 

3.5 Cryo SEM-EDX 337 

Surprisingly, no stepwise reduction in particle size of the protein bodies was found upon ultrasound 338 

treatment during soybase production (see Figures 5 and 6). We hypothesise that internal compartments 339 

within the protein bodies of the soybean are responsible for this ‘all or nothing’ effect, and that 340 
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ultrasound is either able to disrupt this internal organisation holding these internal compartments 341 

completely, or not at all.  In a study by Krishnan et al. [36] compartmentalisation of protein bodies 342 

within rice seeds (Oryza sativa L.) was indeed shown.  Storage proteins made in the endoplasmic 343 

reticulum within plant cells may accumulate in the form of smaller protein bodies primarily into so-344 

called protein storage vacuoles by autophagy [37]. The limiting membrane of the sequestered protein 345 

bodies is then digested by vacuolar enzymes, resulting in aggregated, larger protein bodies (those visible 346 

in Figure 6). 347 

SEM-EDX was utilised to investigate the structure and composition of the protein bodies within dry 348 

soybeans (Figure 7).  The Figure shows protein bodies surrounded by oil bodies, which were lighter in 349 

appearance.  The protein bodies ranged in size (2.4-13.5 μm), which fall in the lower part of the size 350 

range quoted in the literature of 2-20 μm, derived from imaging hydrated samples by transmission 351 

electron microscopy [24].  Bright white spots are artefacts arising from cryo-planing during sample 352 

preparation and sample transfer (labelled on Figure 7).  It was possible to visualise spherical features 353 

within the protein bodies, these show as a lighter grey signal and annotated in Figure 7.  EDX analysis 354 

(insets to Figure 7) showed these were carbon-deficient, oxygen-rich spherical structures within the 355 

protein bodies; EDX also clearly shows the difference in oxygen and carbon composition between the 356 

protein and oil bodies.  Nitrogen was difficult to observe using EDX analysis due to its low abundance 357 

throughout the soybean; therefore, little difference in spatial arrangement was not apparent in the signal 358 

(Figure 7).  These spherical structures (annotated on Figure 7 as PA) are most likely phytic acid, which 359 

act as a store of phosphorus and other cations during germination of the soybean [38;39].  Magnesium 360 

was also present within these external structures (data not shown), which is explained by the chelating 361 

ability of the phytic acid.  The hypothesised compartmentalisation of soybean protein bodies was not 362 

observed in Figure 7. 363 
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 364 

Figure 7. SEM image of dry soybean with examples of phytic acid (PA) and artefacts (A) annotated.  Scale bar represents 2 365 
μm.  Red, green and purple colour channels correspond to carbon, oxygen and nitrogen signals, respectively, during EDX 366 
analysis. 367 

4. Conclusions 368 

Soymilk production consists of aqueous extraction from soybeans, followed by removal of insoluble 369 

materials.  The conventional extraction of various components from soybeans is suboptimal.  The effect 370 

of ultrasound on separation and extraction has been studied.  Ultrasound intensifies the extraction of 371 

valuable components from soybeans, leading to improved yields of protein, oil and solids of ca. 10% 372 

after 1 min treatment.  It is important to understand the effects of ultrasound on the aqueous extraction 373 

system for its industrial application during soymilk production, which has not been extensively covered 374 

within recent literature.  The microstructural analysis undertaken in this study indicates improved 375 

solubility as the main cause of the improved yields upon ultrasound treatment, and not cell disruption 376 

as is frequently stated in the literature.  The amounts of particles in the size range of 2.5-35 μm, most 377 

likely protein bodies, were found to reduce for all ultrasound treatments investigated in an ‘all or 378 

nothing’ effect as no intermediately sized features were observed. 379 
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