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tr1-Like t cells – An enigmatic
regulatory t cell Lineage

 

Anna Malgorzata White1 and David C. Wraith1,2*

1 School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK, 2 Institute of Immunology and Immunotherapy, 
University of Birmingham, Birmingham, UK

The immune system evolved to respond to foreign invaders and prevent autoimmunity 
to self-antigens. Several types of regulatory T cells facilitate the latter process. These 
include a subset of Foxp3− CD4+ T cells able to secrete IL-10 in an antigen-specific 
manner, type 1 regulatory (Tr1) T cells. Although their suppressive function has been 
confirmed both in vitro and in vivo, their phenotype remains poorly defined. It has been 
suggested that the surface markers LAG-3 and CD49b are biomarkers for murine and 
human Tr1 cells. Here, we discuss these findings in the context of our data regarding 
the expression pattern of inhibitory receptors (IRs) CD49b, TIM-3, PD-1, TIGIT, LAG-
3, and ICOS on Tr1-like human T cells generated in vitro from CD4+ memory T cells 
stimulated with αCD3 and αCD28 antibodies. We found that there were no differences in 
IR expression between IL-10+ and IL-10− T cells. However, CD4+IL-10+ T cells isolated 
ex vivo, following a short stimulation and cytokine secretion assay, contained significantly 
higher proportions of TIM-3+ and PD-1+ cells. They also expressed significantly higher 
TIGIT mRNA and showed a trend toward increased TIM-3 mRNA levels. These data led 
us to conclude that large pools of IRs may be stored intracellularly; hence, they may not 
represent ideal candidates as cell surface biomarkers for Tr1-like T cells.

Keywords: tr-1 t cells, iL-10, cD4+ t cell, inhibitory receptors, peripheral tolerance

cD4+iL-10+ t ceLLs – A HeterOGeNeOUs POPULAtiON OF 
ceLLs WitH A sUPPressive FUNctiON

In 1997, Groux et al. described a unique population of CD4+ T lymphocytes generated after in vitro 
stimulation of CD4+ T cells from the T cell receptor (TCR) transgenic DO11-10 mouse with oval-
bumin peptide (OVA) and IL-10 or with IL-10 alone. These OVA-specific CD4+ T cells produced 
high levels of IL-10 and IL-5, moderate levels of IFNγ and TGFβ, low levels of IL-2 and IL-4, and 
proliferated poorly in response to peptide stimulation (1). High levels of IL-10 suggested a regula-
tory potential for these cells, since IL-10 is crucial for limiting proinflammatory and autoimmune 
responses [reviewed in Ref. (2, 3)]. IL-10-deficient mice develop severe colitis, accompanied by 
tissue damage and excessive inflammation (4). Analysis of this model as well as further studies 
demonstrated that IL-10 is able to block immune responses at different levels by acting directly 
and indirectly on both innate and adaptive arms of the immune system [reviewed in Ref. (5)]. As 
a result, IL-10 can inhibit production of proinflammatory cytokines, antigen presentation, and cell 
proliferation.

In the original paper, the reconstitution of SCID mice with naive CD4+ T cells and OVA-specific 
CD4+IL-10+ T cell clones resulted in prevention of colitis (1). Later on, several other groups confirmed 
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the antigen-specific suppressive potential of CD4+IL-10+ T cells 
in vivo using colitis (4), experimental autoimmune encephalomy-
elitis (EAE) (6–10), collagen-induced arthritis (11), and allergy 
(12) disease models. Our laboratory has developed an animal 
model of multiple sclerosis (MS) using a TCR transgenic system. 
More than 90% of CD4+ T cells in transgenic Tg4 mice express a 
Vβ8.2 TCR specific for the myelin basic protein (MBP) peptide 
Ac1–9 presented in the context of MHC I-Au (13). This allowed 
us to conduct detailed phenotypic analysis of antigen-specific 
CD4+IL-10+ T cells and identify panel of inhibitory receptors 
(IRs), which could serve as markers for these cells (7), (see The 
Need to Discover a Surrogate Marker for Regulatory Tr1-Like  
T Cells).

CD4+IL-10+ T cells can also be generated using human 
peripheral blood mononuclear cells (PBMC) after stimulation 
with allogeneic monocytes in the presence of IL-10 (1). They 
produce high levels of IL-10 and low levels of IL-2 and IL-4, after 
re-stimulation with αCD3 and αCD28 antibodies, and similar 
to the murine CD4+IL-10+ T cells can suppress responder CD4+  
T cells in vitro (14–17). These results were obtained using several 
different protocols for the generation of the CD4+IL-10+ T cell 
population. They involved stimulation with a specific subset 
of antigen-presenting cells, including plasmacytoid dendritic 
cells (DCs), immature DCs, or tolerogenic DC (1, 18–20); the 
presence of cytokines, including IL-10, IL-6, IL-21, or IL-27 
(21–24); or using antibodies against various costimulatory 
molecules, such as CD46, CD2, and CD55 (25, 26), as well 
as vitamin D3 and immunosuppressive drugs (27). Different 
laboratories adopted a different set of stimuli, which in their 
experimental setup worked most efficiently to generate high 
numbers of CD4+IL-10+ T cells. However, one could question 
the physiological relevance of such manipulations, because they 
cannot re-create a complex in vivo environment. Also, different 
protocols result in the emergence of various subpopulations of 
CD4+IL-10+ T cells, making characterization of these cells and 
discovery of specific marker/s of the CD4+IL-10+ T cell popula-
tion even more challenging. Despite the heterogeneity of the 
described human CD4+IL-10+ populations, these are generally 
referred to as T regulatory type 1 cells (Tr1). Nevertheless, it 
is worth noting that to date, it has not been proven that they 
represent a unique cell lineage; therefore, we will refer them here 
as Tr1-like T cells.

tHe NeeD tO DiscOver A sUrrOGAte 
MArKer FOr reGULAtOrY tr1-LiKe  
t ceLLs

The existence of antigen-specific suppressor Tr1-like T cells 
makes them an appealing target for designing antigen-specific 
therapies to treat a wide array of autoimmune diseases and to 
avoid unnecessary and often burdensome side effects associated 
with conventional immunosuppressive therapies (28). A con-
stitutively expressed surface marker for Tr1-like T cells would 
allow us to monitor the emergence, numbers, and functionality 
of these cells. Many groups have tried to identify such a marker 
in mouse and man (16, 29–32). In 2013, Gagliani et al. postulated 

that lymphocyte-activation protein 3 (LAG-3) and CD49b are 
markers for human Tr1-like T cells (17). LAG-3 belongs to a 
large family of IRs that are upregulated on activated T cells (33). 
Here, we discuss the significance of the published findings in the 
context of other relevant IRs.

The in vivo data from our laboratory (7) demonstrated that 
administration of soluble MBP Ac1–9 peptide, using a dose esca-
lation protocol, resulted in abrogation of EAE, which coincided 
with appearance of antigen-specific CD4+IL-10+ T cells. A major-
ity of these cells expressed T cell immunoglobulin and mucin 
domain-3 (TIM-3), T-cell immunoreceptor with Ig and ITIM 
domains (TIGIT), and 50% of the cells were CD49b+, which is in 
sharp contrast with the expression pattern observed on the IL-10− 
T cell subset, where all three markers were present in 6–9% of 
the cells. Programed cell death protein 1 (PD-1) and LAG-3 were 
found in the majority of CD4+ T cells, regardless of IL-10 produc-
tion. These IRs are involved in several mechanisms regulating  
T cell signaling [reviewed in Ref. (33, 34)]. PD-1 and TIM-3 bind 
intracellular mediators as SHIP-1/2 (PD-1), Fyn, and PI3K kinase 
(TIM-3) to deactivate the downstream signaling molecules, and 
PD-1 can also induce inhibitory genes that inhibit T cell func-
tion. TIGIT and LAG-3 prevent optimal signal transduction at 
the cell membrane by sequestering counter receptors/ligands 
together with preventing proper formation of the immunological 
synapse [reviewed in Ref. (33, 34)]. Importantly, these events are 
dysregulated not only during autoimmune responses (35–37) but 
also in tumor formation. PD-1, TIM-3, and LAG-3 are found in 
T cells isolated from melanoma patients (38–40); therefore, their 
expression on T cells is also relevant for the development of new 
anticancer therapies.

PD-1, belonging to the CD28/CTLA-4 family, provides a nega-
tive signal following antigen stimulation [reviewed in Ref. (41)]. 
Depending on the genetic background, PD-1−/− mice develop a 
range of autoimmune disorders: lupus-like glomerulonephritis 
in the C57BL/6 strain, autoimmune dilated cardiomyopathy and 
gastritis in BALB/C, acute type 1 diabetes mellitus (T1DM) in 
NOD (42), and myocarditis in MRL, suggesting that other genetic, 
inherent factors act synergistically with PD-1 in each mouse strain 
(36). Clearly, PD-1 plays an important role in the maintenance of 
peripheral tolerance, but due to abundant expression on activated 
T cells, it is unlikely to be a biomarker for Tr1-like T cells.

Apart from PD-1, deficiency in any other of the above-
mentioned IRs does not result in the spontaneous development 
of autoimmune disorders. NOD LAG-3-deficient mice show 
mild enhancement of T lymphocyte responses, unless crossed 
with PD-1−/− knockout mice, which causes a lethal myocarditis 
(36). TIGIT−/− mice are more susceptible to EAE and show only 
augmented T cell responses when challenged with MOG peptide 
in vivo (37). CD49b deficiency leads to failure of the establishment 
of memory T cells in the bone marrow (43), but it does not have 
any profound effect on peripheral tolerance, while TIM-3−/− mice 
and mice treated with a TIM-3 Ig fusion protein exhibit moderate 
defects in induction of antigen-specific tolerance [reviewed in 
Ref. (44)].

Regarding surface expression, most of the above-mentioned 
IRs are found in cells with regulatory properties. TIGIT is 
expressed on human Tr1-like T cells (our observation) but also 
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FiGUre 1 | continued 
(A) Naive and memory CD4+ T cells were isolated from PBMC from healthy donors by magnetic selection and stimulated with plate-bound 1 μg/ml αCD3 and  
2 μg/ml αCD28 ± 100 ng/ml of IL-27. Intracellular staining for IL-10 was performed on days 3 and 7 after an additional 4-h stimulation with PMA/ionomycin in the 
presence of Golgi stop. Graphs show the percentages (mean value ± SEM, n = 3 donors) of viable CD4+IL-10+ T cells derived from the naive or memory cell 
subsets (left panel). A representative dot plot of CD4 and IL-10 staining on memory-derived CD4+ T cells on day 7 is shown in the right panel. (B) Expression of 
inhibitory receptors (IRs) on CD4+IL-10+/− T cells derived from memory pool after 7 days of cell culture in the presence of 1 μg/ml αCD3 and 2 μg/ml αCD28 
examined by flow cytometry. The black bars represent the average percentage of IL-10+ and white bars the IL-10− cell fractions, respectively (mean + SEM, n = 3 
donors). Right panel shows a representative dot plot of CD49b and LAG-3 expression on day 7 by memory CD4+IL-10+/− stimulated with αCD3 and αCD28 ± IL-27.
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on human Treg Foxp3+ cells (45). Furthermore, its presence at the 
cell surface coincides with increased expression of ICOS, TIM-3, 
and PD-1 on murine Treg cells (37). TIM-3 is upregulated upon 
activation in vitro in the human Treg subset (46). Recently, it has 
also been reported that murine CD4+CD49b+ T cells produce 
high levels of IL-10 and are potent suppressors of arthritis severity 
when injected in vivo (47).

To gain a more detailed understanding of how the expression 
of PD-1, LAG-3, TIM-3, TIGIT, and ICOS correlates with IL-10 
production by human CD4+ T cells, we developed a protocol to 
generate IL-10+ CD4+ T cells after a different length of stimulation 
in vitro. The first approach involved isolation of memory and naive 
T cells and stimulating them with αCD3 and αCD28 antibodies 
in presence or absence of IL-27, known stimuli for Tr1-like T cell 
generation (21, 22). IL-27 boosted the percentages of CD4+IL-10+ 
T cells from 10 to 18% on day 3, which on day 7 decreased to 
14% in the presence of IL-27 and 5% in its absence (Figure 1A). 
However, adding IL-27 did not alter the surface phenotype of 
Tr1-like T cells (data not shown). Initially, the induction of IL-10 
production was accompanied by a slight increase in proportions 
of cells expressing CD49b and TIM-3 within the IL-10+ T cell 
subset, but this was not statistically significant. By day 7, CD49b 
was found in similar percentages on both IL-10+ and IL-10−  
T cells (Figure 1B). CD49b and TIM-3 were co-expressed by the 
IL-10+ T cell fraction, but on day 7, CD49b+ cells were mainly 
TIM-3−. LAG-3 was expressed by 8.6% of IL-10+ T cells on day 
7 (Figure 1B), and among these cells, 30% co-expressed TIM-3. 
The co-expression of LAG-3 and CD49b was observed only on a 
small proportion of IL-10+ subset (Figure 1B, right panel). The 
proportion of cells expressing TIGIT was similar between IL-10+ 
and IL-10− subsets of CD4+ T cells (Figure  1B), and approxi-
mately half of them co-expressed TIM-3. Our observations led us 
to conclude that none of the tested IRs are exclusively expressed 
on IL-10-producing T cells, and their expression is dynamic, 
changing over the time course of cell culture.

These results were very different from the data generated 
in vivo in the tolerance model (7). Therefore, we used a modified 
version of the protocol previously developed in our laboratory 
(48), which involved the ex vivo isolation of IL-10+ CD4+ T cells, a 
short stimulation of unfractionated CD4+ T cells with αCD3 and 
αCD28 antibodies, followed by IL-10 cytokine secretion assay to 
allow sorting of IL-10+ cells. This strategy minimized the manipu-
lation of cells in vitro but still allowed us to obtain a sufficient 
number of CD4+IL-10+ T cells for analysis (3–5% of total CD4+ 
T cells). The phenotype of highly purified IL-10+ cells differed 
significantly from the IL-10− subpopulation. TIM-3 expression 
was significantly higher on IL-10+ T cells as compared to the 
IL-10− subset (p  =  0.0008) and was present in approximately 

25% of CD4+ T cells, while 80% of CD4+IL-10+ T cells expressed 
PD-1 (p = 0.007), which was significantly higher when compared 
to the IL-10− fraction. Within the PD-1+ T cell population, the 
percentages of CD49b+ and LAG-3+ cells were lower, both below 
10% and although higher than the IL-10+ subset, the differences 
were not statistically significant (Figure 2A).

To correlate the surface phenotype with RNA levels, we 
performed RT-PCR on restimulated IL-10+ and IL-10− cells, 
which were previously rested for 48 h in the presence of human  
recombinant IL-2. RT-PCR analysis demonstrated a significant 
increase in TIGIT expression among IL-10+ T cells (p = 0.03) and 
a trend toward higher levels of TIM-3 mRNA levels among IL-10+ 
T cells as compared to the IL-10− T cell subset (Figure 2B), pointing 
to these two markers as preferential for Tr1-like T cells. However, 
our flow cytometry analysis of surface IR levels performed at the 
same time point resulted in a different pattern of expression. There 
were no statistically significant differences in TIM-3 expression 
between IL-10+ and IL-10− T cells (approximately 10%), similar 
to LAG-3+ (5%), much lower as compared to relative RNA levels. 
By contrast, TIGIT+IL-10+ T cells comprised 25% and PD-1+ 50% 
of IL-10+ T cells, while their RNA levels were lower than those of 
TIM-3 and LAG-3. It is also important to note that there were no 
noticeable differences in the percentages of TIM-3, TIGIT, and 
PD-1 between IL-10+ and IL-10− T cell subsets at this time point 
(Figure 2C). This result could be explained by the fact that these 
IRs are stored intracellularly (49–51) and released to the surface 
with different kinetics; so although their mRNA is upregulated, 
this may contribute to intracellular pools rather than cell surface 
expression of the markers. It has been previously shown that large 
pools of LAG-3 are stored intracellularly (49), and we were able 
to detect large proportions of intracellular LAG-3 in both IL-10+ 
and IL-10− T cells (data not shown). It is possible that the kinetics 
of LAG-3 release to the cell surface correlates with the suppres-
sive phenotype of the cells. In the same way, surface expression of 
TIM-3, known to reside in the Golgi apparatus and endoplasmic 
reticulum (50), could be differentially regulated on the IL-10+ 
as compared to the CD4+IL-10− subpopulation. There is also 
evidence for altered regulation of TIM-3 expression in acute 
myeloid leukemia, where the majority of TIM-3 is expressed on 
the surface of PMBC as compared to healthy individuals, where 
TIM-3 is mainly detected intracellularly (51).

BeYOND irs

Due to the lack of any firm evidence demonstrating an exclu-
sive IR marker for Tr1-like T cells, emerging evidence points 
toward new molecules that might serve as their biomarkers. 
In 2015, Blumberg’s group published a very elegant study in 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


CD49
b

LAG-3
TIM

-3
TIG

IT
PD-1

IC
OS

0

20

40

60

80

100
%

of
 s

or
te

d 
ce

lls

***

**

PD-1
TIG

IT
LAG-3

TIM
-3

CD49
b

0

2

4

6

8

re
la

tiv
e 

ge
ne

 e
xp

re
ss

io
n IL-10+

IL-10-

*

p=0.06

p=0.03

PD-1
TIG

IT
LAG-3

TIM
-3

CD49
b

ICOS
0

20

40

60

80

100

%
 o

f  
in

di
ca

te
d

ce
ll 

po
pu

la
tio

n

n.s. n.s.

n.s.

marker

A

B

C

FiGUre 2 | (A) The expression of IRs on purified CD4+IL-10+/IL-10−  
T cells. Magnetically sorted CD4+ T cells were cultured for 16 h in the 
presence of 1 μg/ml αCD3 and 2 μg/ml of αCD28 antibodies, then harvested, 
subjected to IL-10 cytokine secretion assay, and sorted by flow cytometry 
according to their IL-10 expression. Graphs represent the percentages of 
IL-10+ or IL-10− T cells, expressing each IR determined by flow cytometry 
(n = 4). Purified CD4+IL-10+/− T cells were rested for 48 h in the presence of 
60 U/ml IL-2 and then were restimulated for 4 h with αCD3 and αCD28 
antibodies. (B) mRNA levels of IRs on sorted CD4+IL-10+/− T cells. Purified 
CD4+IL-10+/− T cells were rested for 48 h in the presence of 60 U/ml IL-2 and 
then were restimulated for 4 h with αCD3 and αCD28 antibodies. Graphs 
show mean gene expression levels as relative values compared to HPRT-1 
(n = 4). (c) Expression of IRs on CD4+IL-10+/− T cell fraction at the point of 
RNA isolation as evaluated by flow cytometry. Figure shows percentages of 
viable CD4+IL-10+/− T cells expressing the indicated marker (mean + SEM, 
n = 4). The significance has been analyzed using  t test.
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which they demonstrated that surface expression of TIM-3 is 
regulated by carcinoembryonic antigen cell adhesion molecule 1 
(CEACAM-1), which has the ability to form a heterodimer with 
TIM-3 in human and murine CD4+ T cells (50). Furthermore, 
lower proportions of tumor-infiltrating murine CD4+ and CD8+ 
T cells produced IL-10 after co-blockade of CEACAM-1 and 
TIM-3 in vivo (50). Equally, one could speculate that CEACAM-1 
could also regulate surface expression of TIM-3 on Tr1-like  
T cells; however, the CEACAM-1 expression on Tr1-like T cells has 
not yet been studied. It is known that this molecule is expressed 
on a small population of resting CD4+ T cells in humans and mice 
(52); hence, it could be a potential candidate for a biomarker for 
Tr1-like T cells.

The second putative candidate is Granzyme B. Previous stud-
ies have shown that human and murine CD4+ T cells, which 
acquire a Tr-1-like phenotype, express Granzyme B (53–55).  
A recent publication by Schmetterer et al. demonstrates that human 
CD4+ T cells transduced with the active form of STAT3 produce 
higher levels of IL-10 and Granzyme B, which was responsible 
for the suppressive activity of these cells (56). It is worthwhile to 
point out that the cells did not display elevated levels of CD49b 
and LAG-3 (56). Interestingly, blocking CEACAM1 increased 
the cytolytic function of human CD8+ T cells (52); hence, this 
molecule if expressed on CD4+IL-10+ T cells could influence their 
cytotoxic function by regulating Granzyme B expression.

The third possible candidate to serve as a marker for Tr1-like 
T cells is class I-restricted T cell-associated molecule (CRTAM) 
expressed on both CD4+ and CD8+ T cells upon activation. This 
molecule was upregulated on Tr1-like T cells as a result of toler-
ance induction after administration of escalating doses of MBP 
peptide (7). Recently, Saito’s group demonstrated that CRTAM is 
expressed on a specific subset of CD4+ T cells, which are char-
acterized by high production of IFNγ, expression of Granzyme 
B, and Eomes after TCR activation, and can develop cytotoxic 
properties in both mice and humans (57). A comparison of the 
phenotype of CD4+CRTAM+ T cells with Tr1-like T cells in rela-
tion to expression of Granzyme B and CEACAM-1 would provide 
an insight into the functional differences within a heterogeneous 
subset of human Tr1-like T cells, especially given that, according 
to our observations, 50% of these cells expressed IFNγ.

In summary, our phenotypic analyses suggest that none of the 
analyzed IRs can be described as surrogate markers for Tr1-like 
T cells. Ideally, such a biomarker would be a stable, constitu-
tively expressed cell surface molecule, easily detected on freshly 
isolated human CD4+ T cells. In the quest to identify it, more 
detailed analyses using RNA profiling and unbiased proteomics 
together with studies of epigenetic changes at the IL-10 pro-
moter should be performed. Our laboratory analyzed changes 
in histone H3 modification at the IL-10 promoter and found 
similar epigenetic changes in mouse and human CD4+IL-10+ T 
cells (58). However, Dong et al. found limited epigenetic changes 
in the status of human IL-10 promoter and a lack of functional 
memory for IL-10 re-expression in cultured IL-10 secreting cells 
(59). It is clear that all T cell subsets can secrete IL-10 under 
certain circumstances (3). Therefore, the question as to whether 
Tr1 cells constitute a distinct lineage remains open and requires 
further investigation.
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