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ABSTRACT 

There were studied four types of powder filler materials for polyolefin composite parts 

production for automotive and aerospace industry. There was confirmed, that the particle 

shape has a strong effect on the acoustic and mechanical properties of the powder bed as 

influenced by the varying packing density. The calcium carbonate spherical hollow particles 

exhibited the best aerodynamic performance when aerated and were completely fluidized. 

Simultaneously they were exhibiting the easy flowing behaviour as reflected in the observed 

flowability of 4.71. In contrary to this, the flat lamellar geometry of the precipitated calcium 

carbonate resulted in the worst fluidization behaviour, as the aeration energy was 2.5× higher 

in comparison to the spherical particles. Remaining samples under study, i.e. flash calcined 

kaolin and dolomite powder, exhibited cohesive rheological behaviour as reflected in the 

observed flowability. There was found a clear correlation between powder rheological and 

electrostatic charge data with the observed acoustic performance as reflected in the frequency 

dependence of the normal incident sound damping coefficient. This was demonstrated by a 

relatively high increase in the damping efficiency with increasing porosity of the powder bed 

as reflected in the decreasing packing density. However the best fit was found between the 

absolute value of the electrostatic charge values and the sound damping properties.  

 

Keywords: Hollow sphere particles; Powder rheology; Sound damping; Powder processing; 

Elastic coefficient; Electrostatic charge. 

 

1. Introduction 

At present there is an increased demand for the application of synthetic polymers in the 

automotive and aeronautic industries. It is mainly targeted for utilisation of poly(ethylene), 

poly(propylene), polycarbonate and polyamide components of the interior, exterior or other 
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functional parts of vehicles [1,2]. Minerals first served as additives in polymer systems as a 

cost reducing technology [3] and due to the technological improvements in minerals 

processing and polymer chemistry, these materials are now used as functional additives [4] 

bringing specific mechanical and functional properties to the final composite products [5,6]. 

For example, hollow particle filled composites, called syntactic foams, are used in 

applications requiring high damage tolerance and low density, e.g. in aerospace and marine 

engineering structural applications. It was found that the presence of stiff hollow inclusions 

can enhance the composite elastic modulus in comparison to neat resin. Moreover, with the 

latter elastic modulus enhancement, an increase in energy absorption under compressive load 

was found due to the hollow fillers progressively crushing [6]. 

The recent review article by Wang et al. [7] described the present state of the art chemical 

synthesis routes and strategies for the synthesis of hollow micro/nano structured materials. 

The synthetic strategies were grouped into three major categories; hard templating, soft 

templating, and self-templating synthesis. Hollow spheres have a wide range of applications 

due to their regular uniform shape, meaning that they have the same properties, regardless of 

their orientation. Nano/micro scale hollow spheres have been produced through a variety of 

different methods [8-15] and have the benefit of being a colloidal particle that can flow, and 

remain untangled with other particles when put into a complex formulation [16]. Hollow latex 

spheres have been made commercially since the 1980’s [17,18], with the primary production 

method being osmotic swelling [19]. Hollow latex spheres however have the disadvantage of 

being easily squashed or ruptured, so sturdier mineral structures are often preferred. This can 

be achieved by armour plating hollow latex spheres [20,21], or by creating hollow spheres 

directly from mineral structures, which has the benefit of fewer production steps. 

Creating hollow spheres made of calcium carbonate has proved to be a success, with [22], and 

[23] making them using a carbon dioxide bubbles as a template, whilst [24,25] used an 
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emulsification process. Consequently, hollow CaCO3 spheres have proved to be a success, 

and the understanding of their properties, and their possible applications continue to increase. 

Another route for the production of the perfectly formed dense agglomerates and the 

formation of deformed or hollow agglomerates is affected by particle consolidation during 

spray drying evaporation, particle rearrangement during the consolidation period and by the 

inter-particle potential. In general, the consolidation can proceed in the thermodynamic state, 

where the inter-particle potential is either repulsive or attractive. In the dispersed slurry, the 

long-range inter-particle potential allows the particles to repel one another. When the particles 

are repulsive, the meniscus that separates the two fluids exerts a capillary pressure on the 

particles at the surface, forcing them together as a dense agglomerates. In the case of the 

mechanism, where particles were not allowed to rearrange after a short period of evaporation, 

the agglomerate becomes hollow and deformed. Whereas in the case of the attractive particle 

network, if the capillary pressure exceeds the yield stress, the spherical agglomerates with 

uniform density are formed [26]. 

As a composite system matrix, polyolefin polymers are widely used, such as poly(ethylene) or 

poly(propylene), with different grades, types and qualities [3]. There was found to be an 

increase in tested polyolefin melts viscosity, a decrease of the elasticity with increasing filler 

loading and the presence of yield values in the flow curves depending on the filler particles 

volume loading and particles size [27]. When comparing the acoustic properties of the 

composite materials, the process of the interaction of the mechanical acoustic wave and the 

material structure is based on the assumption that an incoming wave is reflected at the 

boundary between two acoustically different materials due to the differences in the acoustic 

impedance of the involved materials [28-31].  
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This paper is focused on the application of powder rheology, acoustic performance testing and 

electrostatic charge measurements on the evaluation of hollow spheres and lamellar mineral 

powder materials as prospective fillers for polyolefin composite materials applications.  

 

2. Theoretical background 

Sound is an acoustic wave with frequencies ranging from 10 Hz to 16 kHz, with sonic 

waves spreading in all directions from the source. On the basis of different points of view 

on the problem of noise attenuation it is possible to distinguish the following methods of 

sound and vibration damping [32]: 

– Reduction method – attenuation at the noise source, e.g. during the machinery 

construction stage. 

– Sound isolation method – covering the sound source by material with high airborne sound 

insulation characteristics. 

– Sound absorption method – endeavour to minimise sound reflections e.g. to absorb the 

maximum of the incident acoustic energy. 

In the matrix of the sound/vibration attenuating material, dissipation of the sonic wave to 

mechanical energy and heat takes place. This proceeds by the combination of the following 

processes: 

– By friction of the vibrating air particles on the walls during their penetration into the pores 

of the sound absorbing material. This lowers the kinetic energy of the incident sound field. 

Effectiveness of this process increases with growing porosity of the absorption material. 

– By decreasing the potential energy of the sonic wave penetrating into the material. This 

lowers the acoustic pressure due to the heat exchange between air and the skeleton of the 

absorbing material during periodic pressure changes. 
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– By non-elastic deformation of the absorbing material body. At the specifically aimed 

construction of the vibration or noise–isolation material it is therefore possible to utilise all 

of the above mentioned processes for their synergistic effect in obtaining maximum 

effectiveness of attenuation. This is possible by modelling the geometry of the damping 

material body as well as by proper selection of the main material matrix and adhesive 

system. 

 

2.1. Sound absorption measurements 

Sound absorption properties express a material’s ability to absorb incident acoustic energy 

and is described by the sound absorption coefficient (α) which is defined by the ratio of 

dissipated power in a tested material and incident power. Sound absorption of a given material 

depends on many factors, including; excitation frequency, thickness, structure, temperature, 

density and humidity [28,32]. The effect of the excitation frequency on the sound absorption 

coefficient is expressed by the noise reduction coefficient (NRC), which is defined as the 

arithmetic mean of the sound absorption coefficients of a given material at the excitation 

frequencies of 250, 500, 1000 and 2000 Hz [33]. On the basis of the primary absorption peak 

frequency (fp1), it is possible to determine the speed of sound (c) of an elastic wave through a 

powder bed and the longitudinal elastic coefficient (K) of the power bed as follows, where h is 

the height of a given powder bed and ρb is the bulk density of the powder bed. [34]: 

 

� = �	���	�           (1) 

 

	 = �
�� = �
���

 	�
	��         (2) 

 

3. Materials 
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The materials studied were commercially available mineral filler powders and are described 

in Table 1. Four samples were analysed; formulated calcium carbonate spheres (process route 

developed at The University of Birmingham, UK), flash calcined kaolin, dolomite and 

calcined kaolin. Samples 1 was the hollow calcium carbonate spheres, sample 2 was flash 

calcined kaolin based filler (Imerys, UK), sample 3 was dolomite powder (CaO (30.3 wt.%), 

MgO (21.6 wt.%), Fe2O3 (0.08 wt.%)) (Omya, Switzerland) and sample 4 was a calcined 

kaolin based filler (Imerys, UK). Sample moisture content ranged from 0.1 to 0.9 wt.%. 

 

4. Methods 

4.1.  Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to determine the shape and size of the studied 

mineral composite filler particles. SEM images were captured using a Hitachi 6600 FEG 

microscope (Japan) operating in the secondary electron mode using an accelerating voltage of 

1 kV. 

 

4.2. Thermal Analysis 

Thermogravimetry (TG) and differential thermal analysis (DTA) experiments were performed 

on simultaneous DTA-TG apparatus (Shimadzu DTG 60, Japan) to determine the moisture 

content of the samples, and to determine whether there was any organic material present. 

Throughout the experiment, the sample temperature and weight-heat flow changes were 

continuously monitored. The measurements were performed at a heat flow rate of 10 °C/min 

in a static air atmosphere at the temperature range of 30 °C to 300 °C. 

 

4.3. Powder rheology 
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Powder rheology measurements were conducted on a FT4 Powder rheometer (Freeman 

Technology, UK). All experiments were performed under the ambient laboratory conditions 

of 23 °C and relative humidity of 43 %. 

 

4.4. Acoustic performance testing 

The frequency dependencies of the sound absorption coefficients of the investigated powders 

were experimentally determined by the transfer function method ISO 10534-2 [31,35,36]. The 

frequency dependencies were experimentally measured using a two-microphone impedance 

tube BK 4206 in combination with a three-channel signal Pulse Multianalyzer BK 3560-B-

030 and power amplifier BK 2706 (all from Brüel & Kjær, Denmark) in the frequency range 

of 150-6400 Hz. This equipment was subsequently used in order to determine the noise 

reduction coefficient, the speed of sound through the loose powder materials and the 

longitudinal elastic coefficient of the investigated unconsolidated materials. The normal 

incidence sound wave absorption of the investigated loose powder samples of defined layer 

thickness (ranging from 5 to 100 mm) was also determined. The measurements were 

performed under ambient laboratory conditions of 62 % relative humidity and at constant 

temperature of 25 °C.  

 

4.5. Electrostatic charge measurements 

Electrostatic charge measurements were conducted on a NK-1001A Coulomb meter (Kasuca 

Denki, Japan). Samples were placed in a Faraday cage and the charge (nC) was measured for 

1 g samples [37]. Each measurement was repeated 8×, and all measurements were performed 

at 25 °C ambient laboratory temperature and 45 % relative humidity. 
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5. Results and discussion 

Sound absorption properties of the tested powders are affected by their porosity, shape of 

pores, angle of inclination of incident acoustic waves on the material surface, friction of 

acoustic waves during transmission through the porous matrix [32], material mechanical 

stiffness and conditions of applied acoustic field, including; sound excitation frequency, 

ambient air relative humidity and ambient temperature. The shape and size of the tested 

powder materials observed using SEM are shown in Fig. 1. Sample 1 was found to have a 

regular spherical shape with a narrow 4 µm diameter, whilst sample 2 had a plate agglomerate 

structure of 3-6 µm particle dimensions, contrary to the agglomerate structure of sample 2, 

samples 3 and 4 exhibited lamellar plate like structures of 20 to 30 µm dimensions with a 

relatively large fraction of the residual 3 to 4 µm size particles. 

Results of the normal incidence sound absorption measurements are shown in Figs. 2 and 3 

and are summarised in Table 2. From this data it is evident that sound absorption properties 

increase with increasing material thickness, in this case with height of the loose powder bed. 

Fig. 2 demonstrates the measured data for hollow spheres (sample 1). The obtained frequency 

dependencies of the normal incidence sound absorption coefficient are characterised by the 

primary absorption peak at a characteristic frequency fp1. It is visible that the primary 

absorption peak frequency was shifted toward decreasing frequency with increasing loose 

powder bed height (Fig. 2), i.e. from 1584 Hz for the bed height of 5 mm to 304 Hz for 100 

mm powder bed height. Similar dependencies of the fp1 on the powder bed height were also 

observed for the other materials tested (Table 2). As was described in the theoretical section, 

the primary absorption peak frequency is directly proportional to the longitudinal elastic 

coefficient of the powder bed and to the velocity of the sound propagation through the powder 

bed. There was observed the highest magnitude of elastic coefficient of 11 MPa (for the 

powder bed h = 100 mm) for sample 4. In contrary to this, the lowest magnitude of elastic 
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coefficient of 0.95 MPa was observed for sample 2 for the same powder bed height. It was 

found in this study that the material stiffness characterised by the longitudinal elastic 

coefficient proportionally increased with increasing powder bulk density. The highest speed 

of sound (see eq. (1)) of the acoustic wave propagated through the powder bed (of 100 mm) 

was found for sample 1 (c = 121.6 m/s). This was attributed to the low sound absorption 

properties of sample 1 (hollow spheres) compared to the other materials tested. Most probably 

this phenomenon is caused by the observed closed cell porous structure of the individual 

hollow spheres. The mutual comparison of sound damping properties of the tested loose 

powder materials for the powder bed height h = 15 mm is shown in Fig. 3. It is evident that 

the best sound damping properties over the whole measured frequency range were obtained 

for sample 2. Contrary to this, the worst sound damping properties were found for the hollow 

sample 1, indicating its excellent sound reflecting properties. This result is in excellent 

agreement with the calculated values of the noise reduction coefficient NRC (Table 2), which 

represents the arithmetic mean sound absorption at the four given excitation frequencies. It 

was found that better sound absorption is obtained for materials with lower bulk density, 

hence exhibiting higher porosity. It was also evident (Figs. 2 and 3) that sound absorption is 

generally increasing with increasing excitation frequency [38]. 

The results of the powder bed aeration experiments are shown in Fig. 4 and Table 3. Basic 

flowability energy (BFE), aeration energy at 10 mm/s air velocity (AE_10), aeration ratio at 

10 mm/s air velocity (AR_10) and normalised aeration sensitivity (NAS) parameters were 

determined. It was found that the spherical particle shape of sample 1 exhibited the lowest 

aeration energy of 7.5 mJ and the best fluidisation properties as reflected in the highest 

measured aeration ratio of 15.1 from all materials studied. These results are in excellent 

agreement with the most aerodynamic shape of the spherical particles in comparison to the 

plate like irregular particles which exhibit turbulent air flow patterns around the particles. 
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Contrary to this, sample 2 was found to have low sensitivity to aeration across the whole 

range of air velocities tested. Such behaviour is typical for highly cohesive powder materials. 

The observed aeration energy for sample 2 was the highest in comparison to all materials 

studied at 25.1 mJ and the aeration ratio was the smallest of 3.6. Results of the aeration testing 

for samples 3 and 4 indicate that these powder materials are less cohesive and have moderate 

sensitivity to aeration. This fact indicates that samples 1, 3 and 4 create more compact powder 

bed structures compared with sample 2. This fact was confirmed in the sound absorption 

experiments, where sample 2 exhibited the best sound damping properties due to the more 

microporous structure of the powder bed (Table 2, Figure 3). This conclusion is also 

supported by the trend obtained for the basic flowability energy parameter, where the lowest 

magnitude was found for sample 2 at 90.8 mJ, whilst the BFEs for samples 1, 3 and 4 

exceeded 107.9 mJ. The highest BFE was found for sample 4 at 179.3 mJ. The observed 

trends are in excellent agreement with the shear cell flow experiments. The hollow calcium 

carbonate spheres (sample 1) exhibited the highest flowability of 4.71, indicating easy 

flowing character [39], whereas samples 2, 3 and 4 showed cohesive properties (FF ranged 

between 3.01 (sample 3) to 3.81 (sample 4)). 

It is well known from the literature, that the mechanical friction of individual nano/micro 

particles induces the creation of electrostatic charge on their surfaces [37]. This electrostatic 

charge has a strong influence on the packing density of the powder bed, thus influencing its 

mechanical, as well as acoustic properties. It was found in this study that the calcium 

carbonate hollow sphere particles (sample 1) were of positive electrostatic charge at 1.25 ± 

0.22 nC, however lamellar precipitated calcium carbonate exhibited a negative electrostatic 

charge of -1.50 ± 0.24 nC. The highest charge was found for flash calcined kaolin (sample 2) 

at -10.15 ± 0.95 nC. Electrostatic charge of sample 3 (dolomite powder) was -4.17 ± 0.55 nC. 

The mutual comparison of the absolute values of the observed electrostatic charges of the 
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samples studied was in the following order: sample 1<sample 4<sample 3<sample 2. This 

order was found to be of the same pattern as for the sound damping performance, where the 

best damping properties were found for sample 2 and the worst for sample 1. These results 

can be attributed to the spatial ordering of the individual micro particles, thus creating a 

specific porous structure as reflected in the observed packing densities in the case of each 

sample studied. However, the poor sound absorption performance of sample 1 indicates its 

superior sound reflection properties.  

 

Conclusions 

In this paper the material properties of four powder filler materials for polyolefin composite 

parts production for the automotive and aerospace industry were studied. It was found that the 

particle shape has a strong effect on the acoustic and mechanical properties of the powder bed 

as influenced by the varying packing density. Moreover the hollow calcium carbonate spheres 

exhibited the best aerodynamic performance when aerated and were completely fluidised. 

Simultaneously they exhibited the easy flowing behaviour as reflected in the observed 

flowability of 4.71. Contrary to this, the flat lamellar geometry of the calcined kaolin resulted 

in the worse fluidisation behaviour, as the aeration energy was 2.5× higher at 18 mJ compared 

to the spherical particles (AE_10 = 7.5 mJ). The flash calcined kaolin and dolomite powders 

exhibited cohesive powder behaviour as reflected in the observed flowability of 3.67 and 

3.01, respectively. 

There was found to be a clear correlation between powder rheological and electrostatic charge 

data, with the observed acoustic performance as reflected in the frequency dependency of the 

normal incident sound damping coefficient. Here a clear increase of the damping efficiency 

with increasing porosity of the powder bed was demonstrating as reflected in the decreasing 

packing density. However the best correlation with sound damping performance was found 
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with the observed absolute values of the electrostatic charge of the tested powders. Here the 

largest electrostatic charge was found for sample 2 and the lowest for sample 1 (hollow 

spheres). The same pattern was also found for the sound damping performances, i.e. the best 

sound damping properties were found for sample 2 and the worst one for sample 1 (hollow 

spheres). However, the poor sound absorption performance of the sample 1 indicates its 

superior sound reflection properties make it potentially commercially attractive for sound 

insulation applications. The same dependency was also found for the aeration measurements 

results, where the most cohesive character was found for sample 2 and the best fluidisation 

properties found for the low density hollow spheres (sample 1). Based on the above results it 

can be concluded that the combination of the powder rheological and electrostatic charge 

measurements can be used to predict the sound damping properties of the powder filler 

materials. 
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Figure headings 

Figure 1. SEM images of the studied composites filler materials, where sample 1 = hollow 

calcium carbonate spheres, sample 2 = flash calcined clay, sample 3 = dolomite and sample 4 

= calcined kaolin. 

Figure 2. Sound absorption coefficient frequency dependence for sample 1 (hollow particles) 

for different powder bed heights: black circle – 5 mm, red triangle down – 10 mm, green 

square – 20 mm, yellow diamond – 50 mm and blue triangle up – 100 mm. Arrow indicates 

primary absorption peak frequency (fp1). Inset: SEM image of sample 1 hollow sphere 

structure. 

Figure 3. Sound absorption coefficient frequency dependence of studied powder materials. 

Measured at the powder bed height of 15 mm. 

Figure 4. Total energy against fluidised velocity for the four mineral samples. 

Figure 5. Yield locus and the Mohr´s circles of the tested materials as obtained by shear cell 

experiments at applied 9 kPa consolidation stress. 
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Table headings 

Table 1. Studied samples labelling and description. 

Table 2. Results of the acoustic and mechanical testing for the studied powder composites 

filler materials. 

Table 3. Results of the aeration test of the studied powder composite filler materials. 

Table 4. Results from the shear cell flow experiments, measured at the consolidation stress of 

9 kPa and the temperature of 24 °C. 
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Table 1. Studied samples labelling and description. 

Sample Geometry Description Moisture 

[w.%] 

1 Hollow 

sphere 

Calcium carbonate, narrow particle size 

distribution, 4 µm diameter, density 2.4 g/cm3.  

0.9 

2 Agglomerate Opacilite (Imerys), flash calcined kaolin, d50 = 

1.6 µm, density 2.1 g/cm3. 

0.9 

3 Lamellar  Microdol H600 (Omya, Switzerland), dolomite 

powder, d50 = 5.5 µm, density 2.9 g/cm3. 

0.3 

4 Lamellar Polestar 200P (Imerys), calcined kaolin, d50 = 2 

µm diameter, density 2.7 g/cm3. 

0.1 
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Table 2. Results of the acoustic and mechanical testing for the studied powder 

composites filler materials. 

Sample 

 

Quantity Material height h [mm] 

5 10 15 20 50 100 

1 αmax [−] 0.345 0.512 0.508 0.478 0.506 0.446 

fαmax [Hz] 6368 6392 6384 5624 5688 5768 

NRC [−] 0.112 0.149 0.180 0.167 0.167 0.163 

fp1 [Hz] 1584 808 544 520 312 304 

K [MPa] 0.421 0.438 0.446 0.725 1.631 6.196 

c [m⋅s-1] 31.7 32.3 32.6 41.6 62.4 121.6 

2 αmax [−] 0.860 0.727 0.757 0.805 0.779 0.774 

fαmax [Hz] 4840 5920 6344 5600 6312 5936 

NRC [−] 0.188 0.316 0.359 0.434 0.500 0.338 

fp1 [Hz] 3992 2351 1264 768 244 152 

K [MPa] 1.6445 2.282 1.484 0.974 0.614 0.954 

c [m⋅s-1] 79.8 94.0 75.8 61.4 48.8 60.8 

3 αmax [−] 0.579 0.729 0.647 0.627 0.690 0.685 

fαmax [Hz] 5920 6384 5928 4864 6384 6392 

NRC [−] 0.132 0.258 0.228 0.279 0.254 0.220 

fp1 [Hz] 1472 1296 520 512 272 240 

K [MPa] 0.732 2.268 0.822 1.416 2.498 7.778 

c [m⋅s-1] 29.4 51.8 31.2 41.0 54.4 96.0 

4 αmax [−] 0.571 0.563 0.639 0.635 0.580 0.644 

fαmax [Hz] 5760 6392 6376 6384 4864 5592 

NRC [−] 0.128 0.181 0.221 0.201 0.221 0.236 

fp1 [Hz] 1536 696 472 416 288 272 

K [MPa] 0.878 0.721 0.746 1.030 3.086 11.008 

c [m⋅s-1] 30.7 27.8 28.3 33.3 57.6 108.8 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 3. Results of the aeration test of the studied powder composite filler materials. 

Sample BFE 

[mJ] 

AE_10 

[mJ] 

AR_10 

[-] 

NAS 

[s/mm] 

1 114.1 7.5 15.1 0.344 

2 90.8 25.1 3.6 0.152 

3 107.9 13.4 8.1 0.261 

4 179.3 18.0 9.9 0.310 
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Table 4. Results from the shear cell flow experiments, measured at the consolidation stress of 

9 kPa and the temperature of 24 °C. 

Sample Cohesion 

[kPa] 

UYS 

[kPa] 

MPS 

[kPa] 

FF 

[-] 

AIF 

[°] 

BD 

[g/ml] 

MCS 

[kPa] 

AIF [E] 

[°] 

1 0.86 2.98 14.04 4.71 30.13 1.95 3.67 35.86 

2 1.30 4.74 17.38 3.67 32.55 1.17 3.80 39.89 

3 1.48 5.72 17.23 3.01 35.34 1.92 3.07 44.20 

4 1.15 4.36 16.62 3.81 34.53 2.36 3.39 41.39 

UYS – unconfined yield strength, MPS – major principal stress, FF – flow function, AIF – 

angle of internal friction, DB – bulk density, MCS – minor consolidation stress, AIF [E] – 

angle of internal friction (effective). 
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Figure 1. SEM images of the studied composites filler materials, where sample 1 = hollow 

calcium carbonate spheres, sample 2 = flash calcined clay, sample 3 = dolomite and sample 4 

= calcined kaolin. 
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Figure 2. Sound absorption coefficient frequency dependence for sample 1 (hollow particles) 

for different powder bed heights: black circle – 5 mm, red triangle down – 10 mm, green 

square – 20 mm, yellow diamond – 50 mm and blue triangle up – 100 mm. Arrow indicates 

primary absorption peak frequency (fp1). Inset: SEM image of sample 1 hollow sphere 

structure. 
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Figure 3. Sound absorption coefficient frequency dependence of studied powder materials. 

Measured at the powder bed height of 15 mm. 
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Figure 4. Total energy against fluidised velocity for the four mineral samples. 
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Figure 5. Yield locus and the Mohr´s circles of the tested materials as obtained by shear cell 

experiments at applied 9 kPa consolidation stress. 
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Highlights 

 

Four types of powder filler materials for composite parts production were studied.  

Particle shape has a strong effect on the acoustic and mechanical properties of the powders.  

A clear correlation between electrostatic charge and acoustic performance was found.  

Hollow spheres demonstrated superior sound reflection properties. 

 




