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A weighted bootstrap method is proposed to approximate the distribution of the Lp

(1 ≤ p < ∞) norms of two-sample statistics involving kernel density estimators. Using

an approximation theorem of Horváth, Kokoszka and Steineback [(2000) ‘Approxima-

tions for Weighted Bootstrap Processes with an Application’, Statistics and Probability

Letters, 48, 59-70], that allows one to replace the weighted bootstrap empirical process

by a sequence of Gaussian processes, we establish an unconditional bootstrap central

limit theorem for such statistics. The proposed method is quite straightforward to

implement in practice. Furthermore, through some simulation studies, it will be shown

that, depending on the weights chosen, the proposed weighted bootstrap approxima-

tion can sometimes outperform both the classical large-sample theory as well as Efron’s

[(1979) ‘Bootstrap Methods: Another Look at the Jackknife’, Annals of Statistics, 7,

1-26] original bootstrap algorithm.
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1 Introduction

Let X1, ∙ ∙ ∙ , Xn be independently and identically distributed (iid) random variables with

probability density function (pdf) f = F ′, where F is the cumulative distribution function

(CDF) of X1, and let fn(t) = (nh)−1
∑n

i=1 K((t−Xi)/h) be the classical Parzen-Rosenblatt

kernel estimators of f (Rosenblatt (1956) and Parzen (1962)). Here h is the smoothing pa-

rameter of the kernel K. A standard measure of the overall performance of fn is given by

the Lp-type statistic In(p) =
∫
|fn(t) − f(t)|p dμ(t), 1 ≤ p < ∞, where μ is a measure on

the Borel sets of the real line.

Central limit theorems (CLT) for In(p) have been available in the literature for more than

four decades. These include the work of Bickel and Rosenblatt (1973) for the case of p = 2

and dμ(t) = a(t)dt, where a(t) is a bounded piece-wise smooth integrable function, and the

work of Hall (1984) for the case of p = 2 and μ(t) = t. CLT for In(1) have been given by

Berlinet, Devroye and Gyorfi (1995); also see Beirlant and Mason (1995). However, Csörgő

and Horváth (1988), as well as Horváth (1991), established CLT for In(p), for all values of

p ∈ [1,∞) as well as more general measures μ. In fact, the important case of μ(t) = F (t)

has also been of particular interest in the literature (Fryer (1977), Steele (1978), Hall (1982),

Henze, Nikitin and Ebner (2009)). It is also well known that the convergence of In(p) (prop-

erly scaled and normalized) to the standard normal distribution can be rather slow. See, for

example, Mojirsheibani (2007) who suggests alternative methods to approximate the distri-

bution of In(p), based on Efron’s original bootstrap.

The main goal of the present paper is to study and propose a weighted bootstrap approxi-

mation to distribution of the two-sample versions of In(p). More specifically, we propose a

weighted bootstrap approximation to the distribution of the statistic

Im,n(p) =

∫
|f1,n(t) − f2,m(t)|p dμ(t), 1 ≤ p < ∞ , (1)

where f1,n and f2,m are the kernel density estimators based on samples of sizes m and n,

and are defined in (2), and where μ is a measure on the Borel sets of R. Our numerical

results show that the weighted bootstrap can often outperform Efron’s original bootstrap.

Furthermore, aside from its simplicity to use, in many applications the weighted bootstrap

has been shown to be computationally more efficient than Efron’s original algorithm (Burke

(2000), Horváth et al. (2000) and Hall and Mammen (1994)). From a practical point of
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view, the above statistics can be used to test the hypothesis H0 : f1 = f2.

2 Main results

2.1 Background

Let X1, ∙ ∙ ∙ , Xn be iid random variables with the cdf F1 and the pdf f1 = F ′
1. Also, let

Y1, ∙ ∙ ∙ , Ym be iid random variables with cdf F2 and pdf f2 = F ′
2. Let f1,n and f2,m be the

kernel estimators of f1 and f2, respectively, i.e.,

f1,n (t) = (nh1)
−1

n∑

i=1

K

(
t − Xi

h1

)

and f2,m (t) = (mh2)
−1

m∑

i=1

K

(
t − Yi

h2

)

. (2)

Here the Kernel K is a real-valued function that satisfies certain regularity conditions (to be

specified later) and h1 ≡ h1(n) and h2 ≡ h2(m) are smoothing parameters. Also let Im,n(p),

1 ≤ p < ∞, be the statistic introduced in (1). A central limit theorem due to Anderson,

Hall and Titterington (1994) is available for the statistic in (1) for the case of p = 2 and

μ(t) = t. Closely relevant results are also given by Henze and Nikitin (2003). To address the

general case where p ∈ [1,∞) and where μ(t) is not restricted to be μ(t) = t, we first state

a number of assumptions that will also be used later when we state our main results. These

assumptions, which are the same as those used by Csörgő and Horváth (1988), are:

Condition (K)

The kernel K satisfies

(i)
∫

K(t)dt = 1,
∫

tK(t)dt = 0.

(ii) There is a finite interval on which the kernel K is continuous and bounded, and vanishes

outside of this interval. (iii) K is of bounded variation.

Condition (F)

In what follows, f represents the pdf of X1.

(i) R(s) =
∫

f p/2(t + s)dμ(t) exists and is bounded in a neighborhood of zero.

(ii) f is uniformly bound, almost everywhere with respect to μ, and is monotone in a neigh-

borhood of tF = sup{t : F (t) = 0} and also in that of tF = inf{t : F (t) = 1}.

(iii) dμ(t) = w(t)dt where the function w(t) ≥ 0 is bounded and integrable over finite in-

tervals, and f p/2(t)w(t) is uniformly continuous on the sets R∗
1, ∙ ∙ ∙ ,R∗

k, where the Lebesgue

measure of R−
⋃

k R
∗
k is zero.
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(iv) The integral
∫

[F (t + s)(1−F (t− s))](0.5−ν)pw(t)dt exists and is bounded in a neighbor-

hood of zero for some 0 < ν ≤ 0.5.

(v) For some 0 ≤ τ < ∞, both (|x|τ ∨ 1)f ′′(x) and (log(|x|τ ∨ e))1/2|x|τ |f ′(x)/f 1/2(x)| are

a.e. uniformly bounded with respect to μ and
∫

(|x|−τ ∧ 1)pw(x)dx < ∞.

Also, define the quantities

η = E |N |p
(∫

K2(t)dt

)p/2 ∫
f p/2(t)dμ(t) < ∞ , (3)

where N = N(0, 1) stands for a standard normal random variable throughout this paper,

and

σ2 = σ2
1

∫
f p(t) ∙ w2(t)dt

(∫
K2(t)dt

)p

, (4)

where w(t) is as in F(iii) and σ2
1 is given by

∫ ({

(2π)−1

∫ ∫
|xy|p(1 − r2(u))−1/2 exp

(

−
x2 − 2r(u)xy + y2

2(1 − r2(u))

)

dxdy

}

− (E|N |p)2

)

du, (5)

with

r(u) =

(∫
K2(s) ds

)−1 ∫
K(s)K(u + s)ds .

Now, let ν ∈ (0, 1/2] be as in F(iv) and define

κν(n) =

{
n−ν if 0 < ν < 1/2

n− 1
2 log n if ν = 1/2

(6)

Then the following result is the two-sample version of the classical CLT of Csörgő and

Horváth (1988), provided that a common smoothing parameter is used for both f1,n and

f2,m , i.e., h1 = h2 = h.

Theorem 1 Let Im,n(p), η, and σ2 be as in (1), (3), and (4) respectively. Suppose that

conditions (K) and (F) hold. If, as m ∧ n → ∞,

m

n
→ c ∈ (0,∞), h → 0, and h−1κν(m ∧ n) → 0 ,

where ν is as in (6), then

(hσ2)−
1
2

{(
m + n

mn

)− p
2

h
p
2 ∙ Im,n(p) − η

}
d

−→ N(0, 1) , 1 ≤ p < ∞,

whenever f1 = f2.
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Theorem 1 can be proved using weighted approximation techniques employed in Csörgő and

Horváth (1988). In fact, for the sake of completeness, we have also provided a proof of

Theorem 1 in the Appendix. However, our main aim is to propose a weighted bootstrap

approximation of the distribution of Im,n(p). Although Theorem 1 holds for a large class

of functions w(t), where w(t) is defined via dμ(t) = w(t)dt in condition F(iii), the most

interesting choices are perhaps w(t) = 1 and w(t) = f(t), where f is the common density

under H0 : f1 = f2 (= f).

Our numerical studies in section 3 shows that in practice, and as in the one-sample problem,

the convergence (to normality) in Theorem 1 can be rather poor. This fact remains true

regardless of whether the parameters η and σ2 are known (an unrealistic case) or they are

estimated by some consistent estimators η̂ and σ̂2. In the next section we propose a weighted

bootstrap approximation to the distribution of Im,n(p), which works for all p ∈ [1,∞), is

quite straightforward to implement, and has excellent finite sample performance as compared

with both large-sample theory and Efron’s (1979) original bootstrap algorithm.

2.2 A weighted bootstrap approach

In this section we consider a weighted bootstrap approximation of the distribution of Im,n(p).

Several authors have used the weighted bootstrap as a generalization of Efron’s (1979) origi-

nal bootstrap in the literature. The first paper that used the concept of weighted bootstrap,

with weights different from those of Efron in the cited paper, appears to be that of Rubin

(1981). His weighted bootstrap was applied under a Bayesian framework. Burke (1998,

2000) uses a Gaussian weighted bootstrap to construct confidence bands for a cumulative

distribution function. Burke (2010) studies weighted bootstrap empirical processes (in the

framework of a hybrid empirical process) and discusses their applications to change-point

detection. Horváth et al. (2000) study the rate of the best Gaussian approximation of

the weighted bootstrap empirical process and construct a sequence of Brownian bridges

achieving this rate. Alvarez-Andrade and Bouzebda (2013) consider strong approximations

of weighted empirical and quantile processes and discuss the applications of their results

to censored quantile processes. Mason and Newton (1992) give conditions under which

the weighted bootstrapped mean is consistent. The monograph by Barbe and Bertail (1995)

gives a general view and further results on the weighted bootstrap. We also note that Efron’s

original bootstrap is in fact a weighted bootstrap algorithm, where the weights are multi-
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nomial random variables. However, depending on the weights used, in many applications

the weighted bootstrap has been shown to be computationally more efficient than Efron’s

algorithm (Burke (2000), Horváth et al. (2000) and Hall and Mammen (1994))

The proposed weighted bootstrap approximation of Im,n(p) works as follows. Let δ1, ∙ ∙ ∙ , δn

and δ′1, ∙ ∙ ∙ , δ′m be iid random variables with mean E(δ1) and variance 1, independent of

the data X1, ∙ ∙ ∙ , Xn and Y1, ∙ ∙ ∙ , Ym. The weighted bootstrap versions of the kernel density

estimators f1,n and f2,m are, respectively,

f1,nn(t) = (nh)−1
n∑

i=1

(
1 + δi − δ̄

)
K

(
t − Xi

h

)

and

f2,mm(t) = (mh)−1
m∑

i=1

(
1 + δ′i − δ̄′

)
K

(
t − Yi

h

)

,

where δ̄ = n−1
∑n

i=1 δi and δ̄′ = m−1
∑m

i=1 δ′i. To define the weighted bootstrap counterpart

of (1), we first note that when f1 = f2, the statistic (1) can equivalently be written as

Im,n(p) =

∫
|f1,n(t) − f2,m(t) − (f1(t) − f2(t))|

p w(t)dt , (7)

where, in view of assumption F(iii), we have replaced dμ(t) by w(t)dt. Now (7) suggests

considering the bootstrap statistic

Îm,n(p) =

∫
|f1,nn(t) − f2,mm(t) − (f1,n(t) − f2,m(t))|p w(t)dt . (8)

Clearly, the term (f1,n(t)− f2,m(t)) in (8), which is the kernel estimator of f1(t)− f2(t) = 0,

is not necessarily zero and must be included. This is also in the spirit of the bootstrap

hypothesis testing ideas discussed in Hall (1992; Sec. 3.12). In what follows, we will also pay

particular attention to the special and important case where w(t) = f(t). This choice of w(t)

has been of particular interest in the literature for general one- and two-sample problems;

see, for example, Cao and van Keilegom (2006), Hall (1982), Steele (1978), Fryer (1977),

Wegman (1972), and Rosenblatt (1952). In this case, the bootstrap counterpart of (7) is

given by

Ĩm,n(p) =

∫
|f1,nn(t) − f2,mm(t) − (f1,n(t) − f2,m(t))|p fm+n(t)dt , (9)

where fm+n is the “pooled” estimator of f(t), i.e.,

fm+n(t) =
1

(n + m)h

[
n∑

i=1

K

(
t − Xi

h

)

+
m∑

i=1

K

(
t − Yi

h

)]

= ((n + m)h)−1 [nhf1,n(t) + mhf2,m(t)] .
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To state our main results, we also need the following condition regarding the choice of the

iid random variables δ1, ∙ ∙ ∙ , δn, δ′1, ∙ ∙ ∙ , δ′m:

Condition (M)

The random variables δ1, ∙ ∙ ∙ , δn, δ′1, ∙ ∙ ∙ , δ′m are iid with finite mean E(δ1) and variance 1,

independent of X1, ∙ ∙ ∙ , Xn, Y1, ∙ ∙ ∙ , Ym and δ1 has a moment generating function in an open

neighborhood of the origin.

Now, let η̃ and σ̃2 be the sample versions of η and σ2 defined in (3) and (4), i.e.,

η̃ = E|N |p
(∫

K2(t)dt

)p/2 ∫
f

(p+2)/2
m+n (t)dt (10)

and

σ̃2 = σ2
1

∫
f p+2

m+n(t)dt

(∫
K2(t)dt

)p

, (11)

where σ2
1 is as in (5).

Theorem 2 Let Ĩm,n(p) be as in (9) and suppose that conditions (K) and (M) hold. Also

suppose that condition (F) holds when w(t) is either 1 or f(t). If, as m ∧ n → ∞,

m/n → c ∈ (0,∞), h → 0, and
nh3

log log n
→ ∞ ,

then

(
hσ̃2
)− 1

2

{(
m + n

mn

)− p
2

h
p
2 ∙ Ĩm,n(p) − η̃

}
d

−→ N(0, 1) , 1 ≤ p < ∞ ,

whenever f1 = f2.

For the general case where w(t) is a known function of t we have the following result.

Theorem 3 Let Îm,n(p) be as in (8) and suppose that conditions (K), (F), and (M) hold.

Also suppose that
∫

dμ(t) < ∞. If, as m ∧ n → ∞,

m/n → c ∈ (0,∞), h → 0, and nh3 → ∞ ,

then

(
hσ̂2
)− 1

2

{(
m + n

mn

)− p
2

h
p
2 ∙ Îm,n(p) − η̂

}
d

−→ N(0, 1) , 1 ≤ p < ∞ ,

whenever f1 = f2, where the estimators η̂ and σ̂2 are obtained from η and σ2 upon replacing

f by fm+n in (3) and (4).
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3 Numerical examples

In this section we perform some simulation studies to assess the finite-sample performance

of the methods discussed this paper. These studies show that, in general, the proposed

weighted bootstrap performs well in capturing the distribution of the statistics Im,n(p). Our

numerical work involves samples of sizes n = m = 40, n = m = 80, and n = 50, m = 15

drawn from mixture of normals: f(x) = 1
3
φ(x−2)+ 2

3
φ(x) where φ(x) = (2π)−1/2 exp(−x2/2)

is the standard normal pdf. As for the kernel K, we considered a truncated Gaussian kernel

given by K(u) = cφ(u)I{−4 ≤ u ≤ 4}, where c = (Φ(4)−Φ(−4))−1 is the norming constant,

and Φ is the standard normal cdf. Next we computed the kernel density estimators f1,n, f2,m

as well as the corresponding two-sample statistic

Zn := (hσ2)−
1
2

{(
m + n

mn

)− p
2

h
p
2 ∙ Im,n(p) − η

}

for several values of the smoothing parameter h and p = 2; here we took w(t) = f(t).

Furthermore, for each pair of sample sizes (m,n) and each value of h, we computed the pooled

estimator fm+n, as well as 1000 copies of the weighted bootstrap density estimators f1,nn and

f2,mm based on two different choices for the distribution of the weights δ1, ∙ ∙ ∙ , δn, δ′1, ∙ ∙ ∙ , δ′m:

N(0,1) and Exp(1). These 1000 values were then used to construct B = 1000 copies of the

corresponding weighted bootstrap statistic (for each choice of the distribution of the weights)

Znn :=
(
hσ̃2
)− 1

2

{(
m + n

mn

)− p
2

h
p
2 ∙ Ĩm,n(p) − η̃

}

,

where Ĩm,n(p) is as in (9). Furthermore, for each value of m, n, and h, we computed B = 1000

copies of

Z∗
n :=

(
hσ̃2
)− 1

2

{(
m + n

mn

)− p
2

h
p
2 ∙ I∗

m,n(p) − η̃

}

,

which are Efron’s original bootstrap counterparts of Zn, i.e.,

I∗
m,n(p) =

∫ ∣
∣f ∗

1,n(t) − f ∗
2,m(t) − (f1,n(t) − f2,m(t))

∣
∣p fm+n(t)dt .

Here f ∗
1,n(t) = (nh1)

−1
∑n

i=1 K((t−X∗
i )/h) and f ∗

2,m(t) = (mh2)
−1
∑m

i=1 K((t−Y ∗
i )/h), where

X∗
1 , ∙ ∙ ∙ , X∗

n is a sample of size n drawn with replacement from X1, ∙ ∙ ∙ , Xn, and Y ∗
1 , ∙ ∙ ∙ , Y ∗

m

is a sample of size m drawn with replacement from Y1, ∙ ∙ ∙ , Ym. Next observe that if m and

n are not “too small” then by Theorem 1 the random variable

U := Φ(Zn)

8



should approximately have a Unif(0,1) distribution. Similarly, if we let Znn(1), ∙ ∙ ∙ , Znn(1000) ,

be the 1000 values of the weighted bootstrap statistic Znn, then by Theorem 2 the random

variable

Y = B−1

B∑

b=1

I{Znn(b) ≤ Zn}

is approximately a Unif(0,1) random variable. Likewise, if we let Z∗
n(1), ∙ ∙ ∙ , Z∗

n(1000), rep-

resent the 1000 (= B) values of Z∗
n, then

V = B−1

B∑

b=1

I{Z∗
n(b) ≤ Zn}

is expected to be approximately a Unif(0,1) random variable. Repeating the entire above

process a total of 400 times, we obtain (U1, ∙ ∙ ∙ , U400), (Y1, ∙ ∙ ∙ , Y400), and (V1, ∙ ∙ ∙ , V400).

[FIGURE 1 GOES HERE]

Figure 1 gives the plots of the empirical cdf of Ui’s, Yi’s, and Vi’s for various values of (m,n)

and h=0.25 (c.f. Remark A for the choice of h). The 45◦ line represents the true cdf of the

Unif(0,1) distribution. Plots (b), (c), and (d) show that when n = m = 40 the weighted

bootstrap, as well as Efron’s original bootstrap, perform substantially better than the large-

sample theory approximation in plot (a). This is reflected by the fact that the empirical cdf

of the Vi’s in plot (b) and those of Yi’s in plots (c) and (d) nearly coincide with the 45◦ line.

Furthermore, plot (d) shows that when Exp(1) weights are used, the weighted bootstrap is

slightly superior to both N(0,1) weights and Efron’s bootstrap. Similarly, when n = m = 80,

both the weighted and Efron’s bootstrap perform much better; see plots (e), (f),(g),(h).

However, as plot (g) shows, in this case the weighted bootstrap with N(0,1) weights has a

slight edge over Exp(1) weights. The case where n = 50 and m = 15 is given in plots (i), (j),

(k), and (l). Once again the large-sample theory (plot (i)) gives poor results. In passing we

also note that for this case the N(0,1) weights perform much better that the Exp(1) weights

(compare plots (k) and (l)).

[FIGURE 2 GOES HERE]

Figure 2 gives the same plots for the case where h = 0.4 (c.f. Remark A). Once again plots

(a)-(l) confirm that the weighted bootstrap can perform quite well.
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Next, as a more formal approach, we have carried out tests of hypothesis for the distribu-

tions of the resulting random variables (U1, ∙ ∙ ∙ , U400), (Y1, ∙ ∙ ∙ , Y400), and (V1, ∙ ∙ ∙ , V400). We

have employed two test statistics: Kolmogorov-Smirnov and Shapiro-Wilk tests. For each

pair of sample sizes (m,n) and each of h = 0.25 and h = .40 the following tests of the null

hypothesis were carried out.

1. The Kolmogorov-Smirnov tests:

H
(1)
0 : U1, ∙ ∙ ∙ , U400 are iid Unif(0,1)

H
(2)
0 : Y1, ∙ ∙ ∙ , Y400 are iid Unif(0,1) (using both N(0,1) and Exp(1) weights)

H
(3)
0 : V1, ∙ ∙ ∙ , V400 are iid Unif(0,1)

2. The Shapiro-Wilk tests (of normality):

H
(4)
0 : Φ−1(U1), ∙ ∙ ∙ , Φ−1(U400) are iid N(0,1)

H
(5)
0 : Φ−1(Y1), ∙ ∙ ∙ , Φ−1(Y400) are iid N(0,1) (using both N(0,1) and Exp(1) weights)

H
(6)
0 : Φ−1(V1), ∙ ∙ ∙ , Φ−1(V400) are iid N(0,1)

where Φ is the cdf of the standard normal distribution. A total of 24 tests were performed,

corresponding to the 24 setups that gave rise to the 24 plots in Figures 1 and 2. The p-

values corresponding to the hypotheses H
(k)
0 , k = 2, 3, 5, 6 were all larger than 5% (and in

fact, in most cases larger than 20%). This was true for all sample sizes and h values. On the

other hand, all the other p-values (i.e., the p-values for H
(k)
0 , k = 1, 4) were less than 10−10,

confirming the superior performance of the weighted bootstrap (as well as Efron’s original

bootstrap).

Remark A

For the choice of the bandwidth h in our simulation studies we have followed the approach

used in Liu and Mojirsheibani (2015). More specifically, for kernel density estimators, a pop-

ular choice of h is the one that minimizes the Asymptotic Mean Integrated Squared Error

(AMISE) of the corresponding density estimator. Since AMISE depends on the unknown

density, one can use the plug-in bandwidth selector of Sheather and Jones (1991), where ĥ

minimizes the plug in estimate of AMISE. Extensions to multivariate density estimators have

been developed by Wand and Jones (1994). Alternatively, one can find data-driven versions
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of h by using the least-squares cross-validation criterion of Rudemo (1982) and Bowman

(1984). For our simulation work, a preliminary small pilot study based on the plug-in esti-

mate of the AMISE shows that the selected values of ĥ are mainly in the range of 0.20 to

0.45, which justifies the choices h = 0.25 and 0.40 used in figures 1 and 2. We note that

regardless of whether a choice, such as h = 0.25, is good/poor for a particular data set, it

will be good/poor for each of the three approximations because we are using the same kernel

density estimate for all three approaches

Remark B

In this paper we have established an unconditional bootstrap central limit theorem for the

Lp norms of two-sample statistics involving kernel density estimators. In certain situations

of practical interest both conditional and unconditional paradigms may be available; see, for

example, Kosorok (2008, Sec. 10.1) where the weak convergence of weighted bootstrap em-

pirical processes are addressed. In our setup we need more than just the weak convergence of

such empirical processes; in fact, a key tool for establishing our main results is the strong ap-

proximation result of Horváth et al. (2000) which we have stated under Lemma 1. In the cited

paper, these authors apply the weighted bootstrap method to problems in change-point anal-

ysis and establish the validity of their bootstrap approach in an unconditional sense; see The-

orem 2.1 of Horváth et al. (2000). It appears that the strong approximation results for boot-

strapped empirical processes established in Horváth et al. (2000), and substantially extended

by Burke (2000), provide the right tools and the natural path for establishing unconditional

bootstrap central limit theorems for many complicated statistics such as the ones we have ad-

dressed in this paper. Furthermore, although our unconditional bootstrap central limit the-

orems are stated in a univariate setting, we believe that with more efforts it is possible to ex-

tend them to a more general multivariate framework via Burke’s (2010) generalization of The-

orem 2.1 of Horváth (2000). More specifically, suppose that X1, . . . , Xn are i.i.d Rd-valued

random vectors in an open neighborhood of the origin. If we put αn(x) =
∑n

i=1 δiI{Xi ≤ x}

then by the results of Burke (2010: Theorem 2), there is a sequence of zero-mean Gaussian

process, W F
m(∙), with covariance function E(W F (x)W F (y)) = F (x1 ∧ y1, . . . , xd ∧ yd), such

that P{supx∈Rd |n−1/2αn(x) − W F
n (x)| ≥ c1n

−1/(2(2d−1)) log n} ≤ c2n
−2, where c1 and c2 are

positive constants that depend on F and the distributuion of δ1 only. Using this results

in conjunction with Borel-Cantelli Lemma, Burke (2010) obtains the strong approximation

11



supx∈Rd |αn(x)−W F
n (x)| a.s.

= O(n−1/(2(2d−1)) log n). These results are the multivariate versions

of Theorem 2.1(i) of Horváth (2000, Theorem 1.3), which in turn is what we have stated

under Lemma 1. Burke’s (2010) results make it possible to retain a version of our Corollary

1 for the multivariate case, but with slower rates that depend on the dimension of d.

PROOF OF THEOREM 2

In what follows, we can and we will assume, without loss of generality, that all random

variables and precesses are defined on the same probability space; for more information on

this see section A.2 of Csörgő and Horváth (1993). To prove the theorem, we first state a

KMT-type result of Horváth et al (2000) on the approximation of weighted bootstrap em-

pirical processes. Let ξ1, ∙ ∙ ∙ , ξn be iid r.v.s with the cdf F . Let Fn(t) = n−1
∑n

i=1 I {ξi ≤ t} ,

and Fnn(t) = n−1
∑n

i=1(1 − εi + ε̄)I {ξi ≤ t}, where ε1, ∙ ∙ ∙ , εn are iid r.v.s with mean E(ε1)

and variance 1, and are independent of ξ1, ∙ ∙ ∙ , ξn. Also, let βn(∙) be the weighted bootstrap

empirical process, i.e., βn(t) =
√

n (Fnn(t) − Fn(t)) , t ∈ R .

Lemma 1 [Horváth et al (2000).] Let ε1, ∙ ∙ ∙ , εn be the iid r.v.s described above. Also,

suppose that there is a t0 > 0 such that E(etε1) < ∞ for all t ∈ (−t0, t0). Then there exists

a sequence of Brownian bridges {Bn(t) , 0 ≤ t ≤ 1}n≥1 such that

P

{

sup
−∞<t<∞

|βn(t) − Bn(F (t))| > n− 1
2 (c1 log n + x)

}

≤ c2e
−c3x ,

for all x ≥ 0, where c1, c2, c3 are positive constants.

An immediate consequence of the above result is the following corollary:

Corollary 1 Let ε1, ∙ ∙ ∙ , εn, βn(∙), and Bn(F (∙)) be as in Lemma 1. Then

sup
−∞<t<∞

|βn(t) − Bn(F (t))| a.s.
= O

(
n−1/2 log n

)
.

We also make use of the following technical result.

Lemma 2 [Csörgő and Horváth (1988; Lemma 6).]

Put

Γn(t) =

∫
K

(
t − x

h

)

d(W (F (x)) − F (x)W (1)), (12)

where W (∙) is a standard Wiener process. If h → 0 (as n → ∞) then under conditions (K)

12



and (F)(i), (ii), (iii), (v),

(hp+1σ2)−
1
2

{∫
|Γn(t)|p w(t)dt − h

p
2 η

}
d

−→ N(0, 1),

as n → ∞, where η are σ2 are as in (3) and (4), respectively.

Define

F1,nn(t) = n−1

n∑

i=1

(
1 − δi + δ̄

)
I {Xi ≤ t}

F2,mm(t) = m−1

m∑

i=1

(
1 − δ′i + δ̄′

)
I {Yi ≤ t}

β(1)
n (t) =

√
n (F1,nn(t) − F1,n(t)) =

1
√

n

n∑

i=1

(
δi − δ̄

)
I {Xi ≤ t}

β(2)
m (t) =

√
m (F2,mm(t) − F2,m(t)) =

1
√

m

m∑

i=1

(
δ′i − δ̄′

)
I {Yi ≤ t} .

Now, using the fact that

f1,nn(t) − f1,n(t) = h−1

∫
K

(
t − x

h

)

d (F1,nn(x) − F1,n(x))

f2,mm(t) − f2,m(t) = h−1

∫
K

(
t − x

h

)

d (F2,mm(x) − F2,m(x)) ,

we can write

Ĩm,n(p) =

∫
|f1,nn(t) − f2,mm(t) − (f1,n(t) − f2,m(t))|p fm+n(t)dt

=

(
m + n

mn

) p
2

h−p

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)√
mn

m + n
d {(F1,nn(x) − F1,n(x))

+ (F2,mm(x) − F2,m(x))}

∣
∣
∣
∣

p

fm+n(t)dt

=

(
m + n

mn

) p
2

h−p

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
β(1)

n (x) −

√
n

m + n
β(2)

m (x)

}∣∣
∣
∣

p

fm+n(t)dt .

Furthermore, by Lemma 1 and Corollary 1, there are two independent sequences of Brownian

bridges {B(1)
n (t), 0 ≤ t ≤ 1}n≥1 and {B(2)

m (t), 0 ≤ t ≤ 1}m≥1 such that

sup
−∞<t<∞

∣
∣β(1)

n (t) − B(1)
n (F1(t))

∣
∣ a.s.

= O
(
n−1/2 log n

)

and sup
−∞<t<∞

∣
∣β(2)

m (t) − B(2)
m (F2(t))

∣
∣ a.s.

= O
(
m−1/2 log m

)
.
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Therefore, with B
(1)
n (∙) and B

(2)
m (∙) as above, one finds

(
m + n

mn

)− p
2

hp ∙ Ĩm,n(p)

=

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

fm+n(t)dt

+

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
β(1)

n (x) −

√
n

m + n
β(2)

m (x)

}∣∣
∣
∣

p

fm+n(t)dt

−
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

fm+n(t)dt

]

:= Sm,n + Tm,n . (13)

Using the inequality ||a|p − |b|p| ≤ p2p−1|a − b|p + p2p−1|b|p−1|a − b|, where p ≥ 1, one finds

1

p2p−1
|Tm,n|

≤

[ ∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n

(
β(1)

n (x) − B(1)
n (F (x))

)

−

√
n

m + n

(
β(2)

m (x) − B(2)
m (F (x))

)
}∣∣
∣
∣

p

fm+n(t)dt

]

+

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p−1

×

∣
∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n

(
β(1)

n (x) − B(1)
n (F (x))

)

−

√
n

m + n

(
β(2)

m (x) − B(2)
m (F (x))

)
}∣∣
∣
∣ fm+n(t)dt

]

:= [Tm,n(i)] + [Tm,n(ii)] . (14)

Since |x|p is a convex function of x for p ≥ 1, we have the elementary inequality (also known

as Loeve’s inequality) that |(x + y)/2|p ≤ (|x|p + |y|p)/2 , p ≥ 1. Using this, we find

Tm,n(i) ≤ 2p−1

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)√
m

m + n
d
{
β(1)

n (x) − B(1)
n (F (x))

}
∣
∣
∣
∣

p

fm+n(t)dt

+2p−1

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)√
n

m + n
d
{
β(2)

m (x) − B(2)
m (F (x))

}
∣
∣
∣
∣

p

fm+n(t)dt

:= 2p−1Tm,n,1(i) + 2p−1Tm,n,2(i) . (15)
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Now,
∣
∣
∣
∣

∫
K

(
t − x

h

)√
m

m + n
d
{
β(1)

n (x) − B(1)
n (F (x))

}
∣
∣
∣
∣

p

=

(
m

m + n

) p
2
∣
∣
∣
∣

∫ [
β(1)

n (t − hy) − B(1)
n (F (t − hy))

]
dK(y)

∣
∣
∣
∣

p

≤

(
m

m + n

) p
2
(

sup
u∈R

∣
∣β(1)

n (u) − B(1)
n (F (u))

∣
∣ ∙
∫

dK(y)

)p

a.s.
= O(1) ∙ O

((
n−1/2 log n

)p)
, (by Corollary 1) , (16)

where the O(1) term follows from the fact that m
m+n

= O(1), (because m
n

→ c ∈ (0,∞)).

Since the O((n−1/2 log n)p) term in (16) does not depend on t, we find

Tm,n,1(i)
a.s.

≤ O
((

n−1/2 log n
)p)

∙
∫

fm+n(t)dt = O
((

n−1/2 log n
)p)

.

Similarly, Tm,n,2(i)
a.s.
= O((m−1/2 log m)p). Therefore,

Tm,n(i)
a.s.
= O

(
(n− 1

2 log n)p ∨ (m− 1
2 log m)p

)
. (17)

Next, to deal with the term Tm,n(ii) in (14), we use Hölder’s inequality to find

Tm,n(ii) ≤

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

fm+n(t)dt

) p−1
p

×

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n

(
β(1)

n (x) − B(1)
n (F (x))

)

−

√
n

m + n

(
β(2)

m (x) − B(2)
m (F (x))

)
}∣∣
∣
∣

p

fm+n(t)dt

) 1
p

=

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

fm+n(t)dt

) p−1
p

×
(
Tm,n(i)

) 1
p

(18)

Now, let {B(1)(t), 0 ≤ t ≤ 1} and {B(2)(t), 0 ≤ t ≤ 1} be independent Brownian bridges and

note that for each m = 1, 2, ∙ ∙ ∙ , and n = 1, 2, ∙ ∙ ∙ ,
{∫

K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}

, t ∈ R

}

d
=

{∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)(F (x)) −

√
n

m + n
B(2)(F (x))

}

, t ∈ R

}

. (19)
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But, by the standard properties of independent Brownian bridges (see, for example, Shorack

and Wellner (1986; page 32)), the process

{√
m

m + n
B(1)(F (x)) −

√
n

m + n
B(2)(F (x)) , x ∈ R

}

(20)

is also a Brownian bridge on [0, 1]. Now, let

Γn(t) =

∫
K

(
t − x

h

)

d (W (F (x)) − F (x)W (1)) ,

where W (∙) is a standard Wiener process, and note that by Lemma 2 (with w(t) = f(t))
∫

|Γn(t)|p f(t)dt = Op(h
p
2 ) (21)

Furthermore, {W (s)−sW (1) , 0 ≤ s ≤ 1} d
= {B(s) , 0 ≤ s ≤ 1}, where B(∙) is a Brownian

bridge. Thus, in view of (19) and (21), and the fact that (20) is a Brownian bridge on [0 , 1],

we obtain
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

f(t)dt

= Op(h
p
2 ) . (22)

Similarly, taking w(t) = 1 in Lemma 2, we have
∫
|Γn(t)|pdt = Op(h

p/2), and therefore in

view of (19)

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

dt = Op(h
p
2 ) . (23)

Consequently,

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

fm+n(t)dt

≤
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

f(t)dt

+ sup
t

∣
∣
∣fm+n(t) − f(t)

∣
∣
∣

×
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

dt

= Op

(
h

p
2

)
+
{
Op

(
(m + n)−

1
2 h−1(log log(m + n))

1
2

)
+ O(h)

}
×Op

(
h

p
2

)

= Op

(
h

p
2

)
, (24)
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where we have used the following classical result on the uniform performance of kernel density

estimators (see, for example, Theorem 3.1.12 of Prakasa Rao (1983))

sup
t

|fm+n(t) − f(t)| ≤ sup
t

|fm+n(t) − E(fm+n(t))| + O(h)

a.s.
= O

(
(m + n)−

1
2 h−1(log log (m + n))1/2

)
+ O(h) . (25)

Now, by (14), (17), (18), and (24), we have

Tm,n(ii) = Op

(
h

p−1
2

(
(n− 1

2 log n) ∨ (m− 1
2 log m)

))
. (26)

Finally, putting together (26), (17), (14) we find

|Tm,n| = Op

(
(n− 1

2 log n)p ∨ (m− 1
2 log m)p

)
+ Op

(
h

p−1
2

(
(n− 1

2 log n) ∨ (m− 1
2 log m)

))
.

(27)

Now, observe that by (13)

(
hp+1σ2

)− 1
2

{(
m + n

mn

)− p
2

hp ∙ Ĩm,n(p) − h
p
2 η̃

}

by (13)
=

(
hp+1σ2

)− 1
2

{
Sm,n + Tm,n − h

p
2 η̃
}

=
(
hp+1σ2

)− 1
2

{
Sm,n − h

p
2 η
}

+
(
hσ2
)− 1

2 ∙ (η̃ − η) +
(
hp+1σ2

)− 1
2 ∙ Tm,n

=
(
hp+1σ2

)− 1
2

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

× f(t)dt − h
p
2 η

]

+
(
hp+1σ2

)− 1
2

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

× (fm+n(t) − f(t)) dt

]

+
(
hσ2
)− 1

2 ∙ (η̃ − η)

+
(
hp+1σ2

)− 1
2 ∙ Tm,n

:= Δm,n(1) + Δm,n(2) + Δm,n(3) + Δm,n(4) . (28)

But by (27)

|Δm,n(4)| = h− p+1
2 h

p−1
2

(
(n− 1

2 log n) ∨ (m− 1
2 log m)

)
∙ Op(1) = op(1) . (29)
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It will also be shown in the Appendix that

h− 1
2 |η̃ − η|

p
−→ 0 and σ̃2 p

−→ σ2 . (30)

Thus, by (30),

|Δm,n(3)| = op(1) . (31)

Next, the independence of the sequences of Brownian bridges B
(1)
n (∙), n ≥ 1 and B

(2)
m (∙), m ≥

1 in conjunction with (19) and Lemma 2 (with w(t) = f(t)) imply

Δm,n(1)
d

−→ N(0, 1) . (32)

As for the term Δm,n(2), (23) and the arguments that lead to (24) yields

∣
∣Δm,n(2)

∣
∣ ≤

(
hp+1σ2

)− 1
2 ∙ sup

t

∣
∣fm+n(t) − f(t)

∣
∣

×
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

dt

=
(
hp+1σ2

)− 1
2 ∙
{
Op

(
h−1(m + n)−

1
2 (log log(m + n))

1
2
)

+ O(h)
}
∙ Op

(
h

p
2

)

= Op

(
h− 3

2 (m + n)−
1
2 (log log(m + n))

1
2
)

= op(1) , (since (log log n)−1(n + m)h3 → ∞ , as m,n → ∞) .

Thus,
(
hp+1σ2

)− 1
2

{(
m + n

mn

)− p
2

hp ∙ Ĩm,n(p) − h
p
2 η̃

}
d

−→ N(0, 1) .

The proof of the theorem now follows from an application of Slutsky’s theorem (since
σ̃2

σ2

p
→ 1).

�

PROOF OF THEOREM 3

The proof of this theorem is the same as (and in fact easier than) the proof of Theorem 2

and will not be given.
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Appendix

PROOF OF (30)

We will actually prove the stronger result that h−1/2 |η̃ − η|
a.s.
→ 0 and σ̃2 a.s.

→ σ2. First note

that

|η̂ − η| ≤ c1

∫ ∣
∣
∣f (p+2)/2

m+n (t) − f (p+2)/2(t)
∣
∣
∣ dt

(where the constant c1 does not depend on f or n)

≤ c2

∫
|fm+n(t) − f(t)|(p+2)/2 dt

+

(∫
f (p+2)/2(t) dt

)1−2/(p+2)(∫
|fm+n(t) − f(t)|(p+2)/2dt

)2/(p+2)

,

where c2 = ((p + 2)/2)2(p+2)/2−1 ∙ c1. Therefore, to show h−1/2|η̃ − η|
a.s.
→ 0, it is sufficient to

show that h−1/2
( ∫

|fm+n(t) − f(t)|(p+2)/2dt
)2/(p+2) a.s.

→ 0. Now observe that

∫
|fm+n(t) − f(t)|(p+2)/2dt ≤

[

sup
t

|fm+n(t) − f(t)|

]p/2

×
∫

|fm+n(t) − f(t)|dt

:= ξ
(1)
m+n × ξ

(2)
m+n .

But, by (25), ξ
(1)
m+n

a.s.
= O(((m + n)−

1
2 h−1(log log (m + n))1/2 ∨ h)p/2). Furthermore, by the

well-known results on the almost-sure behavior of L1-norms of kernel density estimators (see

Eggermont and Lariccia (2001; page 149)) we have

ξ
(2)
m+n

a.s.
= O

(
h2 + ((m + n)h)−1/2 + ((m + n)−1 log(m + n))1/2

)
.

It is now quite straightforward to verify that h−1/2
(
ξ

(1)
m+n ∙ ξ(2)

m+n

)2/(p+2) a.s.
→ 0. The proof of

σ̃2 a.s.
→ σ2 is virtually the same (and in fact easier) and will not be given.

PROOF OF THEOREM 1

Let X1, ∙ ∙ ∙ , Xn
iid
∼ f1 and Y1, ∙ ∙ ∙ , Ym

iid
∼ f2. Define the empirical distribution functions

F1,n(t) =
1

n

n∑

i=1

I {Xi ≤ t} and F2,m(t) =
1

m

m∑

i=1

I {Yi ≤ t} ,

and let α
(1)
n (∙) and α

(2)
m (∙) be the corresponding empirical processes, i.e.,

α(1)
n (∙) =

√
n (F1,n(t) − F1(t)) and α(2)

m (∙) =
√

m (F2,m(t) − F2(t)) .
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Now, observe that

Im,n(p) =

∫
h−p

∣
∣
∣
∣

∫
K

(
t − x

h

)

d (F1,n(x) − F2,m(x))

∣
∣
∣
∣

p

w(t)dt

=

(
m + n

mn

) p
2

h−p

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
mn

m + n
(F1,n(x) − F2,m(x))

}∣∣
∣
∣

p

w(t)dt .

We also need the following lemma.

Lemma 3 [Csörgő and Horváth (1988; Lemma 7).]

Let X1, ∙ ∙ ∙ , Xn be iid random variables with the cdf F. Let αn(t) =
√

n(Fn(t)− F (t)) be the

corresponding empirical process, where Fn(t) = n−1
∑n

i=1 I{Xi ≤ t}. Then we can find a

sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1}, n = 1, 2, ∙ ∙ ∙ , such that

sup
−∞<t<∞

|αn(t) − Bn(F (t))|

[F (t)(1 − F (t))]
1
2
−ν

= Op(κν(n)) ,

where κν is as in (6).

By Lemma 3, the are two independent sequences of Brownian bridges {B(1)
n (t) , 0 ≤ t ≤ 1}n≥1

and {B(2)
m (t) , 0 ≤ t ≤ 1}m≥1 such that

sup
t∈R

|α(1)
n (t) − B

(1)
n (F1(t))|

[F1(t)(1 − F1(t))]
1
2
−ν

= Op(κν(n)) (33)

and sup
t∈R

|α(2)
m (t) − B

(2)
m (F2(t))|

[F2(t)(1 − F2(t))]
1
2
−ν

= Op(κν(m)) (34)

Let B
(1)
n (∙) and B

(2)
m (∙) be as in (33) and (34) and observe that when f1 = f2 (= f), we have

(
m + n

mn

)− p
2

hp ∙ Im,n(p) =

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt + Rm,n (35)

where

Rm,n =

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
α(1)

n (x) −

√
n

m + n
α(2)

m (x)

}∣∣
∣
∣

p

w(t)dt

−
∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt

Using the inequality ||a|p − |b|p| ≤ p2p−1|a − b|p + p2p−1|b|p−1|a − b|, (for p ≥ 1), one finds
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1

p2p−1
|Rm,n|

≤

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
α(1)

n (x) −

√
n

m + n
α(2)

m (x)

−

√
m

m + n
B(1)

n (F (x)) +

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt

]

+

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) +

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p−1

×

∣
∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
α(1)

n (x) −

√
n

m + n
α(2)

m (x)

−

√
m

m + n
B(1)

n (F (x)) +

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣w(t)dt

]

≤

[∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
α(1)

n (x) −

√
n

m + n
α(2)

m (x)

−

√
m

m + n
B(1)

n (F (x)) +

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt

]

+

[(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) +

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt

) p−1
p

×

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n

(
α(1)

n (x) − B(1)
n (F (x))

)

−

√
n

m + n

(
α(2)

m (x) − B(2)
m (F (x))

)
}∣∣
∣
∣

p

w(t)dt

) 1
p

]

(where the last large square-bracketed term follows by Hölder’s inequality) ,

:= [Rm,n(I)] +
[
Rm,n(II)

]
(36)

However,

Rm,n(I) ≤ 2p−1

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)√
m

m + n
d
{
α(1)

n (x) − B(1)
n (F (x))

}
∣
∣
∣
∣

p

w(t)dt

+ 2p−1

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)√
n

m + n
d
{
α(2)

n (x) − B(2)
m (F (x))

}
∣
∣
∣
∣

p

w(t)dt

:= 2p−1
(
Rm,n,1(I) + Rm,n,2(I)

)
, (say). (37)

Now, let a > 0 be a constant such that K(t) = 0 for t 6∈ (−a, a), (see condition K(iii)) and
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observe that
∣
∣
∣
∣

∫
K

(
t − x

h

)√
m

m + n
d
{
α(1)

n (x) − B(1)
n (F (x))

}
∣
∣
∣
∣

p

=

(
m

m + n

) p
2

∣
∣
∣
∣
∣

∫ a

−a

α
(1)
n (t − yh) − B

(1)
n (F (t − yh))

[F (t − yh)(1 − F (t − yh))]0.5−ν
[F (t − yh)(1 − F (t − yh))]0.5−νdK(y)

∣
∣
∣
∣
∣

p

≤

(
m

m + n

) p
2



sup
s∈R

∣
∣
∣α(1)

n (s) − B
(1)
n (F (s))

∣
∣
∣

[F (s)(1 − F (s))]0.5−ν
× sup

−a≤y≤a
[F (t − yh)(1 − F (t − yh))]0.5−ν

∫ a

−a

dK(y)





p

= O(1) ∙ Op(κ
p
ν(n)) ∙ [F (t + ah)(1 − F (t − ah))]0.5−ν (38)

= Op(κ
p
ν(n)) ∙ [F (t + ah)(1 − F (t − ah))]0.5−ν ,

where in (38) the O(1) term follows from the fact that m
m+n

= O(1), whereas the Op(κ
p
ν(n))

term follows from Lemma 3. The last term in (38) follows because p ≥ 1 and 0 ≤ F (t +

ah)(1 − F (t − ah)) ≤ 1. Since the Op(κ
P
ν (n)) term in (38) does not depend on t, we find

Rm,n,1(I) ≤ Op(κ
p
ν(n)) ∙

∫
[F (t + ah)(1 − F (t − ah))]0.5−νw(t)dt

= Op(κ
p
ν(n)), (by F(iv)).

Similarly, we have Rm,n,2(I) = Op(κ
p
ν(m)) . Therefore,

Rm,n(I) = Op(κ
p
ν(m ∧ n)). (39)

To deal with the term Rm,n(II) in (36), first observe that

Rm,n(II) =

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt

) p−1
p

× (Rm,n(I))
1
p . (40)

Now, let {B(1)(t) , 0 ≤ t ≤ 1} and {B(2)(t) , 0 ≤ t ≤ 1} be independent Brownian bridges

and note that for each m = 1, 2, ∙ ∙ ∙ , and n = 1, 2, ∙ ∙ ∙ ,

{∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}

, t ∈ R

}

d
=

{∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)(F (x)) −

√
n

m + n
B(2)(F (x))

}

, t ∈ R

}

. (41)
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Next, let B(∙) be a Brownian bridge on [0, 1] and note that by the standard properties of

independent Brownian bridges (see, for example, Shorack and Wellner (1986; page 32)),

{√
m

m + n
B(1)(s) −

√
n

m + n
B(2)(s) , s ∈ [0, 1]

}
d
=

{
B(s) , s ∈ [0, 1]

}
. (42)

Furthermore, by Lemma 2

∫
|Γn(t)|p w(t)dt = Op(h

p
2 ) , where Γn(t) =

∫
K

(
t − x

h

)

d(W (F (x)) − F (x)W (1)) .

But, {W (s) − sW (1) , 0 ≤ s ≤ 1} d
= {B(s) , 0 ≤ s ≤ 1} , where W (∙) is a standard Brownian

motion. Therefore, in view of (41) and (42),

∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x)) −

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt = Op(h
p
2 ) .

Combining this fact with (39) and (40), we find

Rm,n(II) = Op(h
p−1
2 )Op(κν(m ∧ n)) = Op(h

p−1
2 κν(m ∧ n)). (43)

Putting together (43), (39), and (36), we find

|Rm,n| = Op(κ
p
ν(m ∧ n)) + Op(h

p−1
2 κν(m ∧ n)). (44)

Next, observe that

(
hp+1σ2

)− 1
2

{(
m + n

mn

)− p
2

hp ∙ Im,n(p) − h
p
2 η

}

by (35)
=

(
hp+1σ2

)− 1
2

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x))

−

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt − h
p
2 η

)

+
(
hp+1σ2

)− 1
2 Rm,n .

The independence of the Brownian bridges B
(1)
n (∙) and B

(2)
m (∙), (for all m = 1, 2, ∙ ∙ ∙ and

n = 1, 2, ∙ ∙ ∙ ), in conjunction with (41) and Lemma 2 yields

(
hp+1σ2

)− 1
2

(∫ ∣∣
∣
∣

∫
K

(
t − x

h

)

d

{√
m

m + n
B(1)

n (F (x))

−

√
n

m + n
B(2)

m (F (x))

}∣∣
∣
∣

p

w(t)dt − h
p
2 η

)
d

−→ N(0, 1) .
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Furthermore,

(
hp+1σ2

)− 1
2 |Rm,n|

by (44)
= h− p+1

2 κp
ν(m ∧ n) ∙ Op(1) + h− p+1

2
+ p−1

2 ∙ κν(m ∧ n) ∙ Op(1)

= op(1) + op(1) ,

where the last line follows from the condition h−1 ∙κν(m∧n) → 0 and the fact that h− p+1
2 ≤

h−p, for all p ≥ 1. The theorem now follows from the above results together with Slutsky’s

theorem.

�
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Figure 1: Plots of empirical cdf’s when h=0.25: (a), (e), (i) correspond to U1, ∙ ∙ ∙ , U400, (b),

(f), (j) correspond to V1, ∙ ∙ ∙ , V400, and (c), (d), (g), (h), (k), (l) correspond to Y1, ∙ ∙ ∙ , Y400.
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!

Figure 2: Plots of empirical cdf’s when h=0.40: (a), (e), (i) correspond to U1, ∙ ∙ ∙ , U400, (b),

(f), (j) correspond to V1, ∙ ∙ ∙ , V400, and (c), (d), (g), (h), (k), (l) correspond to Y1, ∙ ∙ ∙ , Y400.
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The authors would like to thank Editor, Iréne Gijbels, Associate Editor, and anonymous

referees for their comments on the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by the National Science Foundation under Grant DMS-

1407400 of Majid Mojirsheibani.

References

Alvarez-Andrade, S., and Bouzebda, S. (2013), ‘Strong Approximations for Weighted Boot-

strap of empirical and quantile processes with applications’, Statistical Methodology, 11,

36-52.

Anderson, H., Hall, P., and Titterington, D. M. (1994), ‘Two-Sample Test Statistics for Mea-

suring Discrepancies Between two Multivariate Probability Density Functions Using Kernel-

based Density Estimates’, Journal of Multivariate Analysis, 50, 41–54.

Barbe, P., and Bertail, P. (1995), The Weighted Bootstrap, Lecture Notes in Statistics, Hei-

delberg: Springer.

Beirlant, J., and Mason, D. (1995), ‘On the Asymptotic Normality of Lp-norms of Empirical

Functionals’, Mathematical Methods of Statistics, 4, 1-19.

Berlinet, A., Devroye, L., and Gyorfi, L. (1995), ‘Asymptotic Normality of L1-error in Density

Estimation’, Statistics, 26, 329-343.

27



Bickel, P., and Rosenblatt, M. (1973), ‘On Some Global Measures of the Deviations of

Density Function Estimates’ Annals of Statistics, 1, 1075-1095.

Bowman, A. (1984), ‘An Alternative Method of Cross-Validation for the Smoothing of Den-

sity Estimates’, Biometrika, 71, 353-360.

Burke, M. (1998), ‘A Gaussian Bootstrap Approach to Estimation and Tests’ in Asymptotic

Methods in Probability and Statistics, ed. B. Szyszkowicz, Amsterdam: North-Holland, 697-

706.

Burke, M. (2000), ‘Multivariate Tests-of-fit and Uniform Confidence Bands Using a Weighted

Bootstrap’, Statistics and Probability Letters, 46, 13-20.

Burke, M. (2010), ‘Approximations for a Multivariate Hybrid Process with Applications to

Change-point Detection’, Mathematical Methods of Statistics, 19, 121-135.

Cao, R., and Van Keilegom, I. (2006), ‘Empirical Likelihood Tests for Two-sample Problems

via Nonparametric Density Estimation.’ Canadian Journal of Statistics, 34, 61–77.
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