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Abstract

One of the main limitations to the application of clusters on applied areas is the limited pro-

duction, therefore it is of great interest to up scale cluster production while keeping good size

control. The Matrix-Assembly Cluster Source (MACS) is a new high flux cluster source, which

exploits cluster formation inside a solid rare gas matrix that is sputtered by an ion beam. Clusters

are formed and ejected in this process. Here we report the production of Ag clusters when the

rare gas is replaced by CO2 for the matrix formation at 20 K. Size distributions were determined

from STEM analysis of samples with four different metal loadings, 4%, 8%, 14% and 23% of Ag

atoms to CO2 molecules, and two ion beam energies, 1 keV and 2 keV. Cluster mean size showed

weak dependence on metal loading, being ≈80 atoms for the first three concentrations, whereas

the change in ion beam energy has caused cluster mean size to shift from 86 to 160 atoms. The

results are interpreted in terms of bonding energy between Ag and CO2 and compared to the rare

gas (Ar) matrix.
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The production of nanocluster beam has been a subject of intense research since the first

cluster beam sources were reported in the 1950s. Clusters of virtually any material have

been produced with size control that goes down to a single atom[1]. The high control levels

have compromised the number of clusters produced, which is one of the main obstacles to

exploring cluster properties in applied areas. Recent developments however, have allowed a

cluster current of the order of a few nA and deposition rates of nm/s[1–5].

A new type of high flux cluster source is the Matrix-Assembly Cluster Source (MACS)[6,

7]. MACS exploits cluster formation inside a solid rare gas matrix[8–10] and has great

potential for scaling up cluster production by orders of magnitude. The matrix is a copper

square of side 2.5 mm cooled down to a cryogenic temperature of around 20 K, using a closed

cycle cryocooler (SHI, CH-202 10K). Atoms of the material of interest are evaporated from a

thermal effusion cell (Createc, HTC-63-10-2000) and co-condensed with gas atoms/molecules

forming a solid film that is later sputtered by an ion beam (Tectra, Gen2 plasma source).

The matrix serves as a cooling medium for cluster formation while the ion beam sputtering

accomplishes two distinct goals, (i) it provides the required energy for the atoms to collide

inside the matrix and agglomerate into clusters and (ii) it ejects the clusters formed, allowing

them to be deposited on a substrate. Changing the metal loading in the matrix tunes the

cluster size, which can range from hundreds to thousands of atoms for metal loadings of ∼ 1%

to 5% in the case of Ag in Ar[7]. The produced clusters are deposited on to transmission

electron microscopy (TEM) grids positioned approximately 5 cm away from the matrix. The

matrix is angled at 45◦ to the ion beam and deposition stage, as illustrated in Figure 1.

One practical limitation to the further scaling up of the MACS approach to industrial

levels is the temperature required to condense the gas matrix, <20 K for solid Ar. Here we

report the replacement of the argon used to date with CO2, which would allow condensation

at 80 K so that liquid nitrogen can be used as cooling agent instead of liquid helium.

The clusters produced were analysed via high-angular annular dark field (HAADF) images

in an aberration-corrected scanning transmission electron microscopy (STEM); the JEM-

2100F (Jeol) was operated at 200 kV. Figure 2 shows STEM images and the corresponding

size distributions for a range of metal loadings and ion beam energies. These samples

correspond to silver clusters produced from a CO2 matrix that was built for 5 minutes at a

pressure of 8.0×10−6 Torr. Particle size distributions obtained in reference to the intensities

of size-selected gold clusters show that one can correlate the number of atoms inside a cluster
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FIG. 1. Schematic illustration of the Matrix-Assembly Cluster Source showing the key components

and geometry.
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FIG. 2. Size distribution and HAADF-STEM images of the samples prepared from CO2 matrices

with different Ag loadings, (a) 4%, (b) 8%, (c) 14% and (d) 23% and ion beam energies, (e) 1

keV and (f) 2 keV. A lognormal distribution fit (solid line) is shown with the average cluster size

indicated by an arrow. High-resolution image of a single cluster is seen on the inset, scale bar

corresponds to 1 nm.

with the integrated HAADF intensity[11]. To determine the size distribution of the samples

in the present work, we used the HAADF intensities of single Ag atoms as the reference.

Single atom intensities were acquired from high-resolution images; due to beam damage it

is common to find some of them in the vicinity of a particle. A set of atoms is measured,
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a Gaussian is fitted to the intensity distribution and the average used as the single atom

intensity.

For figures 2a-2d the temperature of the evaporator was changed to alter the deposition

rate and thus the metal loading in the matrix. Four different deposition rates, 0.2 Å/s,

0.3 Å/s, 0.5 Å/s and 0.9 Å/s corresponding to a matrix loading of 4%, 8%, 14% and 23%

(number of silver atoms compared with CO2 molecules). The matrix was sputtered by an

ion beam of 1 kV and with ∼ 50 µA for 2 minute intervals, during which the clusters formed

were deposited on the TEM grids. The histograms present asymmetrical peaks characteristic

of lognormal distributions, which were fitted to the graphs (solid line) in Figure 2. The mean

sizes of the clusters in ascending order of metal loading are 79, 83, 86 and 175 atoms. The

peaks of the distributions are at 25, 27, 25 and 28 atoms, values extracted from the fit.

The size distributions are not very sensitive to the metal loading in the matrix. For metal

loadings of 4% to 14% the size distributions are largely similar, with a mean cluster size of

approximately 80 silver atoms, for higher concentrations in the matrix cluster size of 175 Ag

atoms is obtained. This behaviour is different from the previous work when an argon matrix

was used[7, 10, 12]. A possible reason for the difference in the size distributions relates to

the diffusion of Ag atoms during matrix formation. The bonding energy of Ag in Ar is ≈ 0.2

eV[13], whereas for Ag in CO2 is on the order of 1 eV[14]. It seems that silver atoms may

diffuse more easily in an Ar matrix than in CO2, thus making the initial cluster size (before

sputtering) more dependent of loading conditions.

Figures 2e and 2f show the cluster production for a matrix with 14% of Ag and two

different ion beam energies, 1 keV and 2 keV. We see the formation of bigger clusters,

leading to broadening of the lognormal distribution for the higher beam energy. Average

cluster size nearly doubles from 86 to 160 Ag atoms and the peak position shifts from 25

to 33 atoms. An average cluster current of 0.15±0.02 nA was obtained, which smaller than

the values reported for an Ar matrix[6, 7].

In this short article we demonstrated that Ag clusters with up to a few hundred atoms

have been generated from a condensed CO2 matrix. Although the experiments were con-

ducted at a temperature of 20 K, the use of CO2 means MACS operation should be viable

at higher (liquid nitrogen) temperatures. Cluster size seems to depend less on metal loading

in the matrix than previous response for an Ar matrix[7] - an effect which may be due to

reduced diffusion prior to sputtering - but cluster size is sensitive to ion beam energy.
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