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ABSTRACT

The Concordance-based Medial Axis Transform (CMAT) presented in this paper is a

multiscale medial axis (MMA) algorithm that computes the medial response from grey-level

boundary measures. This non-linear operator responds only to symmetric structures,

overcoming the limitations of linear medial operators which create "side-lobe" responses for

symmetric structures and respond to edge structures. In addition, the spatial localisation of the

medial axis and the identification of object width is improved in the CMAT algorithm

compared with linear algorithms. The robustness of linear medial operators to noise is

preserved in our algorithm. The effectiveness of the CMAT is accredited to the concordance

property described in this paper. We demonstrate the performance of this method with test

figures used by other authors and medical images that are relatively complex in structure. In

these complex images the benefit of the improved response of our non-linear operator is

clearly visible.

Keywords:  Image analysis, medial axis, multiscale, shape representation.
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1  INTRODUCTION

Accurate and robust shape representation is important as a basis for image interpretation

in a wide range of computer vision applications. To be accurate and robust, a shape

representation should describe both local and global features. The Medial Axis Transform

(MAT) [1] achieves this by generating an axis that is the locus of the centres of the maximal

disks that can be inscribed within an object. These loci are also labelled with the radius of the

maximal disk. The MAT provides a direct encoding of local properties of object shape, such

as edge orientation and curvature, and of global properties, such as overall l ength and

orientation. Another attractive property of the MAT is that the branching structure of the

object is reflected by the branching of the axis. This yields a natural correspondence between

components of the object and the shape description.

One problem with the MAT is that small boundary variations can greatly disturb the

medial axis structure of the primary shape. There is also no indication concerning the

relevance of these axial components to the structural description of the shape. Using

multiscale analysis to establish a hierarchical MAT representation the relative importance of

the medial axis at each scale can be described [12].  Descriptions of detailed aspects of form

(and noise) are provided in the higher resolution levels of the hierarchy and do not disturb the

description at lower resolution levels. Such a hierarchical representation supports model-

driven schemes of interpretation [15]. To perform multiscale analysis a series of smoothing

steps must be taken.  “Smoothing” can be applied to the local curvature of an object contour

or to the image intensity. Koenderink [6] argued that filtering images to create a scale-space

representation captures global relationships better than contour smoothing. Moreover, this
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approach does not need a prior segmentation and avoids important boundary information

being discarded at an early stage of processing. Pizer's Multiscale Medial Axis (MMA) [13] is

a robust object representation scheme [11] that has been applied in image registration [4].

The Multiscale Medial Axis, referred to above, is identified as a ridge in medialness

space and medialness as a measure of the likelihood that a given location is a symmetric point

at that scale. This definition of the MMA improves the multi -resolution graphical scheme of

Crowley and Parker [2] by providing better ridge definition and quantitative representation.

Medialness can be computed by convolving grey-scale images with different sizes of

DoG [2] or LoG kernels [4]. Axis-centred operator, such as these, respond well at a scale and

position where the operator optimally engages two sides of an object. Medialness can also be

computed by accumulating the response of directional Gaussian derivatives around a circle,

with a radius proportional to scale. One example of this approach is the Hough-like Medial

Axis Transform (HMAT) [8]. This boundary-centred operator is less sensitive to variations

within an object, less sensitive to differences in boundary contrast and more adaptable than

axis-centred operators [9]. Once the medialness scale-space is obtained, the MMA can be

extracted using the definition of "maximum convexity ridge" [3][5] or "optimal scale ridge"

[4][12]. These two methods produce qualitatively similar results [14].

Both the HMAT and LoG algorithms use linear medialness operators which are data

independent and can be computed as a linear convolution of a radially symmetric kernel with

the image. They are not only sensitive to symmetric structures, but also respond to edge

structures. Even for symmetric structures, they generate two side lobes of opposite sign to the

main response. These create "spurious" medialness responses that are not associated with any

structural symmetry. The result of linear operators is a mixture of boundary and medial
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characteristics. When multiple figures are present in an image processed using such linear

operators the addition of boundary related responses to the medial responses produces a

confused result. To overcome the limitation of linear filtering the boundary responses of two

putative edges must be combined in a non-linear way. In previous work this was performed

for multiscale line detection using the minimum [7][15] and for fixed-scale MAT of grey-

level images using the product [18]. Morse [9][10] refined the result of the HMAT through an

iterative voting phase, called credit attribution. In this scheme  boundary votes were re-

allocated in proportion to the agreement among weighted boundary votes in the previous

iteration. This is an enhancement process and cannot overcome the fundamental faili ng of the

linear operator used. The iterative nature of the credit attribution scheme also makes it

computationally expensive.

In this paper, we propose a Concordance-based Medial Axis Transform (CMAT), which

considers both the symmetry of boundary positions and the symmetry of boundary strength.

The non-iterative CMAT algorithm avoids the spurious responses generated by linear

operators, provides better localisation of the medial axis and a response that more clearly

identifies object width.

In Section 2, we describe the computation of the CMAT algorithm. In Section 3, the

concordance property which expresses the symmetry of boundary strength is described and

discussed. In Section 4, we present quantitative results of the performance of the CMAT

algorithm and compare it with selected linear medial operators; Results of the application of

the CMAT to synthetic and natural images are also presented and compared in this section.



5

2  THEORY AND COMPUTATION

2.1 Concordance-based Medial Axis Transform

2.1.1 Definition for continuous co-ordinates

The boundariness scale-space of the original image, I ( )x , is defined as:

B x x x( , ) ( ) * ( , )σ σ σ= ∇I G                                                   (1)

where x = ∈( , , )x x Rn
T n

1
�  denotes spatial position in an n-dimensional superplane; G is the

n-dimensional Gaussian kernel with unit volume:

G en

T

( , )
( )

x x xσ
πσ

σ= −1

2 2 2
2 2

and σ ∈ +R  is the scale. The boundariness response can be jointly represented by the gradient

magnitude:

b( , ) ( , )x B xσ σ=                                                         (2)

and a unit gradient vector:

�

( , )
( , )

( , )
n x

B x
B x

σ
σ
σ

=                                                        (3)

For each point x in boundariness space, the initial contribution, b( , )x σ , to medialness

space is made at:

y x n x= + r
�

( , )σ                                                          (4)

where y ∈ Rn  is the n-dimensional spatial position in medialness space, and r k= σ  ( k is the

ratio of radius to scale, see Fig.1).

The integration of initial contributions in medialness space provides the initial medialness

response. Written as a Radon Transform [16], this is:
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m b r d
Rn0 ( , ) ( , ) (

�

( , ))y x y x n x xσ σ δ σ= − −∫                                     (5)

where the Delta function is defined as δ( )x x
R n

d∫ = 1 and δ( )x = 0 when x 0≠ . In two

dimensional space, the initial medialness at y is the integration of directional Gaussian

derivatives around a circle centred at y with radius r; the orientation of the Gaussian

derivatives being towards the centre of the circle, see Fig. 1. This definition is close to Blum's

MAT [1] and the HMAT [8].

The initial medialness has high values for symmetric structures but also responds to edge

structures because the boundariness response, b( , )x σ , for an isolated edge results in the

medialness response, m b0( , ) ( , )y xσ σ= . To obtain a medialness response that is sensitive

only to symmetric edges, the contribution to medialness from boundariness is constrained by a

weighting, p( , )x σ , called contribution confidence. The requirements for contribution

confidence are:

Figure 1: The medialness response is the integration of boundariness

contributions.
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(1) The medialness response should not be greater than the initial medialness response,

i.e. 0 1≤ ≤p( , )x σ .

(2) A single boundary produces no medialness response, i.e.:

 p i m b( , ) ( , ) ( , )x y xσ σ σ= =0 0f .

(3) The greater the initial medialness, m0( , )y σ , the more possible it is for x to contribute

to medialness, provided m b0( , ) ( , )y xσ σ> . Therefore p( , )x σ  increases with

m0( , )y σ .

The definition of contribution confidence used here is:

p
m b

m
( , )

( , ) ( , )

( , )
x

y x
y

σ
σ σ

σ
=

−0

0

                                              (6)

This measure of contribution confidence can be considered to be an estimate of the extent

to which one boundariness point contributes to existing evidence of medialness. Using this

confidence measure the boundariness contribution to true medialness is:

C x B x x( , ) ( , ) ( , )σ σ σ= p                                                   (7)

The magnitude of such contributions is:

c( , ) ( , )x C xσ σ=                                                         (8)

The medialness response is the integration of boundariness contributions to true

medialness:

m c r d
Rn

( , ) ( , ) (
�

( , ))y x y x n x xσ σ δ σ= − −∫                                     (9)

The estimation of confidence in Eq. (6) provides the "concordance" property of the

Concordance-based Medial Axis Transform (CMAT), by which the medial response is high

only when multiple boundaries jointly provide evidence of a symmetric structure. With this
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formulation an  isolated boundary cannot produce a medial response. This concordance

property is analysed in section 3.

The definition of 
�

( , )n x σ  used in Eq. (4), (5) and (9) determines the medialness responses

for dark objects (low grey-level value) on a light background (high grey-level value). The

same equations can be used to compute the medialness response for the inverse phase (light

object on a dark background) by inverting the sign of the unit vector 
�

( , )n x σ  such that:

   
�

( , )
( , )

( , )
n x

B x
B x

σ
σ
σ

= −                                                     (10)

It is relatively simple to combine the computation of both sets of medialness either by

summing  absolute or signed values of medialness.

2.1.2 Computation in discrete space

For discrete spatial sampling, boundariness contributions to medialness space are

typically distributed between grids. In order to improve the localisation of the medial axis,  the

real-values of the co-ordinates of boundariness contributions are preserved throughout the

computation of medialness.

Let m ∈ I n  and n ∈ I n  be the discrete co-ordinates of points in n-dimensional

boundariness and medialness spaces, respectively. Let y = ∈( , , )y y RN
T n

1
�  be the

continuous co-ordinates of points in medialness space. Now we define a pseudo version of the

discrete Delta function with real argument components: †

                                                          
† The discrete Delta function is defined as : ∀ ∈ = = =m m m mI n , ( ) ; ( ) .δ δ1 0 0if otherwise
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δp

iy i n

otherwise
( )

, , , ,

,
y =

− ≤ < =

î

1 1 2 1 2 1

0

�

                                      (11)

To estimate the contribution confidence of each boundariness point, m, the initial

medialness at the corresponding position, y, in Fig. 1 must be known. This contribution is the

summation of initial boundariness contributions over the unit volume centred at y, i.e. :

m b rp0( , ) ( , ) (
�

( , ))y m y m n m
m

σ σ δ σ= − −∑                                 (12)

Likewise the boundariness contribution, b( , )m σ , can be thought of as the accumulation of

boundariness over a unit volume centred at m. The contribution confidence, p( , )m σ , and the

boundariness contribution, c( , )m σ , are computed using Eq. (6) and Eq. (8). With discrete

sampling, there are few boundariness points that contribute to medialness value at exactly the

same position. To compensate for the sparseness of these contributions, a weighted

summation over a volume is used in the computation of medialness response:

M c G r s( , ) ( , ) (
�

( , ), )n m n m n m
m

σ σ σ= − −∑                                (13)

Here G is the Gaussian kernel with the standard deviation s. This is similar to the procedure

adopted in other medialness algorithms [10][19]. To construct the scale-space of the original

image we can either solve the diffusion equation or apply Gaussian filter kernels of increasing

size. The Gaussian filter is a linear diffusion process by which the response at a point in the

original image is distributed over an area, the size of which changes linearly with scale. The

standard deviation, s, of the Gaussian weighting function in Eq. (13) is chosen as s = λσ  (λ is

a proportionality constant). A Gaussian function is close to zero at a distance of more than

three times its standard deviation. Therefore the radius of the volume influenced by a point is

limited to 3s. This is ill ustrated for the 2-D case in Fig. 2. Point B in boundariness space
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contributes to a circular area centred at A in medialness space. If we consider the weighted

accumulation over an angular range  θ, we have:

θ λ= −2 31sin ( / )k                                                    (14)

and θ  is kept constant across scale.

The position argument in the Gaussian function of Eq. (13) is real-valued therefore it is

not practical to construct a Gaussian look-up table indexed by position to accelerate

computation. Instead, each boundariness contribution is distributed linearly between the four

nearest neighbour grid points, in proportion to the distance to each neighbour, using:

m c W r( , ) ( , ) (
�

( , ) )n m n m n m
m

σ σ σ= − −∑                                (15)

Here the distance weighting function W is defined as W d d( ) max( , )= −1 0 ; Other weightings

are possible. The Gaussian weighting kernel is then applied to compute the final medialness

response:

M m G s( , ) ( , ) * ( , )n n nσ σ=                                              (16)

Figure 2: Point B in boundariness space contributes to medialness at point A. All

similar contributions within a radius of 3s of A are summed using a Gaussian

weighting.

r

AB θ

s3
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2.1.3 Algorithmic description of CMAT

In the computation of the CMAT a look up table (LUT) is used to identify the

correspondence between medialness and boundariness points. An outline description of the

CMAT algorithm is given in Fig. 3 and the computation of the LUT is described in the

following section. The LUT contains a series of groups of boundariness points. The groups are

identified in a second LUT.

Figure 3: Outline of CMAT algorithm

1. For each scale σ

1.1. For each discrete boundariness point compute the boundariness value

using Eq. (1).

1.2. For each discrete point in boundariness space compute the location of its

contribution in medialness space using Eq. (4).

1.3. Generate the association between each discrete medialness point and the

group of  contributing discrete boundariness points (see section 2.1.3.1).

1.4. For each discrete boundariness point

1.4.1 Compute initial medialness at the location of its contribution

using the LUT (Fig. 6) and Eq. (12).

1.4.2 Compute contribution confidence for each boundariness point

using Eq. (6) and Eq. (8).

1.5. For each discrete medialness point accumulate the revised contributions

using the LUT (Fig. 6) and Eq. (15).

1.6. Distribute the response at each discrete medialness point using Eq. (16).
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2.1.3.1  Association of medialness and boundariness points

Although medialness response is the accumulation of co-ordinated boundariness

contributions, only a few boundariness points are relevant to the computation of each

medialness value. A look-up table (LUT) is used to identify the boundariness points that

satisfy 1)),(ˆ( =−− σδ mnmn rp , and are therefore relevant at each scale.

Suppose that there are N points in boundariness and medialness space. Then an N-

element LUT (see Fig. 4), organised into N groups and indexed by medialness position n

(n=1,…,N) will describe the association between medialness and boundariness points. A

group, n, is the set of the boundariness points whose contributions are closest to medialness

grid point n. The content of the LUT is the position, m, of the boundariness points. The start

position and count of each group are recorded in arrays L and C, respectively. If group n is

empty, its start position coincides with that of the next medialness point. The creation of the

LUT is described in Fig.5.

m m1 2

n

Medialness Space

Boundariness Space

m 1

m2

L[n]

C[n]

L[n]

n

n

L: Index List

C: Count List

LUT: Look Up Table

Figure 4: The structure of the look-up table for associating medialness and

boundariness points.
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Figure 5: Algorithm for creation of LUT association between medialness and

boundariness points.

Definitions:  m          grid point co-ordinates in boundariness space; m=1, …, N.

              n           grid point co-ordinates in medialness space; n=1, …, N

             L[n]      the start address of group n in the LUT.

             C[n]      the counter of group n in the LUT

            LUT[i]   the content of LUT indexed by i; i=0,…,N-1.

            Y[m]  the co-ordinates of the medialness point associated with

boundariness point m.

1. For each discrete point, n (n=1,…N),  in medialness space, set group counter

C[n]=0.

2. For each discrete point, m, in boundariness space

2.1 Compute the real-valued position, y, of its contribution in medialness space

using Eq. (4).

2.2 Find the grid point, n, in medialness space that is closest to y.

2.3 Y[m]=n;

2.4 C[n]=C[n]+1.

3. L[1]=0.

4. For successive discrete points, n, in medialness space; n=2, …, N

L[n]=L[n-1]+C[n].

5. For each discrete point, m, in boundariness space

5.1 n=Y[m].

5.2 Fill i n boundariness position, m, into the LUT: LUT[L[n]+C[n]-1]=m.

5.3 C[n]=C[n]-1.
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A detailed description of how the LUT is read is given in Fig. 6.

2.2 The HMAT-2 Transform

This transform is an adaptation of the HMAT. It is the same as the CMAT with the

concordance criteria omitted and differs from the HMAT in using a circular region for

distributing boundariness contributions, rather than an arc [8]. It is presented here to

demonstrate the role of the concordance criteria. The HMAT-2 medialness response is

computed as a weighted summation of initial boundariness contributions over a region, that is:

M b G r s0( , ) ( , ) (
	

( , ), )n m n m n m
m

σ σ σ= − −∑                               (17)

The algorithm for the HMAT-2 is the same as that for the CMAT but without step 1.4.

Figure 6: Reading the LUT.

1. For each discrete point, n, in the supporting region of medialness space:

1.1. Compute the size of group n using  C[n]=L[n+1]-L[n],

1.2. Repeat

1.2.1 Read the boundariness co-ordinates, m, of a member of group n

from the  LUT as:  m=LUT[L[n]+C[n]-1].

1.2.2 Accumulate the boundariness contribution from m.

In step 1.4.1 of the CMAT algorithm (Fig. 3) use Eq. (12).

In step 1.5 of the CMAT algorithm (Fig. 3) use Eq. (15).

1.2.3 C[n]=C[n]-1.

Until C[n]=0.
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3  THE CONCORDANCE PROPERTY

3.1 Concordance Factor

Suppose N points contribute to a medial point A; that the boundariness responses at these

points are b i Ni , , ,=1 
 ; the sum of these boundariness values is S and the average is b .

The medialness estimate at point A, without considering the relation among bi , (as

computed in the HMAT) is:

M SHMAT ( , )xA ⋅ =                                                        (18)

For the CMAT, the confidence of contributions to a true medial structure  is 1− b

S
i , for

each point bi . Therefore the medialness response is:

M b
b

SCMAT i
i

i

N

( , ) ( )xA ⋅ = −
=
∑ 1

1

= −
=
∑S

S
bi

i

N1 2

1

                                                          (19)

Examining bi
i

N
2

1=
∑ , we have,

bi
i

N
2

1=
∑ = − +

=
∑ ( )b b Nbi
i

N
2 2

1

= − +
=
∑ ( )b b

S

Ni
i

N
2

1

2

                                                      (20)

bi
i

N
2

1=
∑  has minimum value 

S

N

2

 when:

b b
S

N
i Ni = = =, , ,1 �                                                 (21)
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For the maximum value of bi
i

N
2

1=
∑ , there are two cases to be considered:

(1) More than one boundary point contributes to the medialness at A,

i.e. b S i Ni < =, , ,1 � ,

 b

S

b

S

b S

i

i

N
i

i

N

i
i

N





 < =

∴ <

= =

=

∑ ∑

∑

1

2

1

2

1

2

1

(2) Only one boundary point contributes to the medialness at A, i.e. :

 b S b i N and i kk i= = = ≠; , , ,0 1 �                                    (22)

∴ =
=
∑b Si
i

N
2

1

2

Therefore bi
i

N
2

1=
∑  has maximum value S 2  when Eq. (22) is satisfied; and bi

i

N
2

1=
∑  is constrained

between:

                                                      
S

N
b Si

i

N2
2

1

2≤ ≤
=
∑                                                          (23)

Combining Eq. (20) and Eq. (23), we have:

0 1
12

1

2≤ − ≤ −



=

∑ ( )b b S
Ni

i

N

                                           (24)

Let:

c

b b

S
N

N

N

i
i

N

= −
−

−





>

=








î




=
∑

1
1

1
1

0 1

2

1

2

( )

                                               (25)
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Then the medialness response of the CMAT in Eq. (19) can be written as:

M S
S

b b
S

NCMAT i
i

N

( , ) ( )xA ⋅ = − − +










=
∑1 2

2

1

= −



1

1

N
Sc                                                          (26)

Note that c can also be written as:

c
b b N

S N
N

N

i
i

N

= −
− −

>

=






î



=
∑

1
1

1

0 1

2

1
2

( ) ( )
                                     (25a)

The item ( ) ( )b b Ni
i

N

− −
=
∑ 2

1

1  is the sample variance, a measure of the dispersion, of the

N observations, bi , normalised by  S N2 , the largest value of the dispersion (see Eq. (24)).

Therefore c measures the dispersion or variabilit y of the contributions. The smaller the

amount of variabilit y, the greater the value of c and the more concordance there is among the

contributions. Thus c is called the concordance coeff icient. We note that 0 1≤ ≤c . When

c = 0 Eq. (22) is satisfied, which is equivalent to there being only one boundary point casting

its contribution to point A and there being no concordance. When c = 1 Eq. (21) is satisfied,

which corresponds to N equal-valued contributions combining to give the maximal degree of

concordance [19].

The CMAT medialness response in Eq. (26) is proportional to the sum of boundariness

responses and to the concordance coeff icient among the boundariness responses. In addition

when c = 1 the medialness responses of the CMAT are smaller than those of HMAT by a

factor 1 1− ( / )N . This factor is related to the number of boundary points involved in a
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symmetry. Therefore the CMAT medialness response at end points and branch points is

enhanced. A similar behaviour is present in the HMAT medialness response. Morse [8]

pointed out that such enhancement is beneficial because it more clearly identifies the end and

branch points  that best define the axis.

3.2 Boundariness Response versus Concordance

The medialness response of the CMAT is proportional to both the sum of boundariness

responses and the concordance between boundariness responses. It is therefore important to

consider the interaction of these two factors. Consider the idealised situation, shown in Fig. 7,

of Gaussian boundariness responses for two step edges that differ in magnitude. The

boundariness responses at A and B are the local maxima with the magnitudes of V and U

respectively (U>V). C is the position at which the boundary response due to the edge at B is

equal to the maximum response of the edge at A. Suppose that positions E and D are the

midpoints of AC and AB respectively, and that the half distances of AC and AB are kσ1  and

kσ2 , respectively. Here k is the ratio of  radius to scale.

Since:

M B B V

M B B U V

HMAT E A C

HMAT D A B

( , ) ( , ) ( , )

( , ) ( , ) ( , )

x x x

x x x

σ σ σ

σ σ σ

1 1 1

2 2 2

2= + =

= + = +

Then:                             M MHMAT D HMAT E( , ) ( , )x xσ σ2 1> .

By inspection it is clear that the HMAT will produce a maximal medialness response at

position D, the medial position between the peaks of boundariness response, and give an

accurate identification of medial position and object width. For the CMAT the concordance

between the boundariness responses at positions A and B (which determine the medialness
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response at D) is weaker than the concordance between the boundariness responses at

positions A and C (which determine the medialness response at E). However, the

boundariness sums at D and E bear the inverse relationship therefore it is diff icult to compare,

in a simple manner, the relationship between the medialness responses at D and E.

In order to estimate how concordance influences the way in which boundariness

contributes to medialness we analyse incremental changes in CMAT medialness. Suppose, as

in the previous section, that N points in boundariness space contribute to a medial point; that

the  boundary response at these points is b i Ni , , ,= 1 � ; and that the summation of these

responses is  S. Then the CMAT medialness response is defined by Eq. (19).

If any one boundariness response, bk , is increased by ∆bk , then the summation is

increased to S bk+ ∆  and increment in CMAT medialness response is:

Figure 7: Interaction of boundariness strength and concordance in

estimating medialness  response.
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Note that item T is not related to the increment ∆bk . If we treat all i nitial boundary responses

as constant then T is also a constant. Note also that T = 0 only when

b i N and i ki = = ≠0 1, , ,� , this  corresponds to one boundariness point contributing to the

medialness value. In this case, no CMAT medialness response will be produced. In the case of

multiple boundariness elements, T > 0, will t here be an increase of boundariness response

resulting in an increase in  medialness response.

With the HMAT, the medialness increment due to increased boundariness  response, ∆bk

is:

∆ ∆M bHMAT k( , )⋅ ⋅ =                                                      (29)

If the original boundary responses are treated as constants, the increment of the HMAT

and CMAT medialness responses change with the ratio:

β =
∆b

S
k                                                              (30)

Here β may be considered as the relative increment in boundariness. With this definition, the
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HMAT and CMAT medialness increment can be written as:

∆M SHMAT ( , )⋅ ⋅ = β                                                         (31)

∆M TCMAT ( , )⋅ ⋅ =
+
β

β1
                                                   (32)

Therefore the medialness increment for the HMAT and CMAT depend on the behaviour of

the two coeff icients β  and 
β

β1+
. The relationship between β  and 

β
β1+

 as a function of β,

is shown in Fig. 8. In summary:

1. The medialness of the CMAT, like that of the HMAT, increases monotonically with

boundariness. The CMAT forms a maximal response at positions midway between

peaks of boundariness response and the magnitude of the medialness peak is in

proportion to the magnitude of the contributing boundariness peaks. Therefore medial

position and object width can be identified as accurately using the CMAT algorithm as

the HMAT algorithm.

2. While the HMAT medialness increases linearly with boundariness increment, the

increase in CMAT medialness is less than that for the HMAT and approaches the

                             

0

1

2

3

4

0 1 2 3 4
β

β
β/(1+β)

Figure 8: β and β/(1+β) vs. β. Increment of HMAT and CMAT medialness related

to boundariness increment.
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limiti ng value of T. For example when β = 1, according to the definition in Eq. (30),

∆b Sk = ; In this case one boundariness response, bk , becomes much larger than any

other and therefore violates the previously computed concordance level; When β = 1

the coeff icient β β/ ( )1+ , in the CMAT medialness increment of Eq. (32) is decreased

to half the value of the coeff icient, β, used in the equation for the increase in HMAT.

This means that weak concordance among boundary responses restrains the increase in

medialness response that arises when the boundariness response is strong.
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4  PERFORMANCE

4.1 Medialness Distribution in Scale Space

To obtain quantitative estimates of the performance of the CMAT algorithm we have

applied the LoG, HMAT and CMAT medialness algorithms to the 1-D object profile, shown

in Fig. 9(a). This profile corresponds to a dark “object” on a brighter background. The height

of the right edge is double that of the left edge. Although the quantitative relation between the

heights of these two edges is arbitrary, the notion of varying boundary strength in grey-level

images is represented. In these experiments spatial position is normalised by “object radius”

(half-distance between edges). Each medialness response is sensitive to both polarities of

boundary transition and is normalised by the maximum of the medialness response over scale.

In n-dimensional co-ordinate space, the LoG medialness operator can be expressed as:

K G

n en

T
T

( , ) ( , )

( ) /

x x

x x x x

σ σ σ

πσ σ
σ

= − ∇

= −






 −

2 2

2 2 2
21

2

2                                     (33)

where x is the multi -dimensional co-ordinate vector.

The positive portion of the LoG operator is within a distance of nσ  from the centre of

this operator. At a given scale,σ , the LoG operator gives the strongest response for objects

with  a radius of nσ ; The HMAT and CMAT give the strongest response for objects with a

radius of kσ . To compare these responses over scale, the radius of the operator is used as a

base parameter.  The radius of the LoG operator is defined as r n= σ . The radius of the

HMAT and CMAT operators is defined as r k= σ . These medialness operators may respond

optimally to an object at different scales (the standard deviation of the Gaussian), but should
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respond optimally at the same operator radius. Here the scale factor that determines operator

radius, k, is set at 2. The Gaussian weighting in Eq. 13 is not used  because the sampling

interval of operator radius is selected to multiple the sampling interval of spatial position and

therefore in 1-D case each boundariness contribution is located at a discrete medialness point.

Figs. 9(b)-(d) show the 2-D scale-space surface of the LoG, HMAT and CMAT

medialness responses for the 1-D object profile in Fig. 9(a). The increment and minimum

value of operator radius is 0.04. Each medialness response forms a maximum at the position

of the object centre and at the radius of the object. However, the medialness scale-spaces of

the LoG and HMAT are a mixture of boundary and medial properties, while that of the
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Figure 9: A 1-D object profile (a), and its scale-space surface of medialness from

the LoG (b), HMAT (c) and CMAT (d). The minimum operator radius is 0.04.
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CMAT reflects only medial properties and therefore provides a clearer description.

Figs. 10(a)-(f) show variation in LoG, HMAT and CMAT medialness response with

radius. The radius was increased geometrically by a factor of 2 between each evaluation and

the response for an operator radius of 0.64 was added in Fig. 10(c). The evolution of the LoG

and HMAT medialness responses at increasing radii i s the simple summation of boundariness

response from each edge as the spread of boundariness increases with radius. At small

operator radii , far from the object radius, Fig. 10(a), the medialness responses of the LoG and

HMAT, caused by responses to edges, are already strong (67% of their maximum over scale)

while the CMAT produces no response. As operator radius increases, Fig. 10(b), the

summation of the LoG and HMAT boundariness responses produces a response which peaks

away from the “object” centre. Only the CMAT produces a medialness response at the object

centre. When the operator radius increases to 64% of the object radius, Fig. 10(c), the

summation of the LoG and HMAT boundariness responses begins to combine into a single

main lobe away from the object centre, and the CMAT medialness continues to increases at

the correct position. When the operator radius matches the object radius, Fig. 10(d), all three

algorithms produce their maximal responses at the object centre, but the LoG and HMAT

produce two additional side-lobe responses. The curve of the CMAT medialness response

coincides with the main  lobe of the HMAT medialness response. When operator radius is

larger than the object radius,  Figs. 10(e)-(f), the medialness response of each algorithm begins

to collapse and deviate, in position, from the object centre. The response of the CMAT is

always enveloped in that of the HMAT, and the response of the HMAT is enveloped in that of

the LoG, which shows that the sequence of selectivity to medial position (best first) is:

CMAT, HMAT, and LoG. At an operator radius other than the object radius, the peak position
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of the CMAT medialness is much closer to the object centre than is the response for the

HMAT and LoG algorithms.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=0.25

LoG
HMAT
CMAT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=0.50

LoG
HMAT
CMAT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=0.64

LoG
HMAT
CMAT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=1.0

LoG
HMAT
CMAT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=2.0

LoG
HMAT
CMAT

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-4 -3 -2 -1 0 1 2 3 4

M
ed

ia
ln

es
s

Position

Operator Radius=4.0

LoG
HMAT
CMAT

                                 (a)                                                                                (b)

                                       (c)                                                                                (d)

                                        (e)                                                                                (f)

Figure 10: The LoG, HMAT, and CMAT medialness responses as a function of

position and at selected operator radii .
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Fig. 11(a) shows the maximal medialness response as a function of operator radius for the

LoG, HMAT and CMAT. Each transform gives a maximal response when the operator radius

matches the object radius. Therefore we can accurately localise the object radius using any of

these algorithms. The sequence of selectivity to the object radius (best first) is: CMAT,

HMAT and LoG.

Fig. 11(b) shows the locus of medialness maxima with respect to position at a range of

operator radii for the LoG, HMAT and CMAT. Each trace crosses the object centre when the

operator radius matches the object radius, and deviates from the object centre almost linearly

as operator radius increases. Therefore we can accurately localise the object centre using any

of these algorithms. The sequence of precision in spatial localisation for these operators at a

range of operator radii (best first) is: CMAT, LoG and HMAT. When operator radius is four

times the object radius, the localisation bias of object centre for the CMAT is 13% that for the

HMAT and 19% that for the LoG. The HMAT medialness response is more readily moved to

one side by differences in boundary strength than the LoG medialness. This result is contrary
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Figure 11: The magnitude (a) and position (b) of medialness maxima, with respect to

position, at a range of operator radii for the LoG, HMAT, and CMAT algorithms.
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to the observation in [8][9] concerning the behaviour of axis-centred medialness operators

(LoG) and boundary-centred operators (HMAT).

In order to identify “ the optimal scale ridge” for medial axis extraction, medialness

maxima with respect to scale at each spatial position are located [4][13]. The set of these

maxima are a set of curves for 1-D objects and surfaces for 2-D objects. Fig. 12(b) shows the

loci of the LoG, HMAT and CMAT medialness maxima with respect to operator radius at a

range of positions along the 1-D object of Fig. 12(a); The two edges of the object have the

same height. At positions away from the object centre, the LoG, HMAT and CMAT

medialness responses exhibit maxima at an operator radius larger than the object radius. The

sequence of localisation of object radius at a range of positions (best first) is: CMAT, LoG

and HMAT. When the position is within 80% of the object radius, the localisation bias of

object radius for the CMAT is under 50% of that for the HMAT. At the boundary each

maxima locus occurs at an operator radius double the object radius. For positions near to the

boundary, the LoG and HMAT responses contain two maxima, while the CMAT response has
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Figure 12: A 1-D object profile (a) and loci of medialness maxima with respect to

radius at a range of positions (b).
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only one maxima. Not all spatial positions have a single medialness maxima as a function of

scale because a single spatial position may be in different medial axes at multiple radii .

However for this single structure, the maxima locus of the LoG and HMAT responses at

smaller operator radii does not represent any symmetry and is an artefact.

4.2 Effect of Noise on Medialness Computation

We have tested the LoG, HMAT and CMAT algorithms using a 1-D object profile with

added white Gaussian noise to investigate the noise sensitivity of the localisation of

medialness response in spatial position and scale. Fig. 13(a) shows an object profile similar to
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Figure 13: A 1-D object profile with noise added (SNR=2) (a), and the scale-space

surface of medialness for the LoG (b), HMAT (c) and CMAT (d) algorithm.
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that shown in Fig. 12(a) but with zero-mean, Gaussian-distributed noise added. The standard

deviation of this noise is 50% of the signal amplitude.

Figs. 13(b)-(d) show the 2-D scale-space surfaces of the medialness response for the LoG,

HMAT and CMAT applied to the profile shown in Fig. 13(a). Each medialness response

forms a maximum for the object near the position of the object centre and at a radius close to

object radius. At low noise levels, the medialness response was altered at small radii only. As

the level of noise was increased, the response at larger radii was affected. The response

surface for the LoG is smoother than that of the HMAT and CMAT, This is li kely to be due to

the larger smoothing operator used in the LoG algorithm.

Figs. 14(a) and (b) show the standard deviation of localisation errors of object centre and

object radius for the LoG, HMAT and CMAT, respectively, under increasing noise levels.

They are computed using 1,000 profiles at each noise level. The object centre is realised as the

maximal medialness point with a spatial position in the range [-0.5,0.5] and a  radius in the

range [0.7,1.5]. The results show that the standard deviation of localisation error for object

centre and object radius for the LoG, HMAT and CMAT all i ncrease linearly with the
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Figure 14: The standard deviation in localisation of object centre (a) and object

radius (b) under increasing noise levels.
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standard deviation of noise level. The curves for the CMAT coincide with those for the

HMAT, which shows again that these two algorithms perform similarly near the position of

the object centre and the object radius. The HMAT and CMAT are  27% lower in object

centre localisation error and 15% lower in object radius localisation error than the LoG. This

is consistent with Morse's conclusion [9] that axis-centred operators, li ke the LoG, are

sensitive to variations within the object because they require integration over the entire width

of the object.

4.3 Application to 2-D Images

To assess the significance of the results presented above we evaluated the CMAT

algorithm using synthetic and natural images. We compared these results with the results that

we obtained using our own implementations of the LoG, HMAT and credit attribution

algorithm. The linear HMAT was used throughout this paper. The results for the HMAT-2,

the initial medialness response of the CMAT, is also provided to demonstrate how the

improved CMAT responses arises. The size of each image is 128×128 pixels. Each

medialness operator is sensitive to both polarities of boundary transition. The medialness

images show the absolute value of medialness response. Therefore in the medialness results

for the LoG operator the zero-crossings, which reflect boundary information, are replaced by

minima with zero value. As in the 1-D case, we use operator radius as a common parameter of

scale between the operators. Here the scale factor that determines operator radius, k, is set at 2

and the scale factor that determines the extent of the boundariness distribution, λ, is set at 0.5.

Fig. 15 shows the medialness responses for a rectangle with a sawtooth edge. For the LoG

(first row) and HMAT (second row) operators, "spurious" medial responses appear as lines
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framing the shape; the brightest regions correspond to true medial responses. At a radius of 5

and 10 pixels, the "spurious" responses are mainly caused by the sensitivity of a linear

operator to edges. At a radius of 20 pixels, the response of both linear operators consists of a

central medial response the ridge of which provides a precise description of the overall shape,

and an outer "spurious" structure due to the side-lobe effect. The credit attribution algorithm

makes the true medialness response more prominent (third row). The side-lobe response

present in Fig. 15(d) and (g) are eliminated.  However, the credit attribution algorithm has

littl e impact on the way that edges generate a "medialness" response (at radii of 5 and 10

pixels). This is not surprising because the enhancement of the credit attribution depends on

the HMAT medialness contrast between the main and side lobes. The HMAT-2 algorithm

produces a result similar to that of the HMAT (fourth row) but the medial axes are more

strongly emphasised. This is due to the range of values for θ in Eq. (14) being smaller than the

corresponding effective angle of distribution for the circular arc used in the HMAT algorithm

[8]. With the CMAT algorithm (fifth row), only true medial responses are generated at all

radii . The hierarchy and robustness of multiscale analysis are demonstrated in each set of

results: the triangular sawteeth and end corners are reflected at small radii (left column), the

rectangular shape is reflected at medium radii (middle column), and the elongated shape is

reflected at large radii (right column); The medialness of larger scale properties is littl e

affected by fine detail .

Fig. 16 shows the medialness responses for a teardrop shape. The radius of the circular

arc at the bottom of the teardrop is 24 pixels. Therefore the radius at which the strongest

medialness response should occur for this circular arc is 24 pixels. However, we find that the

LoG (first row), HMAT (second row) and credit attribution algorithms (third row)  begin to
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produce medialness responses for the arc at smallest radius used (5 pixels, see Fig. 16(b) and

(e)). Further, these responses are displaced from the arc centre by a relatively large distance

and resemble boundary responses (the left and middle columns). With the CMAT algorithm,

the medialness response for the circular arc appears at a radius greater than 9 pixels and at a

position close to the arc centre (fifth row). This is consistent with the medialness performance

demonstrated in Section 4.1 whereby the CMAT produced a medialness response only at

positions near to the object centre and at radii close to the object radius.

Fig. 17 shows the medialness response for a longitudinal body MR image of a pair of legs

(an image from the Visible Human Project, http://www.nlm.nih.gov/research/visible). This

image was chosen as an example of natural image, in which the amplitude of the grey-level

boundary varies, the shapes are relatively complex and multiple "objects" are in close

proximity. The medialness responses for the LoG (first row) and HMAT (second row) can be

seen to be a mixture of medial and boundary responses. The credit attribution algorithm

greatly refines the result of the HMAT, but the contour of both legs is still visible (third row).

In the results of the CMAT (fifth row), only those responses that reflect true symmetry are

retained: the CMAT medialness reflects the bones and the fat layers (bright regions in the

inner side of legs) at small radius; at medium radius the knees are emphasised; at a large

radius only the major structure of the limbs is maintained. Note that the CMAT response

between the legs correctly reflects a triangular shape.

For each medialness operator, the computational cost increases linearly with radius. The

times taken to compute the medialness response of a 128×128 pixel image at an operator

radius of 20 pixels on a SUN Ultra-2 workstation are shown in Table 1. Five iterations were

used in the credit attribution (CA) algorithm. We used a LUT to compute the Gaussian and its
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derivatives in all algorithms, and another LUT to compute the weighting function in the

HMAT and credit attribution algorithms.

Table 1: The computation cost of  medialness algorithms at one operator radius.

Algorithms LoG HMAT CA HMAT-2 CMAT

Time (seconds) 10 40 365 11 13



35

      

                                             

                                             

                                             

                                             

Figure 15: The medialness responses for a rectangle with a sawtooth edge: (a) Original

image; first row, (b)-(d), LoG operator; second row, (e)-(g), HMAT; third row, (h)-(j),

credit attribution algorithm after 5 iterations; fourth row, (k)-(m), HMAT-2;  fifth row,

(n)-(o), CMAT. The columns from left to right are at operator radii of 5, 10 and 20

pixels, respectively. The radius of the shape is 20 pixels.

a b c d

e f g

h i j

k l m

n o p



36

       

                                              

                                              

                                              

                                              

Figure 16: The medialness responses for a teardrop shape: (a) Original image; first row,

(b)-(d), LoG operator; second row, (e)-(g), HMAT; third row, (h)-(j), credit attribution

algorithm after 5 iterations; fourth row, (k)-(m), HMAT-2; fifth row, (n)-(p), CMAT.

The columns from left to right are at operator radii of 6, 12 and 24 pixels, respectively.

The radius of the circular arc at the bottom of the shape is 24 pixels.
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Figure 17: The medialness responses for a pair of legs: (a) Original image; first row, (b)-

(d), LoG operator; second row, (e)-(g), HMAT; third row, (h)-(j), credit attribution

algorithm after 5 iterations;  fourth row, (k)-(m), HMAT-2; fifth row, (n)-(p), CMAT.

The columns from left to right are at operator radii of 3, 6 and 12 pixels, respectively.
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5  CONCLUSIONS

We have presented a non-linear algorithm, CMAT, for computing the multiscale medial

response of grey-level images. For a symmetric structure, the response of this operator has

only one maximum across scale-space and this maximum is at the correct scale for the width

of the object. Therefore the CMAT provides a clearer description of shapes than the linear

LoG and HMAT medialness algorithms which are sensitive to edges and give multiple

responses to symmetric structures. This method has improved the selectivity and localisation

of medial axis position and object width across scale-space. In addition, the robustness of the

linear medial transforms in the presence of noise is maintained. Compared with the relaxation

refinement of the linear operators [9], our algorithm is computationally more eff icient. These

results show that the CMAT algorithm provides a robust and computationally eff icient

description of symmetry in grey-level images.

APPENDIX

Alternative Definitions of Contribution Confidence

In Eq. (6), we defined the contribution confidence function, p( , )x σ , in the form of

f x x( ) = −1 , where ),(/),( 0 σσ yx mbx = . In general, p( , )x σ  is defined as a function of the

ratio b m( , ) / ( , )x yσ σ0 , i. e. :

p f b m( , ) [ ( , ) / ( , )]x x yσ σ σ= 0                                       (A1)

The requirements for the function f x( ) are:



39

0)()3(

0)1()2(

10,1)(0)1(

<′

=

≤<≤≤

xf

f

xxf

                                           (A2)

Condition (1) means that the medialness response should not be greater than the initial

medialness response. Condition (2) means that a single boundary point produces no

medialness response. Condition (3) means that given a boundariness contribution, the greater

the initial medialness, the more possible it is for this boundariness point to contribute to a true

symmetric structure. These conditions constrain the values of x and f x( )  to the area between

the coordinate axes and the dotted lines, shown in Fig. A1. This area can be divided into three

regions according to the value of x:

Region A ( x <<1): This region corresponds to situations in which boundary points

cluster around an end-point, or a weak boundariness response that

contributes to the initial medialness jointly with other much stronger

boundariness responses.
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Fig. A1. Contribution confidence functions that strictly satisfy requirements of Eq. (A2).
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Region C ( x → 1): This region corresponds to the situation in which a strong

boundariness response contributes to the initial medialness jointly

with other much weaker boundariness responses.

Region B:        This region, centred at x = 1 2 , corresponds to the situation in which

two compatible boundaries, parallel to each other, contribute to the

initial medialness.

The contribution confidence function defined in Eq. (6) corresponds to the function

f x x( ) = −1  represented by curve I in Fig. A1. Varying the shape of this function, without

violating the requirements of Eq. (A2), will emphasise (or de-emphasise) end-point

medialness with respect to the medialness arising from parallel boundaries. Curve II

suppresses and curve III enhances the relative medialness arising from parallel boundaries.

If the last requirement of Eq. (A2), ′ <f x( ) 0, is weakened a relationship for f x( )  can

be defined to give greater emphasis to the medialness arising from parallel boundaries and less

emphasis to the medialness arising from endpoints. Curve IV in Fig. A2 is one such function.

x

f(x)

1

10 1/2

IV

A B C

Fig. A2. A contribution confidence function that satisfies the weakened requirements of Eq.

(A3).
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The function of curve IV is:
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xf                                      (A3)

To understand how this arises, consider the medialness for the “tube contour” shown in

Fig. A3. In this figure the boundariness at each point on the contour is b and there are N points

on the half-circular arc ( N >> 2 ). Thus the medialness at points O (N contributions) and B (2

contributions, letting N=2), using Eq. (6), are:

bM

bN
N

NbM

BI

OI
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 −=⋅
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1

1),(

x

x
                                (A4)

Using Eq. (A3) the medialness at points O and B becomes:

bM

b
N

NbM

BIV

OIV

2),(

2
2
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=⋅

==⋅

x

x
                                        (A5)

The resulting uniform-response medialness is no longer related to the number of

contributions and the medialness along the middle line of parallel boundaries is greatly

enhanced. The difference in the medialness resulting from curves I and IV is similar in nature

to the difference between the “mean deviation from flatness” and the “principle deviation

from flatness” [4], computation of medialness. The “mean deviation from flatness” is based

on the use of an isotropic convolution of a Laplacian with the image and the “principal

deviation from flatness” is based on the application of a Laplacian convolution in the direction

which maximises the response.
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The analyses and results presented in this paper are based on the contribution confidence

p( , )x σ  defined in Eq. (6), in the form of f x x( ) = −1 (curve I in Fig. A1).
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