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SPECTRAL MULTIPLIERS FOR THE KOHN LAPLACIAN
ON FORMS ON THE SPHERE IN C»

VALENTINA CASARINO, MICHAEL G. COWLING, ALESSIO MARTINI, AND ADAM SIKORA

ABSTRACT. The unit sphere S in C™ is equipped with the tangential Cauchy—Riemann
complex and the associated Laplacian [J,. We prove a Héormander spectral multiplier
theorem for O, with critical index n — 1/2, that is, half the topological dimension of
S. Our proof is mainly based on representation theory and on a detailed analysis of
the spaces of differential forms on S.

1. INTRODUCTION

The sphere in C” is often studied as a model CR manifold. The tangential Cauchy—
Riemann (CR) complex on the sphere and in the conformally equivalent context of the
Heisenberg group was studied by various authors, including [Fo, FoSt, Ge]. The CR
complex gives rise to a second order operator (J,, of “Laplace type”, which is sometimes
subelliptic and sometimes not. This operator acts on (4, j) forms, where 0 < i,7 <n—1,
but, like most authors, we restrict our attention to the case of (0,7) forms. With this
restriction, since the sphere is strongly pseudoconvex, [, is subelliptic if 0 < j <n — 1,
but has an infinite-dimensional kernel when j = 0 or j = n — 1 (see, for example,
[FoKo, KrVal); this kernel may also be viewed as a CR-cohomology space. In this paper,
we deal with the cases when [, is subelliptic; in a future paper, we intend to deal with
the remaining cases. By doing so, we deal with forms in this paper, but manage to deal
with functions only in the future one; on the other hand, we do not have to worry here
about the complications such as the lack of Sobolev embedding theorems that arise from
the fact that [, has a nontrivial kernel.

Let A be a self-adjoint positive operator with dense domain in L?(M), the usual
Lebesgue space of (equivalence classes of) functions on a d-dimensional manifold M,
endowed with a measure that is absolutely continuous with respect to the Lebesgue
measure when written in any coordinate system. Then the spectral theorem allows us to
form the bounded operator F'(A) whenever F is a bounded Borel function on R, or just
on the spectrum of A. We and many other authors seek conditions on F' that ensure that
the operator F'(A) extends continuously from LP(M)N L?(M) to a bounded operator on
LP (M) for some p # 2.

Let H*(R) denote the usual Sobolev space on R. We say that F': R — C satisfies a
Hormander condition of order s if

1 F(t- ,
(1) S [P 1l ey < o0

for one and hence all nonzero smooth functions n with support in [1, 2]; we fix one of these
7. In the case where A is the Laplacian A on R?, the Hérmander multiplier theorem [H]
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implies that F'(A) is both bounded on LP(R%) when 1 < p < oo and of weak type (1,1)
if the condition (1) holds for some s > d/2. We call d/2 the critical index. In this case,
the critical index cannot be improved, and so this is a sharp multiplier theorem.

Sharp multiplier theorems have a long history, going back at least fifty years in the
euclidean case. When the operator A is subelliptic but not elliptic, it is often associated
to a homogeneous dimension @ that is larger than the topological dimension d of M (see,
for example, [FP, RoSt] for more about this). In many cases the euclidean techniques
generalise reasonably readily to establish multiplier theorems with critical index Q/2;
see, for example, [Ch, MaMe| for the case of homogeneous sublaplacians on stratified
Lie groups and [He2, DOS] for the more general setting of spaces of homogeneous type.
However in several examples it turns out that the critical index /2 is not sharp.

On the Heisenberg group and similar groups, sharp theorems with critical index d/2
were first proved by Hebisch [Hel] and Miiller and Stein [MiiSt] for a homogeneous
sublaplacian on functions; other step-two nilpotent groups have been treated by Martini
and Miiller [MMii]. A corresponding result for the operator O, on the Heisenberg group
may be deduced from the work of Miiller, Ricci and Stein [MiiRiSt]. There are various
Laplacians associated to forms, and one may pose the same question for forms as for
functions. The case of the Hodge Laplacian on forms on the Heisenberg group was
considered by Miiller, Peloso and Ricci [MiiPeRil, MiiPeRi2]. At this time, it is unclear
whether to expect that the sharp index is d/2 for all nilpotent Lie groups.

Cowling and Sikora [CS] treated a subelliptic operator A on functions on the group
SU(2), and these results were extended to a similar operator A on functions on the sphere
in C™ by Cowling, Klima and Sikora [CKS]; in all these theorems the critical index is
d/2. The operator A is related to, but not the same as, the operator [J, on functions;
in particular, A is subelliptic while [J, is not. Note that, in the case of the sphere S, the
topological dimension d is 2n — 1, while the homogeneous dimension () associated to A
and Oy is 2n.

A quite general multiplier theorem for the operator [J, acting on functions on a com-
pact pseudoconvex CR manifold of finite type may be found in [Strt]. There the critical
index is larger (it is equal to (@ + 1)/2) and it is mentioned that similar methods yield
an analogous result for the operator 5;' Oy acting on (0, )-forms (which coincides with
Op in the case j = 0).

For much more on the history of this kind of problem, see the references cited in the
papers mentioned above.

Our main theorem may be stated as follows. Let A%/ denote the bundle of (0, j)-forms
on S and LP(A%7) the corresponding space of LP sections.

Theorem 1.1. Let O, be the Kohn Laplacian acting on (0, j)-forms on the unit sphere
S in C™, where 0 < j < n — 1. Suppose that s > n — 1/2 and that F : R — C
satisfies the Hormander condition (1). Then F(Oy), initially defined on L?(A%7), extends
continuously to an operator on LP(A%7) that is bounded when 1 < p < oo and of weak type
(1,1). Further, the associated operator norms are bounded by (p-dependent) multiples of

SuPteRJrHF(t')nHHS(]R)'

In studying a Laplacian on a compact manifold, it is sometimes necessary to add
the term |m(0)| to the bound on the operator norm, in order to take care of the zero
spectrum. However in our case this is not necessary as the spectrum of 0, is strictly
contained in R;.

The same methods allow us to obtain LP-boundedness results for the Bochner—Riesz
means associated to [, on S. Analogous results for the sublaplacian A on S have been
recently proved in [CaPe|; we refer to [Ma, Mii] for earlier results on the Heisenberg
group. In all these papers, however, the convergence of the Bochner—Riesz means is
proved only when § > (2n — 1) |1/p —1/2|.
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Theorem 1.2. Let O, be the Kohn Laplacian acting on (0, j)-forms on the unit sphere
S in C", where 0 < j <n—1. If p € [1,00] and

1 1
6>02n—2) |- — =,
-

2

then the operators (1 —t00,)3. are bounded on LP(A%), uniformly int € Ry.

The proof of these results is based on an abstract multiplier theorem of Cowling
and Sikora [CS]; strictly speaking, this needs to be adapted to deal with forms rather
than functions, but this is a routine modification. The theorem is also stated in [CKS],
though that paper contains some minor errors which may lead to confusion; corrections
are available from the first and third-named authors of [CKS].

The crucial step that allows us to obtain n — 1/2 as critical index is the proof a
“weighted Plancherel estimate”. This is, roughly speaking, an estimate of a weighted
L?-norm of the integral kernel K, of the operator F((,) in terms of a (sort of) L*-
norm of the multiplier F'. This estimate in turn reduces to the problem of determining
how an eigenform of [, after multiplication by a suitable weight, decomposes as a linear
combination of eigenforms.

The operator [0, is U(n)-invariant, hence in order to determine its spectral resolution
it is natural to consider the decomposition of the representation of U(n) on L?(A%7) into
its irreducible components. This decomposition was worked out by Folland [Fo], whose
detailed analysis we use extensively and develop; in the case of functions (j = 0), this
is a refinement of the classical decomposition of L?(S) into spherical harmonics (see also
[R, Chapter 12]). Since the representation on L*(A%7) is multiplicity free, the operator
[, acts on each irreducible component as a scalar and forms associated to irreducible
subrepresentations are eigenforms.

The key observation here is that the operation of multiplication of an eigenform by a
(polynomial) weight may be interpreted in a representation-theoretic fashion, by taking
the tensor product of an irreducible component of L?(A%7) with a suitable representation
of U(n). Accordingly, the aforementioned decomposition of an eigenform multiplied by
a weight corresponds to the decomposition of a tensor product representation into its
irreducible components and classical results from the representation theory of U(n) may
be applied. In particular, the representations under consideration are multiplicity-free,
and coupled with some symmetry properties of Clebsch—Gordan coefficients and the
relations between the representations on L?(A%7) for different values of j, this allows us
to discover enough about the decompositions corresponding to multiplication by a weight
to be able to prove the weighted Plancherel estimate.

Note that in [CKS] a different route is followed: an explicit formula for the so-called
zonal spherical functions is proved and used to determine the effect of multiplication by
a weight. No such formula is exploited here. Hence, this paper provides an alternative
approach to that of [CKS] for the operator treated there; one should compare Lemma
3.1 of [CKS] with our Theorem 4.5 (and their proofs).

The plan of the paper is the following. The next section of this paper states the
general multiplier theorem. Section 3 recalls the definition of the operator [, and some
of its basic properties, which immediately establish some of the conditions of the abstract
theorem. The detailed analysis of the spaces of forms on S and the proof of the weighted
Plancherel estimate are carried out in Sections 4 and 5. In Section 6, we prove some
representation theoretic results needed for our analysis.

2. AN ABSTRACT MULTIPLIER THEOREM

The proof of our result for the operator [J;, is based on an abstract multiplier theorem
obtained in [CS] (namely, Theorem 3.6 there).
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In fact, as stated in [CS], the theorem applies to operators acting on scalar (square-
integrable) functions on a metric measure space (X, g, 1); that is, X is a space with a
metric (distance function) ¢ and a Borel measure p. Here instead we work with operators
acting on forms, that is, on sections of certain vector bundles over X. However, the
extension of the abstract theorem to the case of vector bundles is straightforward, given
the correct definitions and conventions (see, for instance, the remarks about this extension
in [Sik]).

Suppose that £ is a continuous complex vector bundle on X of rank m (that is, the
fibres &, of £ are isomorphic to C™ for all € X)) and with a measurable (with respect to
x) inner product (-, -), along the fibres. For a(x) € £, we put \a(x)ﬁ = (a(z), a(x)),.
To simplify the notation, we will often write (-, -) and |-| instead of (-, -)_ and |-|,.
Now for sections a and 3 of £ we define |||, ¢ and (a, B)) by

T

ol = [ a@P dute)  and (a8} = [ (a(e).Bla) du(o)

By LP(E) we denote the Banach spaces of sections of £ corresponding to these norms.
Note that L?(€) is a Hilbert space with the inner product { -, - ).

Next we describe the notion of integral operators. Suppose that £ and F are continuous
vector bundles of ranks m and n with base spaces (X, g, 1) and (Y, 0,v) endowed with
inner products as above. Given z € X and y € Y, we consider the space Hom(&,, F,) of
all linear homomorphisms from &, to F,. We equip &, and F, with inner products and
consider two natural norms on Hom(&,, F,): the Hilbert-Schmidt norm |- |4 and the
operator norm |-|. Note that

K| < [Klys < min(m,n)"/? |K]|

for all K € Hom(&,,Fy). By [€,F] we denote the continuous bundle with base space
Y x X and with fibre Hom(&,, F,) over the point (y,z) (note the change of order of z
and y here).

We say that T is an integral operator with kernel Kp if Kr is a section of [£, F] such
that | K| is locally integrable on (Y x X,v x ) and

(T B) = /Y (Tov, B) dv = /Y /X (Kr(y,2) o(2), B(y)) du(z) dv(y)

for all sections « in C.(€) and 8 in C.(F).
If T is bounded from L!(€) to L(F), where ¢ > 1, then T is an integral operator,
and
||T||L1(g)_>Lq(_F) = esssup sup |[Kr(- ,x)vHLq(f) ;

zeX wveé,
lv]<1

conversely, if T' is an integral operator and the right hand side of the above equality is
finite, then T is bounded from L!'(€) to LI(F), even if ¢ = 1. From the above equality,
it follows in particular that

m % esssup 1K () gy < 1T ey g < esssup [z )y,

There is a dual characterization of the operator norm from L% (£) to L™ (F):

nt/a eSSeS;;lpH'KT(yv ')|HLQ(X) < ||T||L(I’(S)~>L°°(]:)

(2) ’
< esssup ||| Kr(y, ')|||Lq(X) :
yey
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Much as in [CS], for a Borel function F' supported in [0, 1], we define the norm || F[[ y ,
by the formula

N 1/2
2
Flva= (52 s FOR)

i=1 Ae[5E, &

where p € [1,00) and N € Z;. Now we can reformulate Theorem 3.6 of [CS]. In this
statement, and elsewhere, the letter C' and variants such as Cy denote constants, always
assumed to be positive, which may vary from one occurrence to the next. The expressions
a ~ b and a < b mean that there are constants C' and C’ such that Ca < b < C'b and
a < Cb respectively.

Theorem 2.1. Let (X, o, ) be a bounded metric measure space, equipped with a weight
function w: X x X — Ry, and let d € [1,00). Let £ be a continuous vector bundle
on X with measurable inner product and A be a possibly unbounded positive self-adjoint
operator with dense domain on L?(E). Suppose that the following hypotheses are verified:

(i) the doubling condition:
w(B(z,2t)) < C p(B(z,t)) Vee X Vt>0;
(ii) the weighted estimate for balls:

/ w(,y)"" du(y) < Cmin(t?, 1);
B(z,t)

(141) Sobolev-type estimates: for some sufficiently large integer £:
u(B(z, t)? ||(1+ A) | fogypee SCe Ve €X ViERy;
(iv) finite propagation speed:
supp cos(tVA)a C {z € X : o(x,suppa) < t} Vt e Ry Va € L*(&);
(v) Plancherel-type estimates:

2

1/2
essswn( [ [Kpium ()] wenau) < onEwol,

yeX
for all N € N and Borel functions F such that supp F' C [0, N].
Finally, assume that s > d/2. Then for all bounded Borel functions F : R — C such that

sup [[F (&) nll s gy < 00,
teR 4

the operator F(v/A) is of weak type (1,1) and of strong type (p,p) for all p in (1,00);
further, the associated operator norms are bounded by multiples of

sup [|F(t) 1l gy + 1F(0)].
teR,

It is perhaps worth noting that Hypotheses (iii) and (iv) amount to “on-diagonal” and
“off-diagonal Gaussian” estimates for the heat kernel associated to [y,

An inspection of the proof of the above theorem (see, in particular, page 26 of [CS]),
shows that an L'-boundedness result may be obtained under similar assumptions in the
case of compactly supported multipliers.

Theorem 2.2. Assume Hypotheses (i) to (v) of the previous theorem. If s > d/2, then
for all t € Ry and all bounded Borel functions F : R — C with supp F C [—1,1],

esssup/ ’KF(t\/Z)(I,y) dr < Cs ||F||Hs(]R) ;
yeX X
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consequently, if || F|| . gy < 00, then for all p € [1,00] the operator F(tvVA) is bounded
on LP(E), uniformly in t € Ry, and

F(t\/K)‘

sup

< Co | Fl ey -
teRy

L (€)= L (E)

3. THE TANGENTIAL CAUCHY—RIEMANN COMPLEX ON THE SPHERE

Fix n > 2. As a real hypersurface in C™, the unit sphere S is naturally endowed
with a CR structure (of hypersurface type). Namely, let CTC" = T3 (C" & Tp1C" be
the decomposition of the complexified tangent bundle of C™ into its holomorphic and
antiholomorphic components. Then the definition

L = CTSN T} oC"

gives an involutive subbundle L of rank n — 1 of the complexified tangent bundle CT'S;
moreover L = CTSNTp,C" and

L, NL, = {0} Yw € S.

The dual bundle L* of L is identified with a subbundle of the complexified cotangent
bundle CT*S via the standard Riemannian metric on T'S induced by C™. Correspondingly
the jth exterior power A%/ = AJL* may be identified with a subbundle of the bundle
CAJS = AICT*S of j-forms on S; in particular, the space of sections of A7 may be viewed
as a subspace of the space of j-forms on S, and the fibrewise orthogonal projection defines
a bundle morphism 7; : CAJS — A%J. Consequently the definition

Opar = Tit1da,
where « is a section of A%/ and d is the exterior derivative, gives rise to a first-order

differential operator 9, : C°°(A%7) — C°°(A%/*+1). One may prove that 07 = 0 (see, for
example, [B, Section 8.2]) and the complex that arises, namely,

0 — C(A%0) Py 0oo(A01) Py Doy oo (p0n=2) Dy oo (A0n—ly
is known as the tangential Cauchy—Riemann complex on S. Since the group U(n) acts
on the sphere S via restrictions of maps which are both isometric and holomorphic, the
action of U(n)_ preserves the Riemannian metric, the standard surface measure o, the
CR structure L, and the corresponding complex, and 9y is U(n)-equivariant.

Associated to this complex, we define the formal adjoint 5‘;‘ of 9y with respect to the
inner product

(0.8) = [ (a(). A=) do),
and the second-order operator [, by
Oy = (3 +37)° = 835 + 50,
The maps 5;’ and [J, are also U(n)-equivariant. We set B; = L%(A%7); equivalently, B;
is the Hilbert space completion of C°°(A%7) with respect to this inner product.

The Riemannian distance on S is not appropriate for analysis of operators such as 0y,
5; and . To these operators we may associate a control distance gy (see, for example,
[CM, Section 8.4]). This distance is /2 times the subriemannian distance on S defined
by taking as horizontal distribution H the Levi distribution (L & L) N TS and endowing
it with the restriction of the Riemannian inner product on T'S. Note that

H,={2€C": (z,w) =0} C{z€C": Re(z,w) =0} =T,S

for all w € S, where (-, -) denotes the usual Hermitian inner product on C", that is,

n

(z,w) = Z Zm Wi,

m=1
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and H and hence also gy are U(n)-invariant.

Since the CR manifold S is strictly pseudoconvex (that is, the Levi form is non-
degenerate, see [B, Chapter 10]), the distribution H is bracket-generating of step 2.
Hence, by Chow’s theorem, the associated subriemannian distance is finite and induces
the standard topology on S. Moreover the metric space (S, go) is compact and hence
complete, so the operator [, is essentially self-adjoint and satisfies the finite propagation
speed property

(3) supp cos(t/0y) f C {2 € S: go(z, supp f) < t} Vte Ry VfeB;

(see [CM, Section T7]).
An explicit expression for the control distance gq is difficult to obtain or to work with

(see [CgMkVa, BaWal), and so it is convenient to use an equivalent distance o, given by
(4) oz w) =2 |1 = (z,w)[/*

for all z,w € S; this distance is evidently U(n)-invariant. For more on p, including a
proof of the triangle inequality, see, for instance, [R, Section 5.1].

Proposition 3.1. The distance functions oy and o are equivalent; more precisely, there
is a constant C' such that

o(z,w) < go(z,w) < Co(z,w) Yw, z € S.

Proof. As the distances p and g( are U(n)-invariant, we may suppose temporarily without

loss of generality that w = (1,0,...,0); it is then convenient to write z = (21, 2’), where
z' = (z2,...,2n). Now
(5) 00z, w) = || + [21]"? = o(z,w)

for all z € S; the left-hand equivalence follows from the ball-box theorem (see [NaStWa
or [Be, Theorem 7.34]), while the right-hand equivalence follows from the definition (4)
by computation.

It remains to show that o(z,w) < go(z,w), that is, to determine one of the constants
in the equivalence. First of all, we take z = (1,0,...,0) and show that |5bg(z,w)| <1
for all w € S\ {z}, where 0y acts in the first variable. Observe that, for this z,

_ " dolz,
Doz = Y 2421 gz
m=2 m

since |dz,,| = V2, it follows that

n

‘5bg(z,w)| = \/i(z

m=2

m=2

1 ((1 — Jwi)(1 + le>>”2 <1.

NG 11— w

V2
This inequality holds for all z € S and all w € S\ {z} by U(n)-invariance. It follows from
[CM, Proposition 5.4] that o( -, w) < go( -, w). O

The following result is an immediate consequence of this distance function comparison

and (6).
Corollary 3.2. The operator 00y, has the finite propagation speed property relative to o:
(6) supp cos(ty/ ) f C {x € S: o(z,supp f) < t} Vte Ry VfeB,.
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4. HARMONIC ANALYSIS OF FORMS

Recall that the differential operators O, 5;' , and O, are U(n)-equivariant on the
various spaces of forms on the sphere, that is, they are intertwining operators between
the natural representations of U(n) on the various spaces B;. Therefore it is possible
to study the spectral properties of these operators through the unitary representation
theory of U(n).

This route was followed by Folland in [Fo]. Recall that irreducible unitary rep-
resentations of U(n) may be parametrized (modulo equivalence) by nonincreasing n-
tuples (¢1,...,¢,) € Z™; as in [Fo| we will denote the corresponding representation by
p(l1,...,¢,). Folland determined the orthogonal direct sum decomposition of the spaces
B, into irreducible subspaces and identified the representations that appear, as follows.

Proposition 4.1 ([Fo, Theorem 2]). Let 0 < j <n —1. Then

@pZO,qzo Ppq0 when j =0
Bj = EBPZO,qzl((I)qu B V,) whenl<j<n-—2
@pz—l,qz1 \Ilpq(n—l) whenj =n—-—1.

The subspaces @pq; and Wy, correspond to the two irreducible unitary representations
p(4,14,0,_o_;,—p) and p(q,1;_1,0,,_1_;,—p) of U(n). In particular, the action of U(n)
on Bj is multiplicity-free, that is, no irreducible unitary representation of U(n) occurs
more than once in B;.

Note that the symbols 0, and 1, denote ¢ consecutive entries of 0 or 1. This decom-
position leads us to introduce the following index sets:

{(p,q) : p>0,¢ >0}  when j=0,
I ={{(p,q) :p>0,g>1} whenl<j<n-—2,
{(p,q) : p>—-1,¢>1} whenj=n—1,
and
{®} when j = 0,
Y; = {®, ¥} whenl<j<n-2
{0} when j =n — 1.

Then the set I; x Y; parametrises the irreducible representations of U(n) that appear in
the decomposition of the representation of U(n) on B;. We abuse notation slightly and
write (p,q,Y) € I; x Y; to mean that ((p,q),T) € I; x Y;. When (p,q,Y) € I; X Y;, we
write Y pq; for one of the spaces ®,4; or ¥,,;, depending on whether T = ® or T = .
We adopt the convention that Y,q; = {0} when (p,¢,T) ¢ I; x Y;.

The subspaces ®,4; and ¥,,; are finite-dimensional spaces of smooth forms (see be-
low), hence they lie in the domain of all smooth differential operators. Since the rep-
resentation of U(n) on each B; is multiplicity-free and the operators O, 5: , and [y
are U(n)-equivariant, these operators must preserve the above decomposition; more pre-
cisely, they must map irreducible components into equivalent irreducible components by
multiples of unitary operators. To complete the picture, Folland determined these mul-
tiples, that is, he computed the “eigenvalues” of 0, 5;’ , and [, on each piece of the
decomposition above.

Proposition 4.2 ([Fo, Theorems 4 and 6]). Let 0 < j <n —2 and define
‘ .\ 1/2

(7) Mpgj = g+ ) +n—1-5)""7,

for all (p,q) € I; UIjy1. Then

(i) O(Ppgs) = Wpqj+1) Jor all (p,q) € I, and Obls,,, is Apg; multiplied by a unitary
operator;
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(i) O(¥pq(j+1)) = {0} for all (p,q) € Lj41;

(iit) O (Wpqj+1)) = Ppgs for all (p,q) € L1, and 3 |w,, .., is Apg; multiplied by a
unitary operator;

(iv) 0y (Ppq;) = {0} for all (p,q) € I;;

(v) Op(®pgj) € Ppgj and Dola,,; = A2 iida,,; for all (p,q) € I;

(v)) Bp(Ppg(j+1)) € Ypg(isr) and Oplw,, 0y = Aogjidw, 0y for all (p,q) € 11

The spectral resolution of [J, on B; may now be expressed in terms of the orthogonal

projections P;I«)zj and PZ;I;J» in £(B;) onto the subspaces ®,4; and ¥,q;. Let Kg;j and KI‘)I’qj

be the corresponding integral kernels, and set /\g)qj = A\pgj and /\;I’qj = Apa(j—1)-
Lemma 4.3. Let 0 < j < n— 1. Suppose that F' : R — C is a compactly supported
Borel function. Suppose further that F(0) =0 when j =0 or j =n— 1. Then the kernel

KF(\/E) of the operator F(v/Oy) is given by the formula

(8) Ky /o (2w) = > F(gy) Kp(zw) VzweS.
(p,q, L)EL; XY

Note that, under the assumptions of Lemma 4.3, the sum in (8) has a finite number
of nonzero summands. In fact, (8) holds also for functions F' with noncompact support
that decay sufficiently rapidly at infinity. This is an easy consequence of the following
orthogonality relations.

Proposition 4.4. Let 0 < j <n—1. For all (p,q,Y), (', ¢, Y') € I; XY,

’ dim Y, ;
T T
_/S<quj(sz)’Kp’q’j (2,w) ) yg do(2) = Wiqg 07 Opp' Ogq Vw € S.
Proof. We assume that 1 < j < n — 2; the other cases are similar but easier. Let
{(p;qj 1 1<r <dim®pg;} and {¢5,; : 1 < s < dimW¥,,;} be orthonormal bases of ®;
and V,g;. Then, for all z,w €S,

S .
Praj

dim @45
K;I;j(z7w) = Z <"‘p;qj(w)> S";qj(z)’
r=1
dim ¥4
Kzg;j(z’w) = Z <" ;qj(w)> ;qj(z)'
s=1

Then

JCHCROR S OIS

dim ®,,4; dim @,/ /5

- /S 7; ; << * i (W) P (2) (- Pprgri (W) Pprgri (2) >HS do(z)

dim @pq; im ®,r 75

[ X T s o) () s () o)
r=1 s=1
dim ®pq; dim prgr;

= 3 Y (i), ey () (i Phrars)

r=1 s=1
dim ®p,q;
= 5r55pp/5qq’ Z <(p;qj (’lU), @;qj (’UJ)>
r=1

Since this equality holds for all orthonormal bases {gp;qj t1<r <dim®pg;} of Ppy;
and U(n) maps orthonormal bases to orthonormal bases, the last expression must be
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independent of w. In particular, by averaging over the sphere, we obtain

JCHCROR S IOEINEE
dim @45

Z /‘quj "Opqy( )>da(w)

dim <I>qu

5rs §pp’ §qq

Grayy Gy o
= UZZ)S) = Z (epgs» Ppai)

r=1
8rs0pp Oqqr ..
= 7;’(”8) 19 dim @,
for all w € S, proving the case where T = Y’ = ®. The case where T = T/ = ¥ may be

treated analogously, while the case where T # Y’ follows from the orthogonality of the
system {gogqj WUpg; 1 1 ST <dim®Ppg;, 1 < s <dim \Ilqu}. O

The main result of this section is the following theorem; it should be compared with
Lemma 3.1 and Corollary 3.2 in [CKS].

Theorem 4.5. Let 0 < j <n—1. Forall (p,q,T) € I; XY},

(9) (w) KL (zw) = > 60X K (2 w),
(p'q YEl; xY;
(10) (mw) KX (zw) = > 60X K (2 w),
(p',a'\X")EL; XY
where
STV ptntl—y p+l1 “0d gt+1+5 q
p(p+1)qaj — ptqg+n p+n—j’ ppa(a+1)j — p+q+n g+’
sYY __4tn=2 q-2+] g0 _ _ptn—-1 ptn-2-j
pra(a=1)Ji = 54 g+ —2 g—1+j’ plp=1)49) = 4 g4 — 2 p+n—1—7’
see o _qtn—2 see o ptn—1
pra(a=1)i = 5 f g4 — 27 plp=1)49) = 4 g4 —2°
> __ptl 5V o q
pletNaas = 4 g4 n’ pra(a+t)i = g
5OV n—1-j 5U® J
PP g+ ) p+n—1-7) sl = (g =T+ 5)(p+n—3)

while all the other coefficients vanish.

Remark 4.6. Note that the coefficients in Theorem 4.5 are all real; the bar does not
indicate complex conjugation.

The fractions ¢/(¢ + j) and (p+1)/(p +n — j) are interpreted as 1 when they are of
the form 0/0.

The right-hand side fractions in each row are symmetric; one becomes the other when
we exchange p with ¢—1 and j with n—1—j. This may be explained using representation
theory, as follows.

In analogy with the Hodge star operator, one may define an isometric antilinear vector
bundle isomorphism * from A% to A®"~1=J (see [Ge, p. 5]), which induces an operator,
also denoted by *, from Bj; to B,,_1_;. It is not difficult to check that * intertwines:

(i) the standard representation m; of U(n) on B; and the representation #,_1_; of
U(n) on B,_1_; given by
Fn_1-j(9) = (det g) " 'm,_1_;(g) for all g € U(n);
(ii) the operators O, on B; and O, on B,,—1_; [Ge, Lemma 1.1];
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(iii) the multiplication operators M,,, M,, on B; and ]\Zl’m7 M., on B,,_1_;, where
Mmf(z) = me(z)7 Mmf(z) = Emf(z)‘

If J:B; — (B;)* is the canonical antilinear isomorphism between a Hilbert space and
its dual, then the composition *xJ~! : (B;)* — B,_;_; is a linear isomorphism that
intertwines the representation 7; contragredient to m; and the representation ,_i_;.
Hence, by (i) and Schur’s lemma,

(1) K Ppgj) = Vg @iy  and  *(Vpgj) = Pg1)(pr1)(n-1-5)

for all (p,q) € I;. Consequently (ii) justifies the symmetry

(12) Apai = Ag=1)(p+1)(n—2—7)

of the eigenvalues of O, Moreover (z, b T (z,w) and (z w)Kqu (z,w) are the integral

w) K,
kernels of the operators > _ quM and Y0 _ My, P iM,,, and so (iii) and (11)
lead to the conclusion that

5TT 5??’
pp’qq’j (¢—1)(¢'=1)(p+1)(p’'+1)(n—1—j) >

where ® = ¥ and ¥ = &.
The proof of Theorem 4.5 is based on the following preliminary result.

Proposition 4.7. Let 0 < j < n —1. The decompositions (9) and (10) hold, and

2

Y (s
sy dim T, - ‘ Pp,q,j(zma)H
priads dlmT;qJ m=1 H0‘||2 7

and

T/
sy dim Tp,q - ‘ Pp,q,j(zma)H
priads dlmT;“” m=1 HaH2 ’

for all (p,q,Y), (p",q',Y'") € I; X Yj; here a is any nonzero element of T pq;.

Proof. Let T', X" € Y;. For given o’ € Y, and o € T} P define the operator

Py o € L(Bj) by Paror :=(-,a’) a”. Consider the average P, 1o over U(n) of Py o,
that is,

Po/,o/’ /( )ﬂ-(g)Po/,a”Tr(g)71 dga

where 7 is the representation of U(n) on B; and dg denotes the normalized Haar measure

on U(n). Then P, o € £(B;) is an intertwining operator; moreover Pa/,au(r;,q,j) -
Tg,,q,,j and PQ/M// \T,/ _ + =0. Hence from Schur’s lemma
pag
(@, a') Ly /
- - P when Y, =1,
7 P'q'j paj p'a’j
Pa/’a// = dlm Tp/q,J
0 otherwise,
where the first identification relies on the facts that tr Pa/yau =tr Py o = (", a’) and
tr Pp g = dim T;,qu. Correspondingly, let K,/ o~ denote the kernel of the operator
Pa ralts then
<C¥Il7 a/> ,
~ %K When qu] = T rolqy
(13) Koo = { dim T, . ¢ ¢

0 otherwise.
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On the other hand, starting from the definition of Pa/,au it is easy to check that
Kavar(zw) = [ (cnlg)a’(w) nlg)a’(2) dy.
U(n)
If now z,,« is decomposed as
o= 3 Y am
T/eYj p/,q/

T’ _ pY’ ’ .
where oy, = Pp,q,j(zma) € Y}, then we observe that

(21 10) Ko (23 0) = /U ) (rg)atw) =(g)a(z) dy

=3 Y[ ) w0 ) dy

m=1 (p',¢',Y")el; xY;
(p,,7q/l7Y,/)€Ij ><Y]

n
= Z Z KO‘T// ’ /-VO‘T////{Z// (Z’ 'LU)

=1 (o o Tl XY p'a’m "p
(',q", X" )EL; XY}
(p/l’q//"rll)eljx)/j

By (13) the summands in the above expression vanish unless Y}, . = T}, ., and we
deduce that
v
2 n «
[l T H f”'q/mH !
() Gy Tored (5 0) = 2 g, Krwis)
el m=1(p',q',T")€I; XY} Pa'd

whence the desired formula for (5;2%(1, ; follows. The formula for 5;2%(], ; may be proved
analogously. O

Corollary 4.8. Let 0 < j < n—1. With the notation and conventions of Proposition 4.7,

: / : /
Z dim Tp'q/j STT’ _ Z dim Tp'q/j 5YT’ -1
dim Y. . pp'aq’y — dim Y. . pp’'qq’y T
(p,q,T)EL; XY; pay (p,q,V)EL; XY; P4y

Proof. Tt is sufficient to observe that

n n n

_ 2 2 2 2 2
Do lzmal® =Y lzmal® = Z/\Zml a(2)[” do(z) = |||l
m=1 m=1 m=1 S

for all a € Tpq;. O

Corollary 4.9. Let 0 < j<n-—2. If (p,q),(p',¢') € I; N 141, then

2 2
5\1/\1/ _ )‘p’q’j 5<I><I> } and S<I><I> o Ap’q’j 5\1/\1/
pp'qq’ (G+1) T )2 pp’'aq’j pp'ad’s — 2 “pp'qd’ (G+1)

P Pqj
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Proof. Note that Opzm = 0 and consequently 5b(zma) = 2, Opa for all forms . We
deduce that 9, commutes with multiplication by 2, and, by considering the formal
adjoints, 8;“ commutes with multiplication by Z,.
If a € @pyy, then Jpa € V,0¢541) and
5 2
Habaﬂ - )‘127q1 [lev]

by Proposition 4.2. On the other hand, J, : B; — B;; is U(n)-equivariant, hence

again by Proposition 4.2. Consequently, by Proposition 4.7,

_ 2
P];I,'q,(jﬂ (Ob(2ma) )H

_ 2
Prguentendi] =]

2
2 (zma)]||”,

- Hab qu(zmoz H = Ay

suv dim Wy, 541 H p’ QJ Zmabo‘ H
+1 ;
pp'aq’ (G+1) — dim ¥y (j11) ]
. 2 n ' 2 2
_ dim @4 ’\p’q’j HPp a j(zmﬁba)H _ /\p ¢j 500
dim ®prgrj A2 — HabaH A2 PP'aq's
The proof of the other formula exploits the properties of 5;' and is analogous. O

According to Proposition 4.7, the coefficients in the decompositions (9) and (10) will
be determined once we compute the dimensions of the spaces ®,,; and ¥,,,; and we know
how the product of an element of ®,,; or ¥,,; with z,, or z, decomposes as a sum of
elements of ®,4; and W,y ;. The first problem is easily solved by an application of
Weyl’s dimension formula (see, for example, [GW, §7.1.4, ex. 8]).

Lemma 4.10. Let 0 < j <n —2. Then dim ®,,; is given by

p+1 g .p+q+n71 n—2\(p+n—-1\/qg+n—-2
p+n—1—35 q+j n—1 J n—2 n—2 )

for all (p,q) € I;. The same expression also gives dim Wy, ;41y for all (p,q) € I;41.

Remark 4.11. The fractions (p+1)/(p+n—1—j) and ¢/(¢ + j) are interpreted as 1
when they are of the form 0/0.

For the second problem, instead, we need a more explicit description of the spaces
®,,4; and W¥,4;. Following [Fol, the representation p(q,1;,0,_5_, —p) may be identified
with a subrepresentation of the canonical representation of U(n) on

Coar = (Q7C) @ (A1C") @ (1)

(here 0 <k <n—2,p>0and ¢ >1). An orthonormal basis for Cq is given by
{ezl®...®62p®(ecl/\.../\eck+1)®eb1®...®ebq71
1<a<nl<a<..<au<n, 1<b<n),

where {e; : 1 <i<n} and {ef : 1 <i<n} denote the canonical basis for C" and the
corresponding dual basis of C"*. The space V,q; on which p(g, 1;,0,,_o_j, —p) acts, that
is, V(¢,1;,0,,_5_s, —p) in the notation of [Fol, is the smallest U(n)-invariant subspace
of Cpqi, containing the “primitive vector”

Vpgk = (e;®...®e;)®(e1/\.../\ek+1)®(e1®...® e1)
——— ——
p times q — 1 times

(P(q,14,0,,_5_j,—p) in the notation of [Fol).
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Similarly one may define Vpo (for p > 0) and V(_1)qn—2) (for ¢ > 1) as the smallest
U(n)-invariant subspaces of

oo =@7C™ and  Clyyoz = (A7C") @ (Q ' C)
containing the primitive vectors
Vpoo = €, ® ... @ ey and  U(_1)g(n-2) = (61 /\~~/\en) ® (el ®...®el)
N————’ ———
p times q — 1 times

respectively, and identify p(0,,_;, —p) and p(g,1,,_;) with the corresponding restrictions
of the canonical representations of U(n). The sets

{621 ®...Q€; 1§ai§n}
and
{(esn.. . Nep) e, @...®ep, , : 1<b; <n}
are bases for Cpop and C(_1)q(n—2) Tespectively.
Folland identified the spaces ®,4; and V¥,,; with subspaces and quotient spaces of the
spaces Cpqgr. The index k is equal to j in the case of ® and to j — 1 in the case of W.

The statements of the identifications are a little nicer with a bit more notation: we set

>
Cpyj = Cpgj and Cqu Cpg(j—1), and let quj = UPLU' and quj Upq(j—1)-

Now, when p > 0 and ¢ > 1, we define the map F qu C;)I’qj — B; by
F;IZIJ( a ®"'®6:p® (6c1 /\~'-/\6cj+1) X ep, ®...®€bq_1)
j+1
= Zay -+ ZayZby -+ Zby_, Z( ) 20y A e Ay Ay Aeea A Cojur s
i=1

; v
(when j <n —2) and the map F, qu : Cpyj — Bj by

Fz:I:z]( * ®..-®€%®(€cl /\.../\ecj)®eb1 ®...®ebq_1)
= Zqy - - ~Zap2b1 ce qu_lgcl VANIRAN ch
(when j > 1), where (. = 0yZ., when ¢ = 1,...,n (see [Fo]). Analogously, we set

D * * _
Fpoo(€a1 ®...®eap) =Zg, - Za

and
F(‘Iil)q(n_l)((el VANPAN en) Rep, @...Q ebq_l)
=Zp, .- qu71 Z(—I)H_ngicl VANIAN Ci*l AN <i+1 A A Cn .
i=1

We define v\ ; = Foo (v ); the v - are called “highest weight forms”.

Using Schur’s lemma, Folland identified the subspaces T,; in terms of the maps Féj
Proposition 4.12 ([Fo, Theorem 3, Theorem 5 and following]). Let 0 < j < n — 1.
For all (p,q,Y) € I; x Y}, the map F.\ . intertwines the U(n)-actions on C;rqj and Tpg;.

Paj
Moreover the restrictions qu]|vr'_ are nonzero, since

2 20tlgnpl (g —1)!
14 N = '
(14) ||7qu” p+q+tn—1) (q+7)
and

2 2Tlignpl(g —1)! )
(15) [Vpasl” = (p+n—3j).

(p+qg+n-—1)
In particular,

VT

qu( qu) quj-
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By using this description, we may prove that the product of z,, or Z,, with an element
of ®,,; or ¥,,; has at most three nonzero components with respect to the subspaces
®,q5 and V5 and consequently there are at most three nonzero summands in each of
the decompositions (9), (10).

Lemma 4.13. Let 0 < j <n—1. Forallm € {1,...,n} and (p,q) € I;,

(16) Zm®pgj € Ppg+1); D Lip-1)as >

(17) Zm¥pai © Yp(g+1)j © Ppaj © Y (p-1)g5 5

(18) 2m®pgj © Ppr1)q; D Ypgj @ Pp(g—1); 5

(19) 2m¥pgi © Ypt1)qs D Yp(g-1); -

Proof. To prove (16), we observe that V,,,; @ C" C Cpq; ® C" = Cp(g41); and
(20) Elgr1y; (0@ €m) = Zn Foi(v)

for all v € Cpg;. In particular
Zm Ppqj = Zsz?;j(%qj) < Fp(q+1)](quj ®C").

Note that p(1,0,,_;) is the canonical representation of U(n) on C™. It is well known (see
[VK], §18.2.10, formula (1)] or [GW, §7.1.4, ex. 5]) that the tensor-product representation
p(4,1;,0,,_5_;,—p) ® p(1,0,_;) decomposes as a direct sum of inequivalent irreducible
representations; more precisely

(Q71j7077,—2 j?_ )®p 1’071 1 @p qalpon 2— _77_ ) (05—1’17071 s))
seS

where S is the set of all s € {1,...,n} such that (¢,1;,0, 5 ;,—p)+ (0, ,,1,0, ) is a
nonincreasing n-tuple. It is easily seen that at most four direct summands are present;

accordingly the representation space decomposes as

4

_ @
(21) Voo ®C" = @ quJ’
=1
where
Vp(;} corresponds to p(qg + 1,1 1;,0p2- iy =D),
Vp(qj) corresponds to p(q, 2, 1] 1,0n—2—5,—D),
Vp(;]) corresponds to p(q, 1]+1, n—3—j —p),
Vp(qj) corresponds to p(q,1;,0,—2—j, —p + 1),
with the convention that Vp(;J = {0} if the corresponding n-tuple is not nonincreasing.
1 _
Note that quj = Vp(g+1)j-
Since F'® plg+1)j Cp(g+1); — Bj is an intertwining operator, a comparison of the de-

compositions of V,4; ® C" and B; into irreducible representations and an application of
Schur’s lemma show that

(1)
Fp(q+1)J(V J) ce p(g+1)j> Fp(q—i—l)]( ) = {0},
53 (3)y _ ()
Fy(q+1)i(Vogs) = {0} Foiqs1);(Vogi) S (o135

and (16) follows.

To prove (17), we first check that z,¥,q; C Fp(q+1)g(qu (j—1) ® C™), and then apply

the decomposition of V,,;_1) ® C" given by (21). Since F

plg+1)j is an intertwining
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operator from : Cpy41)(j—1) to By, Schur’s lemma implies that

(1) v
F(q+1)3(v;>q(J 1))Q\I/p(q+1)j7 F(q+1)3(v;>q(3 1)) {0},
N (3) V] (4)
F p(g+1)j (qu(jfl)) c q)qu7 F, p(g+1)j (qu(jfl)) < \II(Pfl)‘U‘

and (17) follows.
To prove (18), we observe that

ZmPpqj = £ (Vpas) € F(

Pqj p+1)qj (Cn* ® V;qu)

since C™* @ Vpgj © C™* @ Cpgj = Clpy1yg; and zm Fr;(v) = (pH)qj(efn ®

v € Cpqj. Now p(0,,_1,—1) is the canonical representation of U(n) on C™* and
p(Qn—17 _1) ® P(% 1]7 On 2—j> _p) = @p((Q7ljaQn—2—j7 _p) - (O 17077, s))
seS
where S is the set of all s € {1,...,n} such that (¢,1;,0, 5_;,—p) —(0,_1,1,0,,_;) is a
nonincreasing n-tuple (see [VKI, §18.2.10, formula (2)]). Accordingly
4
n* l
(22) C™ @ Vs = PV,

=1

v) for all

where

Vp(qj corresponds to p(q, 1j70n 2-j,—P— 1),

v (-2 corresponds to p

pq] q71]>0n 3— j)_]'?_p),

Vp(q] corresponds to p(q, 1J 15 0p—1— J,*p),

(
(
(
Vp(qj ) corresponds to p(q — 1,1;,0, 25, —p),
with the convention that szt;jl) = {0} if the corresponding n-tuple is not nonincreasing.

Note that V1 = Vip+1)qj- Again by Schur’s lemma we conclude that

Pqj
(=1)

F(p-i-l)ty (quj ) € Ppr1)q5s F(p-‘rl)qj( ) = {0},
(-3) ( 4)

F(p+1)qa (V;oqj ) € Wpgjs F(p+1)qa (V Pqj ) < Pp(g-1);

and (18) follows.

We prove (19) analogously, by noting that 2, ¥p,; C F¥ (C™ ® Vpg(j—1)) and

(p+1)aj
that
(=1 v (-2) —
Fiying (qu(a 1) € ¥oprnes F(P+1)QJ(VPQ(J y) =10},
(=3) y_ v (—4)
F(p"l‘l)qj (qu(J 1) ) ={0}, F(p+1)qj (qu(J 1)) € Vp(g-1);
by Schur’s lemma. O

Proposition 4.7 and Lemma 4.13 show that all the coefficients not explicitly mentioned
in Theorem 4.5 vanish. In order to compute the remaining coefficients, the following
consequence of the symmetry of Clebsch—Gordan coefficients will be useful (compare
with [VKI, §18.2.1]).

Lemma 4.14. Let p and v be irreducible unitary representations of a compact group
G on Hilbert spaces V* and VV. Let H be a minimal nontrivial invariant subspace of
VHE® VY with respect to the representation p @ v of G and let & be the subrepresentation
of u®v on H. Suppose that & appears with multiplicity 1 in p®v. Let Py € L(VFQVY)
be the orthogonal projection onto H and {e}}, be an orthonormal basis of V¥. Then

dim V¥ .
dim H 2
P NP =
> 1Puto eI = g bl
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for allv e V#.

We give a proof of this lemma in Section 6. Now we can determine some of the
coeflicients in the decomposition.

Proposition 4.15. Let 0 < j <n—1. For all YT €Y; and all (p,q) € I,

’“VT( +1); 2
= plq J
(23) 612111‘(Q+1)j = H H
qu
H7T+1> I
p q)
(24) g(ngl)qu || H
pq_7

Proof. We consider the case where T = ®. Let PV

(1) € L(Vpgj ®C™) be the orthogonal
projection onto Vj,(441);. Then, by (20),

n ® ST 2
) pr(qﬂ)j(zm%qj)H = Z H i+ 15 (o1 (Vpa ®em))H
m=1

2
’ n

_ HFIjIzq-&-l)j(”p(q-s-l)j) Z ‘

2
p(q+1)J q+1)] (Upgj ® em))H

2
1%
Botgr1)j(Upej © em)H :

va(qul)jH2 m=1

where we have repeatedly used the fact that F'® plg+1)] is an intertwining operator, and

more precisely that F( Vioa+1)j — Pp(g+1); is a multiple of a unitary

a+1)j |V o@D
operator.

Note that F'® a1); (Up(a+1)7) = 7‘1’(%1) .. Moreover p(q+1,1;,0,,_;_o,
once in p(q,1;,0,_;_2,—p) ® p(1,0,,_1) and p(q,1;,0,_; o, —p) is contained once in
plg +1,1;,0,_;_5,—p) @ p(0,_1,—1) (see the proof of Lemma 4.13). Therefore from
Lemma 4.14, we deduce that

—p) is contained

2 .
Z H p(g+1)j ZMquJ H2 = H'Y]§>(q+1)jH2 2] 2’ dm?vp(q-‘_l)j
[p(a+1); | dim Vg
Since [|vpg;ll = ||vp(g+1);]|, formula (23) follows from Proposition 4.7. The other formulae
are proved analogously. O

In the following lemma, we collect some results, which may be easily deduced from
(14), (15), (7) and Lemma 4.10.

Lemma 4.16. Let 0 < j <n—1. For all (p,q) € I;,

2

Lo}

H“V(p+1)qj __p+1
g l* Pt
& 2

‘%(qﬂ)jH I

g l* atd patn
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when j <n—2, and, if j > 1, then

2

HV&HM _p+l ptltn-—j
hll* - pEn=d ptatn

?

p(g+1)j H _ q
s ll* pratn

If0<j<n—2and(p,q) €I; NI, then

2 .
)‘(p+1)qj _ p+n—y

)‘12%1] Cop+n—j—1
2 .
Ao+ _ 41+
Apai g+

Moreover, if 0 < j <n —2, then

dim(b(p+1)qj_ p+qg+n  p+tn .p+n—j—1_dim\1’(p+1)q(j+l)

dim®,,; p+g+n—1 p+n—j p+1 dim Wpq(;41)

dim®pg1);  ptgtn g+ gtn-—1  dimPpginGin
dim @, p+qg+n—1 q qg+7+1 dim W0 41) ’

the equalities on the left hold if (p, q) € I; and those on the right if (p,q) € Ij+1. Finally,
if1<j<n-—2and(pq) € Ij, then

dim Wpg; J ptn—j—1 q+j

dim®,,; n-1-j p+n—-j q+j—1

Now we can compute all the coefficients.

Proof of Theorem 4.5. As already observed, the coefficients which are not explicitly men-
tioned in the statement of Theorem 4.5 vanish by Proposition 4.7 and Lemma 4.13. The
remaining coefficients will be computed in four steps.

Step 1: we find 6ppq(q+1)3’ 6§(§+1)qu’ 51‘3;\5(11-&-1 )3’ and 6P(P+1)QQJ These coefficients
may be computed immediately by inserting the expressions from Lemma 4.16 into the
corresponding formulae in Proposition 4.15.

Step 2: we find 5T and 67 By Corollary 4.8,

p(p—1)qqj ppa(g—1)j°
dim @y (g11); 5o dimq)(pfl)qj 5P —1
dim @,,,; pa(a+1)j T dim @,,,; p(p—1)qqj ’
hence
5O dim @, 1— dim (I)p(q-s-l )i 5o®
p(r=1)499i — Jim D (p1)q) dim @,,, ppa(q+1)j
Analogously,
sYv dim W, 1— dim ‘I’(p+1)q1 A
pra(a=1)i ~ Jim T pg—1) dim @, p(p+1)aqj

Combining the expressions from Step 1 and Lemma 4.16 with these formulae, we complete
Step 2.
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Step 3: we find (5p(p Daqj and Jppq(q 1)) The coefficients 6p(p Dag(n—1) and (5ppq(q 10

may be computed as in Step 2. For the other coefficients, from Corollary 4.9 we see that

)\2

A _ pq(j—1) 5<1>

p(p—1)qqj — )2 p(p—1)qq(j—1)°
(p—1)q(5—1)
)\2

P Paj__ sV

ppa(q—1)j — N2, “ppa(g—1)(G+1)

p(g—1)j

and the step follows from these formulae and the expressions from Step 2 and Lemma 4.16.

Step 4: we find 57 ppqu and 6g’pqq7 Corollary 4.8 implies that
SUd dlm \ijqj dlm \I/ q+1 j dlm \Ij(pfl)qj RV
6ppqq] T 1= T 13— ; g —1)qqj
dim ®,,,; dim ¥, ppq(g+1)j dim W, p(p—1)qqj
SOV dim @54, 1— dim ‘I’(zﬂrl)qa 522 dim ,,(5—1), §o2
ppaqi dim W, ; dim @, plp+aai —  JQim Dy ppq(q—1)j

and the results follow by combining these formulae with the expressions from Steps 1
and 3 and Lemma 4.16. O

Corollary 4.17. Let 0 < j <n—1. For all (p,q,Y) € I; X Y,

TY' T’
()P Kl (zw) = Y et Ky (zw),
(p',q', X" €EL; xY;

where in particular

P
6ppqqy 5ppq(q+1)15pp(q+1)qa +5 p(p— 1)qq15(p 1)pqqj’

IRVA
gppqu 6p(p+1)qu§(p+1 pquJréppq(q 1)15pp(q 1)qj

Lemma 4.18. Let 0 < j <n—1. Forall (p,q,T) € I; XY},

TY (2+p)(2+Q).

0<ell <1, 1-— <
pPqqj (2_’_p+q)

PPAa]
Proof. We consider the case where T = ® and 1 < j < n — 2; the other cases may be

checked similarly. By Theorem 4.5 and Corollary 4.17, Eppqu is equal to

gt1l+5 ¢  gq+n-1 n ptn—-1 p+tn-2-7 D
p+qg+n g+j p+gq+n—-1 p+qg+n—-2 p+n—-1—-j p+qg+n—1
gt+1+j5 ¢ 0 ptn—1 p+tn—-2—j

- (1—0
T ptatn q+7J ptqg+n—2 p+n—1—j ( )

say, where 0 < # < 1. Here ¢ # O since j > 1. If p+n—2—j # 0, then%pqu is

a convex combination of two numbers, each of which lies in the interval (0,1), hence

0< sg’;;q] < 1. When p+n —2—j =0, one of the summands is 0 and the other lies in

0,1).

Next we write
1_€c1><1> -:M+Rj,

pPprqqy
where
M1 q o gtn—-1  p4n-1 P
p+q+n p+qg+n—-1 p+g+n—2 p+qg+n—1
q 1 g+n—1 p+n—1 1 p
Rj = — : .

ptqa+n q+j prgtn—1 prgtn—2 ptn—-1—j ptrgtn—1
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It is easy to see that |R;| < (24+p+4q) %(24 p)(2+ ¢) when 0 < j <n — 2. Further,

-1 -1
M:(l— q > q+n +<1_ p+n > p
p+qg+n/p+g+n—1 ptaq+n—2/p+q+n—1
_ ptn  qtn-—1 g—1 ' D
p+qg+n p+qg+n—-1 p+qg+n-2 p+qg+n-—-1

and the estimate M < (2 +p+q)2(2 +p)(2 + q) follows immediately.

The bounds for 5ppqu may be established similarly, or alternatively by using the
P .
symmetry eyt . = Elam1)(g-1)(p+1)(p+1)(n—1—j) (se¢ Remark 4.6). O

5. PLANCHEREL TYPE WEIGHTED L? ESTIMATES
We now prove a “weighted Plancherel estimate”. We shall use the weight w given by
w(w,z):|1—|<w,z>|2|1/2 Yw,z € C™.
We say that K is a kernel polynomial if
(25) K= > el
(p,q,V)EL; XY

where only finitely many complex coefficients c;fq are nonzero.

We define the linear operators M? on the space of kernel polynomials for all § € [0, 1]
by
MK = Z (1- Egp2q3)0/2 o KI};M’
(p,q,T)EI; XY;

where K is given by (25) and 5ppqu by Corollary 4.17. Note that M is the identity

operator. We write M in place of M.

Proposition 5.1. Let 0 < j < n —1. There is a constant C, depending only on n and
7, such that

lw(- w)K (-, w)lggll, < CIHIME(, w)lygll, — VYweS
for all kernel polynomials K.

Proof. We write K = Y vy S7_o K, where KX consists only of those terms in (25)
corresponding to the given Y for which p 4+ ¢ = ¢ (mod 3), that is,

T T
Ky = Z c oBpqj>

(p,9)€I}

where If denotes {(p,q) € I; : p+q={ (mod 3)}. Then MK = > rey, Z?:o MK/[,
and Proposition 4.4 implies that

|||MK( ‘HSH2 Z Z!HMKZ )|HSH;

TeY; (=0
Since
[|MEF (- 0)|ggll, S NME( w)lgs]l,
for T €Y, and £ =0, 1,2, it suffices to prove that

(26) oo w) Ky w0) gl < CIMEECw)]
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‘We observe that

oo w) B (- w) s

(27) /|K/ zw|HSda /|zw }KZ zw|HS

:|||KE w}Hng_’H w) K "w|HS||2

To prove (26), note first from Proposition 4.4 that

2 2
NEFCwlasla = 30 el 185wl -

(p@)€I;

2 Observe that

A similar expression is needed for H’( ,w)y KX(-, w)|HS||2

2
HK’“’ K (-w ’HSH

:/'“" < B (2w)s D0 g Ky (2 w)>HSdo<z>

(p.a)€lf (»'.q")€lf

= > > cpqcp,q//< zw) Ko (z,w), (2,w0) K Sy (2,0)) g do(2) .

(pa)elf (v',q")ET}

We proved in Theorem 4.5 that

w T o
(z,w) Kpgi(z,w) =6 p+1)quK(p+1)qJ(Z w) +5ppq(q 1 K p(g—1); (% w),

o N Y
(2, >qu3( w) =0 (p+1)quK(p+1)qJ(Z w)+5ppq(q 1)j Kp(q 1)]( ;W)

oy v
+ 51920‘1‘1] KP‘IJ ( )

Hence, from Proposition 4.4, if p+ ¢ =p' + ¢’ (mod 3), then

/S<(z,w> K;Zj(z, w), (z, w) Kgq i(z,w)) g do(z) =0
unless (p,q) = (p',q’). Thus, from Corollary 4.17,

2

|cpq‘ /l 2 w pq](z,w),K;qu(z,w»Hs dU(z)

(pg)€lf

Z Z ’ng|25;fp¥<;q’j /S<K1;rqj(z w) K;:zj(z7w)>Hs da(z)

(p,g)€lf (P',a",Y)EL; XY

= Z |Cpq| 6ppqq] /S<K1;rqj( w), Kzfzj(z’w»HS do(z)

(pg)€lf

2.rr 2
- Z A p;quJH| pai( )|HSH2

(p,a)Elf
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Comparing the expressions for H|K}(,w)|HSH§ and ||[(-,w) K;r(-7w)|HSHz above,
from (27) we obtain

(- w) KT ()| s

2 2

= \HK}(vwﬂHng - H|<7“’>‘ |KZT('7“’)’HSH2

5 2

= Z ‘c;fq’ (1_5;(131(1]') H|K;qu("w)|HsH2
(p.a)€l]

= IMEF (- g
proving (26). O
Corollary 5.2. There is a constant C, depending only on n and j, such that
(28) [l ) 1wl |, < C MK w)lygll,  Vwes
for all kernel polynomials K and all 0 € [0,1].

Proof. Let T be the linear operator that maps a sequence ¢ = (ng)(p’q"r)elj xy; of com-
plex numbers with a finite number of nonzero terms to the associated kernel polynomial
K, defined as in (25). Then (28) is equivalent to the boundedness of the operator T
between suitable weighted Lebesgue spaces.

More precisely, define EZ to be the weighted space of sequences c¢ such that

. 1/2
o= X (e T x )
Cllo = €ppaqi a(§) Cpq 0.

(p,q,T)EL; XY;

Moreover, for any fixed w € S, let £ be the vector bundle Hom(A%7, A%7) on S, with
fibre £, = Hom(A%7 A%7) endowed with the Hilbert—Schmidt inner product for all z € S,
and define the weighted space of sections I'y = L?(€, |w(z7w)\29 do(z)). Then, as a
consequence of Proposition 4.4, (28) is equivalent to the boundedness of the operator T
from 63 to I'y.

On the one hand,

2 2
[l ) 1K C s, = I 0)lsl; = (MK w)lysll; — vwes
trivially, and on the other, from Proposition 5.1,
2 2
llw(- s w)[ (- w)lgglly < CNME( w)lggll,  VweS.

Hence T is bounded from #2 to 'y and from ¢ to I';. A standard application of the
Stein—Weiss theorem on interpolation with change of measure [StWe] to the operator T'
then yields (28) for all 6 € [0, 1]. O

As a corollary to Proposition 5.1, we now prove an analogue of the “Plancherel-type
estimate” in Assumption 2.5 of [CS].
For all positive integers i, set

HY ={(p.a) e I; : (i — 1) < (A2 <} .

Proposition 5.3. Suppose that 0 < 0 < 1/2 and 0 < j < n — 1. There is a constant
C, depending only on n and 6, such that, if N is a positive integer and K is a kernel
polynomial as in (25) with cgq =0 if AL . ¢ (0, N], then

Paqj

Jlst- ) ol < NS e,

=2
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where

C; = max{‘cT

Pq,

2
:Tev;, (p,q)EHf}-

Proof. Fix a kernel polynomial K as in (25) with ¢, = 0 if )\;f(” ¢ (0, N]. Note that

()\;)rqj )? assumes nonnegative even integer values, hence it is at least 1 if it does not vanish.

Now Proposition 4.4 implies that

2
IR wlasla= S (=) el 1m0 s
(p,q,T)EL; XY}

=o(s)™! Z (1- 5prqu) |C q| dim Tpg;
(p q,Y)el; xY;

Z Ci Z Z ppqq]) dim Y.

=2 TEY; (p, q)eHZT

In view of Corollary 5.2, it suffices to prove that

(29) Z Z ppqu) dim T, < 291

TeY; (p, q)GH?,f

for all integers ¢ > 2.
Recall that

A =2q+i)p+n—34) and  (AV)*=2(q+j—-1(p+n—j+1).

We may write both expressions for the eigenvalues as 2p'q’, where p’ = p+n — j and
¢ = q+j in the first case, and p’ =p+n—j+1and ¢ =¢+j—1in the second When
(p,q) € I; N H, it is clear that both p’ > 1 and ¢’ > 1 and also p'q’ ~ i?. Further, for
such (p, )

dim YTy S (') (0" + ')
by Lemma 4.10, and
|_exx < P4
PPaas () 4 gl
by Lemma 4.18. Hence we are reduced to proving that
('q)? _ () —
2. Grow PO HHIEOO
p'21,q'>1
(i-1)?<2p’q/ <i?

or equivalently, using the fact that p'q’ ~ i2,
;o\ 1-20
P +aq ‘
(39) 2 ( e ) !

p'>1,¢'>1
(i—1)*<2p'q'<i?

for all k € {0,...,n — 2}.
By symmetry, it suffices to treat the part of this sum where p’ > ¢/, and so in particular
q’ <. Since the number of integer points in an interval is within 1 of the length of the
interval,
2i —
2¢q’

-1

2q’

1 2i
—1<card{p' €Z:(i—1)*<2'¢ <’} <
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when 1 < ¢’ < ¢, whence

, 7N\ 1—20 . 1—260
> (5 < () (0)
p'q 157« N q

1<q'<p’
(i—1)*<2p’q’ <i?

1\2°2¢
1-26, 1-26
co Y (L) ey
1<g’'<i 1<g’<i

S s
as required. The implied constant tends to oo when 6 tends to 1/2. Indeed, using both
bounds for the cardinality above shows that the number of integer points in the region
between the two hyperbolae under consideration is of the order of ilog . O

Finally, we prove our main results. From now on we assume that 1 < j <n —2 (and
son > 3).

Proof of Theorem 1.1. Note that )\gqj # 0 for all (p,q,T) € I; x Y;. Therefore O, on
B, has trivial kernel and the operator F'({J;) does not depend on the value of F' in 0;
consequently we may assume that the multiplier F' vanishes at 0. To conclude, it suffices
to apply Theorem 2.1 to the operator A = [J, acting on sections of the bundle A% on the
metric measure space (S, o, o), with weight = w? and “dimension constant” d = 2n—#,
for all 8 € (0,1). Let us check that the hypotheses of Theorem 2.1 are satisfied.

It follows from the local behaviour of the distance g (see (5)) that

o(B(z,7)) ~ min(1,7?")

for all z € S and r € Ry (see [R, Section 5.1]), and Hypothesis (i) follows. Since both o
and w are U(n)-invariant, if zo = (1,0,...,0) and w = (wy,w’), then

/ w(z,w) ™% do(w) = / lw'|~° do(w) <27,
B(z,t)

B(z0,t)

which is Hypothesis (ii). Hypothesis (iv) follows from the finite propagation speed prop-
erty of Oy (see Section 3).

To show Hypothesis (iii), from (2), Lemma 4.3, Proposition 4.4 and (29) it follows
that

Z (1+(’/’)\T )2)726d1mT1’"Ii

(1 +T2Db)JHQL2(S) paj o (S)
(p,q,T)EI; XY

—L>°(S) S

oo

SO @477 YT dim Yy,

YeYj (p,q)eHY

-
||
o

(1 + ,,427:2)72@7:21’7,71

AN

AN
i
V)

min(1,7*") "' ~ o(B(z,7)) 7"

for all z € S and all » € R, whenever the integer £ is greater than n/2.
Finally, suppose that the Borel function F' : R — C is supported in [0, N]. Then, by
Lemma 4.3, the kernel polynomial K F(v/En) satisfies the assumptions of Proposition 5.3;
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consequently, for all 8 € (0,1),

/S’KF<\/E>(Z’M)‘iS [w(z,w)|” doz)

N
SN Y ma{[ PO Y €Y () € )

PqJ
i=2
N
1
SN sup [F(V))?
i—o AE[i—1,4]

n— 2
SNIF(N lln e
establishing Hypothesis (v). O

Proof of Theorem 1.2. If z € C and Rez > (2n — 2)/2, then the function F' : R — C
given by F(X) = (1—A?)7 belongs to H*(R) for some s > (2n —6)/2 and 6 € (0,1), and
its H*(R)-norm may be bounded uniformly in Im z. Therefore by Theorem 2.2 applied
with d = 2n — 6 it follows that, for all p € [1,00], (1 — t0Jy)Z is bounded on LP(A%7)
uniformly in Im 2z and in ¢ € R,. On the other hand, if Re z > 0, then trivially (1—t[J,)%
is bounded on L?(A%7) uniformly in ¢t and 2. The result for intermediate values of Re z
then follows by analytic interpolation (see, for example, [StWe2, §V.4]). O

6. SOME REPRESENTATION THEORY

To establish Lemma 4.14, which we used in Section 4, the following enhanced version
of Schur’s orthogonality relations will be useful. To state the result, we recall that,
given a unitary representation of a compact group G on a Hilbert space V', and vectors
v,w € V, the function ¢, given by

(@) = (m(z)v, w) Vz € G,

v,w

is called a matrix coefficient of 7.

Lemma 6.1. Let m be a unitary representation of a compact group G on a Hilbert

space V., and let H C'V be a minimal nontrivial invariant subspace of H, such that the

subrepresentation of m on H has multiplicity 1 in 7. If v,w € H and v',w’ € V, then
(v, V') (W', w)

(DT s O ) = dimH

where the inner product on the left-hand side is the inner product of L*(G) with respect
to the normalized Haar measure.

Proof. Define E € £L(V) by Eu = (u,w)w', and let E be the average of E over G, as
in the proof of Proposition 4.7. From the definition of E we obtain immediately that
trE = trE = (w,w) and E|g. = 0, since w € H and H is m-invariant. On the
other hand, F is an intertwining operator for = and consequently E(H) C H by Schur’s
lemma, given that the subrepresentation of 7 on H has multiplicity 1 in 7. Therefore,

again by Schur’s lemma, E is a multiple of the orthogonal projection Py on H and
E = (dim H)~! (w', w) Py since tr Py = dim H. On the other hand

<E~’v7v’> :/ (r(z” " En(z)v,v') dz :/ (m(z)v, wy (W', 7 (@) w) do = (@] 1, BLr 1)
G G
and the conclusion follows. d

By using these orthogonality relations, we may now prove the representation-theoretic
result that we needed in Section 4. For the reader’s convenience, we restate the lemma.
In this argument, the ranges of sequences and summations are evident, and we usually
omit these.
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Lemma. Let y and v be irreducible unitary representations of a compact group G on
Hilbert spaces V¥ and VV. Let H be a minimal nontrivial invariant subspace of VF @ V"
with respect to the representation u @ v of G and let & be the subrepresentation of p ® v
on H. Suppose that & appears with multiplicity 1 in pQv. Let Py € LIVF @ VY) be the
orthogonal projection onto H and {ej}, be an orthonormal basis of V. Then

dim H 9
2 (2 =
% [1Pr (v ef) dim VH o]

for allv e V#,

Proof. First, p appears with multiplicity 1 in £ ® ¥, where ¥ is the contragredient rep-
resentation to v. This is easily seen by writing the multiplicity as an inner product of
characters and exploiting the formulae for characters of tensor products and contragre-
dient representations (see, for example, [Kn, §IV.2, p. 243]).

Let {efn}m be an orthonormal basis of H. Then

2 2
SIPaw@e)* =D D (S v@el)].
L L m
On the other hand, by Lemma 6.1,
2 : ® ® :
(e veel)| = dlmH<¢ZEL;§n’¢5®ZZW®€Z> = d1mH<¢i§me§n,¢ﬁj7v ZZ@Z> :
Note now that ¢, .. = QSZ?»@?’ where {e;/}Z is the dual basis to {e}},. In particular

3 2 _ g 3 z — di £Qp
(eSv@er)|” = dimH (¢ o 0l g 0h,) =dimH (6507 . o . 0h,).
Since p occurs in £ ® ¥ with multiplicity 1, there exists a subspace W of H ® (V¥)* such
that the subrepresentation 1 of £ ® v on W is equivalent to u, and consequently there

exists w € W such that |w| = [[v] and ¢}, ,, = ¢} ,. In particular, again by Lemma 6.1,
2 dimH 5 2
(ebo@er)? = S e o ep )

(For irreducible representations, and vectors in orthonormal bases of the representation
spaces, this property is known as the symmetry of Clebsch—Gordan coefficients—see, for
instance, [VKI, §18.2.1]). Since {ef, ® eZ}m , is an orthonormal basis of H @ (V*)*, by

summing the above equality over m and ¢ we obtain

2 dim H 2 dim H 2
Pyv®e) = — w||" = —— ||v
S IPatv® DI = g ol = oo o
and we are done. (]
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