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Abstract 6 

The isooctane spray characteristics were experimentally investigated under flash boiling condition 7 

which represents the part load operating condition for modern gasoline engine.  Various tests were carried 8 

out with back pressure ranging from 0.2 bar to 1 bar and ambient temperature varying between 20℃ and 9 

100℃. A long distance microscope together with an ultrahigh speed camera was employed to capture the 10 

spray development in the near field to study the primary breakup characteristics.  The study was performed 11 

by using a diesel common rail injection system so that the influence of hydraulic force can be investigated.  12 

It was found that flash boiling led to dramatic radial propagation due to the explosion and collapse of the 13 

vapor bubbles, significantly boosting the atomization.  The strength of vapor bubble explosion in the near 14 

field tended to be strongly affected by the flow regime in the nozzle.  Besides, higher injection pressure led 15 

to larger cone angle during the initial injection stage but smaller cone angle during the quasi-steady stage 16 

due to the dominance of the hydraulic force.  17 

Key words: primary breakup, flash boiling, superheating, spray, near field  18 

1. Introduction  19 

The fuel injection for modern GDI engine generally occurs during the intake stroke where the 20 

in-cylinder pressure is sub-atmospheric and the gas is quite warm, especially under hot idle condition [1, 2].  21 

At part load, the throttle is not fully open and the in-cylinder pressure may be lower than the vapor pressure 22 

of gasoline.  Meanwhile, when the engine is fully warm, the cylinder head is quite hot and air sucked in to 23 

the cylinder is heated.  Two phases, namely, gas phase and liquid phase exist simultaneously when fuel is 24 

injected into such operating condition [3].  Generally, the phase transfer from liquid to vapor when liquid is 25 

heated under constant ambient pressure is defined as boiling.  However, if the phase transfer occurs with 26 

constant temperature but lower ambient pressure, cavitation is expected [4].  When fuel is injected into this 27 

type of so-called flash boiling condition (the existence of both boiling and strong cavitation), the spray 28 

characteristics are quite different.  This is because the depressurization leads to the collapse of spray, brings 29 

the plumes together and alters the desired direction of spray [4].   30 

Flash boiling condition was reported to produce favorable combustible air/fuel mixture as the fuel 31 

pattern and spray atomization can be significantly improved [5].  This is mainly attributed to the explosion 32 
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of the formed vapor bubbles, allowing the spray to propagate very quickly [2, 3].  The large cone angle 33 

caused by the vapor bubble explosion leads to better fuel mixture since the plume becomes less dense.  The 34 

appearance of flash boiling is thus expected to produce smaller droplets due to the aforementioned improved 35 

atomization and propagation [6].   Zhao [7] reported that for indolene, D32 was halved when fuel 36 

temperature varied from 20 to 90℃with injection pressure of 11MPa and ambient pressure of 0.1 MPa.  37 

This is explained by the occurrence of the flash boiling.  However, when the back pressure was set to 0.6 38 

MPa, only 1.9 μm reduction of droplet size was achieved with the rise of temperature from 20 to 90℃.  39 

The HC was also reported to be lowered because of the reduced possibility of fuel impingement caused by 40 

the reduced plume velocity [8].  41 

The near field primary breakup study under flash boiling is of great interest since this stage initiates the 42 

spray breakup and dominates the resultant secondary breakup and fuel mass distribution [9, 10].  To obtain 43 

plume morphology development and spray behavior, long distance microscope with the help of lighting is 44 

generally employed [11-13].  Aleiferis et al. [4] experimentally studied the impact of various injecting 45 

factors, including ambient pressure, fuel temperature and fuel properties on the spray behavior in the near 46 

field during the quasi steady stage with a transparent injector.  Fuel temperature varied between 20 and 90 ℃ 47 

while the ambient pressure was set to 0.5 and 1 bar.  The low and high ambient pressures can represent the 48 

part load and WOT operating conditions.  It was reported that the interaction between the boiling and 49 

cavitation considerably complicates the spray behavior.  The rise of temperature led to reduced viscosity 50 

and surface tension but raised vapor pressure, boosting the growing rate of vapor bubbles.  However, the 51 

frame speed of the employed Photron- APX camera in their study was 9000 fpm which was very low [4].  52 

This low frame speed resulted in the loss of some very important information, especially during the initial 53 

spray developing stage. 54 

  The study on the primary breakup of gasoline spray under flash boiling condition at microscopic level is 55 

still very limited.  The plume development during the initial stage obtained through ultra-high frame speed is 56 

unavailable.  Besides, the interaction between flash boiling and cavitation at elevated pressure requires deep 57 

study.  To address these unknown questions, a long distance microscope complete with an ultra-high speed 58 

camera was employed in the present study to investigate the plume behavior under various flash boiling 59 

conditions.  A modern diesel common rail injection system was used so that the study could be carried out 60 

under high injection pressure which tended to be a trend for future gasoline engine.  A single-hole diesel 61 

injector was also employed to eliminate the effects of interaction between plumes when a multiple-hole injector 62 

was used. 63 

2. Experimental setup 64 



 The experimental setup for primary breakup is presented in Figure 1.  A high pressure vessel (pressure 65 

limit of 7 bar) with 2 inline glass windows (diameter of 10 cm) was employed.  A cylindrical single-hole 66 

solenoid diesel injector with the nozzle diameter of 0.18 mm was used for the tests.  The ambient 67 

temperature in the vessel was varied from 20 ℃ to 100 ℃ by using the 8 heaters located at the 8 corners 68 

of the vessel.  The ambient temperature was kept stable with a close loop PID controller to control the 8 69 

heaters with the feedback from a thermocouple.  Meanwhile, the adoption of the vacuum pump allowed the 70 

ambient pressure to range between 0.2 and 1 bar and the ambient pressure could be monitored by the 71 

pressure gauge.   72 

 73 

Figure 1. Experimental setup 74 

 The optical setup includes an ultra-high speed camera, a long distance microscope, a lens and a 75 

500-Watt xenon lamp.  The frame speed of the camera was set to 1 million fps with the resolution of 76 

312×260 pixel
2
, giving extremely high temporal resolution (1 microsecond interval between two sequent 77 

images).  The long distance microscope worked at the focusing distance of 18 cm, allowing an observation 78 

field of 1.8×1.46 mm for height and width respectively.  This gave very high spatial resolution of 5.8 µm / 79 

pixel.  The spray development process with detailed information which cannot be studied with traditional 80 

high speed imaging technique can be captured accurately by this ultra-high speed imaging technique.  The 81 

lens was employed to focus the light at the injector tip so that the spray can be illuminated sufficiently when 82 

the ultra-high frame speed was used.  83 

3. Test fuel and test conditions 84 

To simplify the tests and quantify the fuel properties, isooctane rather than commercial gasoline was 85 

tested in the present study.  The vapor pressure (Figure 2) is of great importance for spray dispersion under 86 

flash boiling condition.  When the ambient pressure is lower than the vapor pressure, isooctane transfers 87 



from liquid phase to gas phase.  Other properties of isooctane are shown in Table 1. 88 

Table 1. Properties of isooctane [14] 89 

Density @15 ℃ (Kg/m
3
) Kinematic viscosity @ 40 ℃ (mm

2
/s) surface tension @ 40 ℃ (kg/s

2
) 

690 0.72 18.77 x10
-3

 

  90 

  91 

Figure 2. Vapor pressure of isooctane [2] 92 

To study the effects of flashing boiling condition on the spray collapse at the microscopic level, four 93 

tests under the injection pressure of 400 bar were carried out, which are A, B, C, and D as shown in Figure 2.  94 

The injection duration was set to 1.2 ms, allowing the injector to fully open to study the quasi-steady state 95 

characteristics.  For test point A with back pressure of 1 bar and ambient temperature of 20℃, no flash 96 

boiling could be observed and this point is used as reference for the comparison with other test points.  97 

Point B is at the boundary of flash boiling with the back pressure of 1 bar and ambient temperature of 100℃ 98 

(marginal flash boiling condition).  When the back pressure is decreased to 0.5 bar while keeping the 99 

ambient temperature at 100℃, the flash boiling effect becomes strong, as shown at point C.  The last 100 

testing point is under strong flash boiling condition where the back pressure is set to 0.2 bar and vessel 101 

temperature is set to 100 ℃.  To further investigate the influence of injection pressure (thereby hydraulic 102 

force or cavitation) on spray breakup and dispersion under flash boiling condition, one test under 700 bar 103 

injection pressure was performed at point D.  Each test was repeated for 15 times to obtain sufficient 104 

accuracy for quantifying the spray characteristics.   105 

4. Results 106 

This study mainly focused on the initial injector opening stage (within 100 microseconds after start of 107 

injection (ASOI)) and the quasi-steady stage (between 500 microseconds and 600 microseconds ASOI).  108 

The penetration (the distance between the injector tip and spray tip), the plume area and the plume angle are 109 

quantified to investigate the spray propagation and dispersion.  The definitions for penetration and cone 110 

angle are presented in Figure 3.  It should be noted that the definition of cone angle in the very near field is 111 



different from the cone angle for far field.  Two lines originating from the injector tip fit the tangent 112 

boundary of the plume, giving a quite large cone angle under flash boiling condition.  The quickly growing 113 

vapor bubbles in the plume expel the fine dispersed droplets away from the plume center and this 114 

phenomena leads to the aforementioned large cone angle [3]. The images are processed with a self-built 115 

Matlab code so that the parameters can be obtained.  The threshold of 0.15 was employed to identify the 116 

boundary of the plume accurately.  The accuracy of the boundary detection was carried out by the 117 

comparison of the calculated value (spray penetration) from the code and the value obtained by counting the 118 

pixels manually. 119 

              120 

(a)                         (b) 121 

Figure 3. The definitions for (a) penetration and (b) cone angle 122 

4.1 Influence of raised temperature 123 

4.1.1 Start of injection 124 

 The spray morphology development with ambient temperature of 20℃and back pressure of 1 bar is 125 

presented in Figure 4.  Some large ligaments and droplets can be observed at the periphery of plume.  The 126 

spray is not well dispersed at this stage as a white liquid column can be seen at the very outlet of the injector, 127 

showing quite high fuel density.  This is mainly attributed to the low effective injection pressure caused by 128 

the low needle lift at the very beginning of injection.  Pickett et al. [15] reported that from the injector tip to 3 129 

mm downstream, the spray shows similar density to liquid fuel.  The overall developing trend is similar to the 130 

trend of diesel spray, as reported in literature [16, 17] where the tested fuel was diesel.  The main difference 131 

is that no mushroom shaped head can be observed in present study.  This is probably due to the low 132 

viscosity of the employed isooctane.  Because no mushroom shaped spray was observed in this study, the 133 

effect of fuel viscosity on the formation regime is not discussed in this study.  More details about the 134 

formation regime of the mushroom head can be found in [16].    135 

             136 

1μs         4μs         8μs          12μs        16μs        20μs        50μs 137 



Figure 4. Spray morphology development during initial injection stage under 40 MPa injection pressure, 1 bar back pressure 138 

and 20℃ ambient temperature 139 

             140 

1μs          4μs        8μs         12μs        16μs        20μs        50μs 141 

Figure 5. Spray morphology development during initial injection stage under 40 MPa injection pressure, 1 bar back pressure 142 

and 100℃ ambient temperature 143 

 When the ambient condition is heated to 100℃, some distinctions for the spray morphology can be seen, 144 

as presented in Figure 5.  During the initial stage, the plume is thinner and no ligaments or droplets can be 145 

observed at the plume periphery.  The fuel evaporation at the plume periphery tends to be responsible for 146 

this feature.  It can also be seen that a large amount of fuel with low speed is pushed away by the main 147 

injection with high speed at 50μs after start of injection.  The large amount of fuel with low speed (thus 148 

poor atomization) may belong to the residual fuel of the previous injection.  The low effective injection 149 

pressure in the very early stage may also lead to the very low speed of the spray.  When compared with the 150 

low temperature case (Figure 4), no white intact liquid at the very outlet of the injector can be seen.  The 151 

rise of temperature lowers the viscosity and surface tension, resulting in better dispersion and atomization 152 

although no droplets are observed at the spray periphery.  153 

 The corresponding quantified spray characteristics, namely the penetration and spray area of the sprays 154 

shown in Figure 5 are shown in Figure 6.  Difference in penetration before 20 μs ASOI is hardly identified 155 

as shown in Figure 6 (a).  A small difference can be observed after 20μs, which is probably due to 156 

evaporation of spray tip under 100℃ [6].  By contrast, the spray area under high ambient temperature is 157 

obviously smaller than that under room temperature, especially between 20 and 40μs ASOI.  This suggests 158 

that ambient temperature mainly affect the periphery of the spray where the fuel density is much lower than 159 

that in the plume center.  When the main injection starts (around 50μs ASOI, as shown in Figure 5), the 160 

spray area difference diminishes.  The further opening of the injector for the main injection allows a large 161 

amount of fuel to be injected with high speed.  The effect of the temperature on the spray behavior weakens 162 

due to the limited time for evaporation.  Manin [18] studied the impact of various boundary conditions, for 163 

instance fuel pressure, ambient pressure and temperature.  The employed fuel was ethanol.  The fuel pressure 164 

ranged from 30 to 150 MPa with ambient temperature varying between 30 and 80℃.  It was found that 165 

penetration was shortened with almost unaffected cone angle when ambient temperature was raised.  Their 166 

results of cone angle contradict with the result in the present study and this disparity may be attributed to 167 



different fuel properties and different injection pressure and ambient temperature.  In addition, the view field in 168 

their study was up to 6 mm downstream of the injector which was much longer than that in the present study (1.8 169 

mm downstream of the injector) and the effect of ambient temperature on spray was observable. 170 

  171 

(a)                                                     (b) 172 

Figure 6. Influence of ambient temperature on (a) penetration and (b) plume area during the initial injection stage 173 

4.1.2 Steady state  174 

For the quasi steady stage, namely the injector being fully open, the impact of temperature on the spray 175 

characteristics is small albeit noticeable.  Around 4°smaller cone angle and approximate 0.2 mm
2
 smaller 176 

plume area are found with the rise of ambient temperature, as presented in Figure 7.  As mentioned before, 177 

the effect of evaporation under high ambient temperature on the spray characteristics is marginal due to the 178 

very limited time [2, 3].  The spray morphologies during steady state under these two conditions are 179 

presented in Figure 8 (a) and 8 (b) respectively.   It should be pointed out that the smaller area under 100℃ 180 

can also be partly due to the smaller view field caused by the movement of the imaging system when 181 

disturbed.  Smoother periphery is found under high ambient temperature condition.  Small dispersed 182 

particles at the periphery are evaporated and big droplets become small again caused by the evaporation at 183 

elevated temperature condition.  Better atomization can be expected with high ambient temperature 184 

because of the altered fuel properties, for instance reduced viscosity and surface tension.   185 

  186 

(a)                                                          (b) 187 

Figure 7. Influence of ambient temperature on (a) cone angle and (b) plume area during the quasi-steady stage 188 
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                                 189 

(a)                  (b)                (c)                     (d)                     (e) 190 

Figure 8. Spray morphology at quasi steady stage under various conditions: (a) 40 MP Pinj, 1bar Bp and 20℃, (b) 40 MPa 191 

Pinj, 1 bar Bp and 100℃, (c) 40 MPa Pinj, 0.5 bar Bp and 100℃, (d) 40 MPa Pinj, 0.2 bar Bp and 100℃, (e) 70 MPa Pinj, 0.2 192 

bar Bp and 100℃ 193 

4.2 Influence of decreased back pressure  194 

4.2.1 Start of injection 195 

 The decrease of back pressure under hot condition leads to the inception of flash boiling, presenting a 196 

quite different picture for the spray primary breakup in the near field as shown in Figure 9.  Although 197 

normal morphology for the very early stage (before 12μs ASOI) is seen, a much different one is seen when 198 

the main injection starts.  The fuel spray appearing first is generally the remaining fuel of the previous 199 

injection. The following fuel spray with more dispersion and higher velocity is thought to be the main spray 200 

[17, 19].  During the start of injection process, the needle moves upward and the injector opens further.  201 

The further injector opening leads to the increase of the effective injection pressure and the resultant spray 202 

hydraulic force.  The flow regime correspondingly changes from laminar to turbulent and even to 203 

cavitating flow.  This flow regime transition generally occurs very quickly [17, 19].  In the present study, 204 

the flow regime is thought to go through these transition stages within the first 50μs and the spray 205 

morphology simultaneously goes through an obvious change from a poorly dispersed one to a well dispersed 206 

one.  This means that the flow regime or inertia of the plume is quite important for the special shape of the 207 

spray under flash boiling condition and this will be further discussed in the later section.  The plume shows 208 

remarkable radial propagation, giving a much larger cone angle than the normal one.  Well dispersed 209 

droplets are seen at the periphery of the plume and fuel becomes leaner at the central part of the plume.  210 

Reitz [6] studied the developing regime of flash boiling for water under a wide range of temperatures, 211 

varying from 27 to 153 ℃.  The injection pressure was set to 70 MPa and the ambient condition was 212 

atmospheric.  It was reported that a dense spray enveloped by well dispersed droplet was observed under 213 

flash boiling condition.  This finding agrees quite well with the results in present study although the tested 214 

objects are different.  215 



           216 

1μs        8μs        12μs        20μs        30μs          50μs 217 

Figure 9. Spray morphology development during initial injection stage under 40 MPa injection pressure, 0.5 bar back 218 

pressure and 100℃ambient temperature 219 

           220 

1μs        8μs        12μs         20μs             30μs                 50μs  221 

Figure 10. Spray morphology development during initial injection stage under 40 MPa injection pressure, 0.2 bar back 222 

pressure and 100℃ ambient temperature 223 

Further reduction of back pressure results in a more prominent radial expansion for the plume, as 224 

presented in Figure 10.  The droplets are further scattered away from the plume center, leading to dramatic 225 

increase of cone angle.  The larger injector opening (thereby higher effective injection pressure) however 226 

decreases radial expansion of the spray, causing a drop of the cone angle, as shown at 50μs ASOI.  When 227 

comparing Figures 5, 9 and 10, it can be seen that the reduction of ambient leads to stronger flash boiling, 228 

better dispersion and more obvious radial propagation.  According to the vapor pressure of the employed 229 

isooctane shown in Figure 2, under 100℃, the liquid fuel transfers to gas phase when ambient pressure goes 230 

down to 0.5 bar and further down to 0.2 bar.  Park and Lee [20] reported that the plume atomization is 231 

closely governed by the internal flow regime which is highly responsive to the strength of superheating.  232 

The raised superheating strength changes the flow from bubby flow to slug flow and then to annular flow 233 

[20].  For the first flow regime, the existence of big intact core with droplets around was reported.  When 234 

superheating becomes stronger, more vapor bubbles appear.  Big slug liquid formed through the 235 

accumulation of the small bubbles could be seen for the second regime, leading to the introduction of 236 

massive ligaments and droplets in the plume core when the slug liquid is discharged [20].  For the last one 237 

with very strong superheating, the formation of vapor flow in the nozzle center with film attaching to the 238 

nozzle wall causes very well dispersed droplets when vapor flow is discharged [20]. 239 

By combining the experimental results in the present study and the explanation from the literature, the 240 

influence of flash boiling on spray characteristics can be summarized as follows.  Generally, small vapor 241 

bubbles are released from the liquid fuel and big accumulated bubbles explode when leaving the injector tip 242 



due to the abrupt pressure reduction.  The explosion of the vapor bubbles gives the droplets quite high 243 

radial inertia, enabling the droplets to move radially for a quite long distance.  Apart from that, the low air 244 

density under low ambient back pressure and high temperature ensues very low drag force or resistance for 245 

the droplets.  Even quite small radial inertia enables the droplets to propagate significantly radially.  The 246 

effects of temperature and ambient pressure on the flash boiling can be quantified and expressed in Equation 247 

1 [3]: 248 

γ =
𝑃𝑉𝑎𝑝𝑜𝑟(𝑇)−𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
=

𝑃𝑉𝑎𝑝𝑜𝑟(𝑇)

𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
− 1                           (1) 249 

Where γ is flash boiling number (denoting superheating), 𝑃𝑉𝑎𝑝𝑜𝑟(𝑇) is vapor pressure @ temperature T 250 

and 𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is ambient pressure.  251 

It can be seen that the simultaneous increase of vapor pressure and the decrease of ambient pressure lead 252 

to the increase of flash boiling number. More obvious phase transfer from liquid to gas is also expected. This 253 

means it is easier for the vapor bubbles to explode as the resistances, for instance the surface tension force 254 

and liquid viscous force, are decreased.    255 

Besides, the cavitation is also believed to boost the propagation [21].  Kawano [22] investigated the 256 

flash boiling spray characteristics by modeling and experiment.  It was found that the spray can atomize 257 

obviously quicker with flash boiling.  The thermodynamic instability caused by superheating features flash 258 

boiling, however, the cavitation is mechanically related.  Cavitation can significantly boost the flash boiling 259 

through the formation of vapor bubbles [2].  The definition of the cavitation number is shown as: 260 

K =
𝑃𝑖𝑛𝑗−𝑃𝑣

𝑃𝑖𝑛𝑗−𝑃𝑏
                                     (2) 261 

When the ambient temperature is set, the decrease of back pressure leads to lower cavitation number.  262 

When the flow regime in the nozzle is cavitating, the air resolved in the fuel accumulates, forming small 263 

bubbles.  When these small bubbles grow quickly when heated and the growing big bubbles collapse when 264 

leaving the injector tip. 265 

The spray characteristics shown in Figure 11 accordingly present remarkable developing trends, 266 

especially for the spray area and cone angle.  Specifically, the plume under flash boiling condition 267 

penetrates quicker than the plume under atmospheric condition.  The air density under low back pressure is 268 

lower and this leads to lower air drag force for the plume.  Apart from that, the explosion of the vapor 269 

bubbles is believed to accelerate droplets, further accelerating the droplets.  The cone angle and plume area 270 

present an obvious increase when ambient pressure drops down to 0.5 bar. However, a sharp increase of the 271 

plume area is noticed when back pressure decreases further down to 0.2 bar.  The sharp increase of plume 272 

area is partly caused by the quick improvement of dispersion and partly caused by the increase of fuel mass.  273 

When the injector further opens, the hydraulic force and the inertia of the spray increase, leading to better 274 



dispersion and more obvious radial propagation.  More importantly, more fuel is injected and the explosion 275 

of the vapor bubbles formed in the injected fuel causes quick increase of spray area.  According to 276 

Equation 1, the reduction of back pressure greatly boosts strength of flash boiling and the boosting effect for 277 

plume area is more obvious under lower back pressure.  278 

  279 

(a)                                                        (b) 280 

 281 

(c) 282 

Figure 11. Influence of back pressure on (a) penetration, (b) plume area and (c) cone angle during initial injection stage 283 

under 40 MPa injection pressure and 100℃ ambient temperature 284 

4.2.2 Steady state injection 285 

It is interesting to find that the plume under sub atmospheric condition behaves quite different when 286 

develops from initial injection stage to quasi steady state.  Both the cone angle and the plume area show an 287 

obvious reduction when compared with the initial stage (Figure 11), as shown in Figure 12.  This is also 288 

illustrated from the spray morphology shown in Figure 8 (c) and Figure 8 (d).  When injector further opens, 289 

the influence of effective injection pressure (thus hydraulic force) becomes more important [19, 23].  This 290 

is probably due to the much increased axial velocity, leading to limited time for the radial propagation.  291 

This assumption can be verified from the spray morphology in Figure 8 (c) and (d) where very well 292 

dispersed droplets are observed at the periphery of the plume.  When looking at the initial stage in Figures 293 

9 and 10, obviously larger droplets can be found at the plume periphery.  294 
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(a)                                                     (b) 296 

Figure 12. Influence of back pressure on (a) plume area and (b) cone angle during quasi-steady stage under 40 MPa 297 

injection pressure and 100℃ ambient temperature 298 

4.3 Influence of injection pressure 299 

4.3.1 Start of injection 300 

The injection pressure is believed to be important for the spray characteristics which are dominated by 301 

the inertial force.  The spray morphology development under higher injection pressure (70 MPa) shows a 302 

quite different picture compared with the low injection pressure case (40 MPa, Figure 10), as shown in 303 

Figure 13.  Much smaller droplets are observed, meaning much better dispersion quality even at the initial 304 

spray stage.  Crua et al. [24] investigated the droplet size at the spray periphery and reported that the 305 

droplet size in the near nozzle region is nearly independent on the fuel properties but dependent on injection 306 

pressure. Although the radial propagation is more prominent under raised injection pressure, smaller 307 

proportion of fuel is seen in the periphery when compared with the low pressure case (Figure 10).  It is 308 

worth noting that the plume becomes obviously narrower at 50μs ASOI under raised injection pressure.   309 

       310 

0μs       4μs        8μs          12μs             20μs             30μs           50μs 311 

Figure 13. Spray morphology development during initial injection stage under 70 MPa injection pressure, 0.2 bar back 312 

pressure and 100℃ ambient temperature 313 

The comparison of the spray characteristics between high and low injection pressures is shown in Figure 314 

14.  It is quite sensible to find higher penetration under higher pressure due to raised inertia.  Larger 315 

plume area and cone angle are also expected with the rise of injection pressure because of enhanced 316 

dispersion.  However, surprisingly observed is the two quick step reductions of the cone angle for the high 317 

pressure case (Figure 14 (c)).  The first reduction, namely stage A, is due to the aforementioned further 318 
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injector opening and the consequent higher axial velocity (thereby limited time for radial expansion and 319 

propagation).  The disappearance of the well dispersed droplets produced when injector opens is also 320 

responsible for the first reduction of the cone angle.  Stage A is not shown under low injection pressure (40 321 

MPa) in this time range due to limited storage of the employed ultrahigh speed camera (102 images 322 

maximum).  However, it should be pointed out that this stage still exists although not captured because the 323 

cone angle for quasi steady state (Figure 12 (b)) is obviously smaller than the cone angle during the initial 324 

stage.  The second reduction is caused by the movement of the initially well dispersed fuel located in the 325 

tip of the plume, the C part shown in Figure 14 (c). 326 

  327 

(a)                                                  (b) 328 

 329 

(c) 330 

Figure 14. Influence of injection pressure on (a) penetration, (b) plume area and (c) cone angle during initial injection stage 331 

under 0.2 bar back pressure and 100℃ ambient temperature 332 

4.3.2 Steady state injection 333 

The high injection pressure case surprisingly presents both smaller plume area and cone angle than the 334 

low injection pressure case after the full open of the injector, as presented in Figure 15.  This can be 335 

verified through the morphology shown in Figure 8 (e).  Generally, higher injection pressure results in 336 

better dispersion and larger cone angle, which conflicts the results shown in this study.  Two facts are likely 337 

to be responsible.  The first one is the limited time for radial propagation due to high axial velocity, as 338 

mentioned before.  The other is the transfer of the flow regime from cavitating flow to flipping flow in the 339 
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nozzle hole.  Under cavitating condition, the spray is dispersed completely at the very outlet of the injector.  340 

The cavitation mode shows a large cone angle due to the good dispersion and this is generally reported 341 

under high injection pressure [17].  However, further increase of the injection pressure results in the 342 

flipping flow, showing a detachment between the fuel flow and the nozzle wall.  The appearance of the 343 

detachment results in a decrease of the cone angle.   344 

Sou et al. [25] quantified the boundary value for cavitating flow and flipping flow with a 2D transparent 345 

injector.  It was reported that when Reynolds number (Re) is higher than 68000, the flow is cavitating while 346 

when Reynolds number (Re) is higher than 76000, the flow is flipping.  The two values are employed as 347 

the reference in the present study due to various experimental similarities.  348 

The theoretical Reynolds number (Re) can be calculated through Equation 3 349 

Re = 𝑉𝑡ℎ ∗ 𝑑0/𝑣                                  (3) 350 

Where 𝑉𝑡ℎis theoretical flow velocity in the nozzle, 𝑑0 is hole diameter and 𝑣 is fuel viscosity. 351 

𝑉𝑡ℎ can be obtained through Bernoulli’s equation, shown in Equation 4 352 

𝑉𝑡ℎ = √
2∆𝑝

𝜌𝑙
                                     (4) 353 

Where ∆𝑝 is effective injection pressure and 𝜌𝑙 is liquid fuel density. 354 

Thus, Re can be expressed as: 355 

Re =
𝑑0

𝑣
∗ √

2∆𝑝

𝜌𝑙
                                    (5) 356 

In the present study, the Reynolds number is 112610 under 70 MPa and 85125 under 40 MPa, indicating 357 

that the flows in both cases are flipping but the detachment under 70 MPa is more significant than that under 358 

40 MPa.  This explains the smaller cone angle under 70 MPa than under 40 MPa during the steady stage.  359 

If the initial stage is also considered, it can be expected that the flow in the nozzle experiences several stages 360 

with the opening of the injector, namely, laminar flow, turbulent flow, cavitating flow and flipping.  The 361 

influence of flash boiling on the spray behavior is remarking during the initial stage when the flow is mainly 362 

laminar, turbulent and possibly cavitating, by contrast, the influence is quite weak during the steady stage 363 

when the flow is mainly the flipping. 364 
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(a)                                                   (b) 366 

Figure 15. Influence of injection pressure on (a) plume area and (b) cone angle during quasi steady stage under 0.2 bar back 367 

pressure and 100℃ ambient temperature 368 

Conclusion  369 

The primary breakup characteristics of isooctane spray in the near field were investigated under flash 370 

boiling condition which represents the part load operation condition for GDI engine.  The spray 371 

morphology was recorded with an ultrahigh speed camera complete with a highly resolved long distance 372 

microscope.  A single-hole diesel injector was used so that the interference from other plumes can be 373 

eliminated.  A common rail injection system was also applied to study the impact of high injection pressure.  374 

The following conclusions can be drawn.  375 

Flash boiling can significantly alter the spray pattern because of the collapse of vapor bubbles produced 376 

through phase transfer and cavitation.  This considerably improves the primary breakup, producing a large 377 

amount of well dispersed droplets at the periphery of the spray.  The strength of flash boiling is mainly 378 

governed by two factors, ambient temperature and ambient pressure.  The increase of ambient temperature 379 

(before the inception of flash boiling) leads to the reduction of spray area and cone angle for both initial 380 

stage and stable stage by accelerating the evaporation.  However, under high ambient temperature, the 381 

reduction of back pressure greatly improves the atomization of the spray (thereby considerable increase of 382 

spray area and cone angle) by substantially boosting the flash boiling.  Besides, under flash boiling 383 

condition, the radial propagation of spray during the injector opening stage is more obvious than the 384 

quasi-steady stage which is governed by the hydraulic force.  In addition, the increase of injection pressure 385 

causes better dispersion for both injector opening stage and steady stage.  However, the rise of injection 386 

pressure results in the decrease of cone angle and spray area during the steady stage because of the 387 

dominance of the hydraulic force.    388 

Flash boiling condition is beneficial to spray atomization, producing small droplets and favorable 389 

air/fuel mixture.  When calibrating the injection timing for GDI engine, the advantageous effects of flash 390 

boiling could be employed.  However, the pumping loss caused by vacuum for flash boiling condition 391 

should be considered because some energy will be wasted due to pumping loss.     392 
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