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A new potential has been derived for ceria and used to calculate its lattice and defect properties. The
Ce4þ � � � O2� potential is obtained via a combination of empirical fitting to crystal structural data and
parametric fitting to additional physical properties, while the O2� � � � O2� potential is transferred from
earlier publications on UO2 and PuO2. The overall potential is subsequently verified and validated by cal-
culation of elastic and dielectric constants, whose values agree favourably with those measured experi-
mentally. The potential is then employed to calculate intrinsic defect formation energies and predict the
most favourable type of intrinsic disorder.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High Level Waste (HLW), containing up to 95% of the radioactiv-
ity associated with a nuclear power station [1], comprises ener-
getic fission products many of which have long half-lives and
must therefore be isolated from the biosphere [2]. Borosilicate
glass is currently the most commonly employed immobilizing
matrix. However, the limited solubility of some HLW components
and suggestions of inhomogeneity of the borosilicate matrix, has
led to active research of ceramics, particularly those with mineral
analogues, as alternative host matrices [3].

The mineral brannerite, UTi2O6, has a high actinide content and
is extremely durable despite a wide variety of chemical substitu-
tion on both cation sites [4]. Synthetically, brannerite is a signifi-
cant minor phase in pyrochlore-zirconolite ceramics designed for
HLW immobilization [5]. It is therefore important to consider the
applicability of brannerite as an actinide immobilizing matrix. Cer-
ium is often used as an actinide simulant [6], particularly for plu-
tonium, and CeTi2O6 is iso-structural with both UTi2O6 and
PuTi2O6 [7].

Included in the detailed study of the structural properties of
CeTi2O6 by Stennett et al. [7], are atomistic simulations employing
potentials from the library of Woodley et al.[8] However, the
reported results were not reproducible with the listed potentials.
Moreover, the interatomic potential employed for the anion inter-
actions includes an attractive r�6 term that causes unphysical and
catastrophic attraction when the anions are separated by less than
1.85 Å. In addition, as seen when other potentials from the same
library were used in the simulation of j-alumina [9], these poten-
tials give rise to further anomalies.

In this study, methods similar to those adopted previously for
UO2 [10] are applied to CeO2 in order to obtain information about
lattice properties and defect behaviour. This is an important pre-
liminary step in modelling cerium brannerite which is the subject
of ongoing work and a future publication.
2. Computational methodology

The computational methods used in this work are established
techniques that have been used in many applications [11,12].
The pairwise interactions in the material are defined by a linear
sum of an electrostatic interaction term and an interatomic poten-
tial (Eq. (1)):

Vij ¼ Aij exp � rij
qij

 !
� Cij

r6ij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Buckingham

þ qiqj

rij|fflffl{zfflffl}
Electrostatic

ð1Þ

For the interatomic potential term, the Buckingham form is
employed in which qi and qj are the formal charges on the ions
and the parameters A;q and C are specified, through empirical fit-
ting, for each interaction type. Ion polarization by highly charged
trinsic
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ions and defects is incorporated using Dick and Overhausers shell
model [13] and intrinsic defects are modelled with the computa-
tionally efficient Mott Littleton [14] procedure.
Fig. 1. Plot of the difference between predicted and observed CeO2 lattice constant
for A and q values of the Ce4þ � � � O2� Born–Mayer potential.
2.1. Anion – anion potential

The interactions between the anions are described using a
Buckingham four range potential: this was reported for UO2

[10,15] and has subsequently been used in simulations of SiO2

[16], PuO2 [17] and ThO2 [18]. Its use here is reasonable as CeO2

adopts the same cubic crystal structure, with the anions arranged
with the same symmetry within unit cells of a similar size. The
potential is defined by the intervals given in Eq. (2) such that only
the relevant terms of the Buckingham function are used over speci-
fic interaction distances. At the points cut1; rminimum and cut2, the
functions are splined such that their first and second derivatives
are continuous. Furthermore, the function is constrained to have
a minimum stationary point at rmin. Values for the necessary
parameters, are reported by Jackson et al. and the constants for
the polynomials calculated using the spline fitting procedure
embodied within the GULP [19] code.

/Buck4 rij
� � ¼

Aij exp � rij
qij

� �
if rmin < rij 6 cut1;

X5
m¼0

am rmij if cut1 < rij 6 rminimum;

X3
n¼0

bn rnij if rminimum < rij 6 cut2;

� Cij

r6
ij

if cut2 < rij 6 rmax

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ
Fig. 2. Zero contour points and interpolated values of A and q comprising the
solution set.
2.2. Cation – anion potential

Owing to the absence of a stationary point in the function of the
cation–anion interactions, the Buckingham four range potential
form is thus not applicable. To the best of the authors knowledge,
there exists no standard Buckingham form potentials for
Ce4þ � � � O2� interactions that are consistent with the Buckingham
four range potential detailed above. Thus, this is derived, with the C
parameter set to zero in order to overcome the unphysical phe-
nomenon of catastrophic attractions when ions are in close prox-
imity: the potentials are thus formally of the Born Mayer form.
The nature of the excluded (�C=r6) term is incorporated by survey-
ing the potential landscape and sequentially selecting A and q
parameters using an empirical fitting procedure which requires
no a priori assumption of starting values and has been used to
derive potentials for use in simulations of UO2 [10], PuO2 [17]
and ThO2 [18].

Initially, a range of A (650–2000 eV) and q (0.30–0.45Å) values
is screened and the difference between the experimentally
observed and predicted lattice constant plotted in Fig. 1.

Interpolation of the surface for where this difference is zero pro-
vides a solution set (Fig. 2) of several pairs of A and q that accu-
rately reproduce the crystal structure.

For a robust model, however, the physical characteristics of the
lattice should be described. Therefore, the predicted elastic con-
stants are plotted as a function of the A parameter of corresponding
pairs in the solution set (Fig. 3 and a value of A selected where the
mean percentage difference between the predicted and observed
values (overlaid in Fig. 3) of the elastic constants is a minimum.
The corresponding q value is obtained through interpolation of
the solution set.
Please cite this article in press as: R.A. Bird, M.S.D. Read, Derivation of enhanced
defect properties, Nucl. Instr. Meth. B (2016), http://dx.doi.org/10.1016/j.nimb
3. Results and discussion

3.1. Experimental data

CeO2 adopts the fluorite structure (Fm�3m) and is isomorphous
with UO2, PuO2 and ThO2. The face centred cubic lattice has a lat-
tice constant, a0, of 5.4112Å [20] and a basis of a cerium ion at the
origin and oxygen ions at � 1

4 ;
1
4 ;

1
4

� �
: the anions form a simple cubic

sub-lattice. There are 4 cations and 8 anions per unit cell. The fit-
ting procedure also employs the elastic constants (C11, C12 and
C44), static and high frequency dielectric constants and these are
summarised, along with other bulk properties to be used for vali-
dating the simulation, in Table 2.
3.2. Perfect lattice

Values for the parameters of the Ce4þ � � � O2� potential derived
in the previous section and the Buckingham four range O2� � � � O2�

potential are given in Table 1.
potentials for cerium brannerite and the calculation of lattice and intrinsic
.2016.10.015
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Fig. 3. Plot of predicted and observed elastic constants as a function of A.

Table 1
Lattice potentials for CeO2.

Interaction Short-range parameters Shell model*

A q C Y k2
eV Å eV Å6 jej eV Å�2

Ce4þ � � �O2� 1031.57 0.399447 0.0 �2.54 105.358

O2� � � �O2�(a) 11272.6 0.1363 134.0 �4.4 296.2

rmin cut1 rminimum cut2 rmax

Å Å Å Å Å
0.0 1.2 2.1 2.6 15.0

* Y and k2 are the shell charge and spring constant respectively
(a) Reference [15]
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The validity of the potentials used and the applicability of the
model is assessed by comparing the predicted values of perfect lat-
tice properties with those that have been experimentally observed.
Table 2 shows excellent agreement between calculated parameters
and reported crystallographic data, elastic constants and both sta-
tic and high frequency dielectric constants. However, such good
agreement is not surprising as these properties were used in the
potential derivation: further validation of the model is thus carried
out through consideration of additional properties listed in Table 2,
with prediction once again being compared with reported observa-
tion. Comparison with potentials [8,21–26] taken from the litera-
ture shows the parameterisation used in this work to be an
improved fit.
3.3. Intrinsic defects

Calculations were performed initially on the energies of isolated
point defects: results are given in Table 3. In all cases, the lattice
ions surrounding the defect are allowed to relax in the energy min-
imisation procedure using the Mott-Littleton procedure [14], in
which the immediate surroundings of the defect are treated explic-
itly and approximations used for more distant regions: consistent
region sizes of 14 Å and 28 Å were used, giving � 1800 ions in
region 1 and � 12,300 ions in region 2.

Frenkel and Schottky disorder formation energies are predicted
by combining individual point defect energies. However, this
assumes the defects are at infinite dilution and does not take into
account the binding energy associated with defect aggregation.
This is addressed by performing cluster calculations: the binding
energies are then determined as the difference in energy between
the cluster and its constituent point defects at infinite dilution.
Please cite this article in press as: R.A. Bird, M.S.D. Read, Derivation of enhanced
defect properties, Nucl. Instr. Meth. B (2016), http://dx.doi.org/10.1016/j.nimb
3.3.1. Frenkel pair clusters
Using Kröger Vink notation [35] notation, Frenkel defects can be

represented as:

Ce�Ce �V0000
Ce þ Ce����i

O�
O �V��

O þ O00
i

ð3Þ

For the oxygen Frenkel cluster simulations, the interstitial and
vacancy are separated by a cerium ion in order to prevent the
recombination seen when the defects are in close proximity. Two
geometries for the oxygen Frenkel Pair are considered and the
respective coordinates and resulting energies listed in Table 4.
3.3.2. Schottky defect clusters
Using Kröger Vink notation, Schottky defects are represented

as:

Ce�Ce þ 2O�
O �V0000

Ce þ 2V��
O þ CeO2ðSurf:Þ ð4Þ

In a similar manner to that used for the oxygen Frenkel pairs,
three configurations of the trio of vacancies in Schottky disorder
were simulated. In all three configurations, the cerium vacancy is
positioned at ð0;0;0Þ and the first oxygen vacancy positioned at
ð0;0;0Þ. The coordinates of the second oxygen vacancy, which pre-
serves charge neutrality, and the associated energies are given in
Table 5. The most energetically favourable position for the second
oxygen vacancy is predicted to be that of the Sch. 2 configuration
and this cluster energy is combined with the associated energy
of forming CeO2 at the surface to predict the Schottky defect
energy detailed in Table 6.

Formation energies for Frenkel and Schottky disorder, found
from both combining point defect energies and cluster calcula-
tions, are given in Table 6. It can be seen that for all defect types
potentials for cerium brannerite and the calculation of lattice and intrinsic
.2016.10.015
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Table 2
Comparison of predicted and observed properties of CeO2.

Property Observed This
work

Butler
[21]

Gotte
[22]

Woodley
[8]

Minervini
[23]

Vyas
[24]

Li [25] Ghosh�

[26]
D D D D D D D D
% % % % % % %

Lattice Constant:
(a0) (Å) 5.4112 5.4114 0.004 5.4677 1.044 5.4070 �0.078 5.4110 �0.004 5.4100 �0.022 5.4110 �0.004 5.4080 �0.059 5.3960 �0.281

Elastic Constants:
C11 (GPa) 403ðbÞ 402.3 �0.17 490.2 21.64 405.5 0.62 587.8 45.86 554.5 37.59 573 42.18 503.7 24.99 410.5 1.86

C12 (GPa) 105ðbÞ 122.8 16.95 140.6 33.90 104.3 �0.67 111.3 6.00 124.6 18.67 147.7 40.67 143.9 37.05 79.2 �24.57

C44 (GPa) 60:0ðbÞ 60 0.00 132.4 120.67 60.6 1.00 61.6 2.67 123.1 105.17 146.8 144.67 143.7 139.50 78.5 30.83

Moduli:
Bulk (GPa) 204� 240ðcÞ 215.96 257.13 204.71 270.15 267.92 289.42 263.83 189.61

Shear (GPa) 96� 149ðdÞ 91.9 149.37 96.58 132.26 159.85 173.12 158.17 113.35

Young’s (GPa) 249ðbÞ 344.86 427.52 362.79 552.34 508.78 512.45 439.68 384.94

Dielectric Constants:
Static e0 23� 35:3ðeÞ 26.73 22.52 18.721 11.26 18.62 12.71 10.41 4.615

High Frequency e1 4:7� 6:0ðeÞ 5.518 5.415 4.012 4.23 5.88 3.98 1.09

(a) Reference [20], (b) Reference [27], (c) Reference [28–31], (d) Reference [27,28], (e) Reference [32,33,34], ⁄ Partial charge model.

Table 3
Defect formation energies for isolated defects in CeO2

Defect Position Formation Energy/ eV

Ce4þ Vacancy (V0000
Ce) (0,0,0) 78.60

O2� Vacancy (V��
O ) 1

4 ;
1
4 ;

1
4

� �
16.37

Ce4þ Interstitial (Ce����i ) 1
2 ;

1
2 ;

1
2

� � �61.66

O2� Interstitial (O00
i )

1
2 ;

1
2 ;

1
2

� � �11.87

Region I contains 1800 ions.

Table 4
Formation and binding energies of the considered configurations for the oxygen
Frenkel pair defect.

Type of
defect

V��
O Position O00

i

Position
Formation energy
(eV/Defect)

Binding energy
(eV/Defect)

OFP 1 � 1
4 ;� 1

4 ;� 1
4

� �
1
2 ;

1
2 ;

1
2

� �
1.55 �0.70

OFP 2 � 1
4 ;� 1

4 ;
1
4

� �
1
2 ;

1
2 ;

1
2

� �
1.86 �0.40

Table 5
Formation and binding energies of the Ce4þ and 2 O2� vacancy clusters.

Type of
defect

Second V��
O Position

(eV/Defect)
Formation
energy

Binding Energy
(eV/Defect)

Sch. 1 � 1
4 ;� 1

4 ;� 1
4

� �
35.95 �1.17

Sch. 2 � 1
4 ;

1
4 ;� 1

4

� �
35.92 �1.19

Sch. 3 � 1
4 ;

1
4 ;

1
4

� �
36.12 �0.99

Table 6
Calculated formation and binding energies of the ionic defects in CeO2.

Defect formation energy

Type of
defect

Unbound
(eV/Defect)

Bound
(eV/Defect)

Binding Energy
(eV/Defect)

Ce Frenkel 8.47 6.71 �1.77
O Frenkel 2.25 1.86 �0.40
Schottky Trio 2.78 1.59 �1.19
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there is a net binding energy. It is also interesting to note that con-
sideration of only defects at infinite dilution would lead to the con-
clusion that oxygen Frenkel disorder, having the lowest formation
energy and thus being the most thermodynamically stable, would
dominate. When defect aggregation is taken into account, how-
ever, the Schottky trio of vacancies is predicted to have the lowest
formation energy. Thus, cerium and oxygen vacancies are expected
in the structure in accord with observation.
1 http://www.birmingham.ac.uk/bear.
4. Conclusions and future work

A potential has been fitted to the structure and properties of
CeO2 using a robust procedure to ensure the crystallographic and
mechanical properties are reproduced accurately. Starting from a
solution set of parameters which correctly reproduce the crystallo-
graphic structure, values are selected based on their ability to
reproduce the elastic and dielectric constants of the lattice. The
derived potential is then validated by calculating additional bulk
properties not used in the derivation procedure.

Subsequent to the derivation and validation of the potential
using the pure lattice, calculated energies of intrinsic point and
cluster defects are used to predict Frenkel and Schottky energies:
Please cite this article in press as: R.A. Bird, M.S.D. Read, Derivation of enhanced
defect properties, Nucl. Instr. Meth. B (2016), http://dx.doi.org/10.1016/j.nimb
Schottky defects are found to be the most energetically favourable
form of intrinsic defect. The potential derived in this work will now
be used in the atomistic simulation of cerium brannerite, CeTi2O6.
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