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Abstract

A search is performed for the as yet unobserved baryonic Λ0
b→ Λη′ and Λ0

b→ Λη
decays with 3 fb−1 of proton-proton collision data recorded by the LHCb experiment.
The B0→ K0

Sη
′ decay is used as a normalisation channel. No significant signal is

observed for the Λ0
b→ Λη′ decay. An upper limit is found on the branching fraction of

B(Λ0
b→ Λη′) < 3.1× 10−6 at 90% confidence level. Evidence is seen for the presence

of the Λ0
b→ Λη decay at the level of 3σ significance, with a branching fraction

B(Λ0
b→ Λη) = (9.3+7.3

−5.3)× 10−6.
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1 Introduction

One of the interesting features of SU(3) flavour symmetry breaking in the light neutral
meson sector is the mixing of singlet and octet states in the pseudoscalar mesons. The
physical η and η′ particles can be expressed as an admixture of light quark and strange
quark flavour eigenstates [1],(

|η〉
|η′〉

)
=

(
cosφp − sinφp

sinφp cosφp

)(
|ηq〉
|ηs〉

)
, (1)

where the quark states are defined as

|ηq〉 =
1√
2
|uu + dd〉 and |ηs〉 = |ss〉 , (2)

and φp is the mixing angle between light and strange quark states. In principle all
possible SU(3) flavour singlet states that contribute to the physical particles, including
the gluonic wavefunction, |gg〉, and the heavier quarkonia wavefunctions, |cc〉 and |bb〉,
must be considered. Of these states, only |gg〉 is considered to contribute to the mass
eigenstates [2–4], and this only occurs in the heavier η′ meson [1,5]. Introducing the gluon
mixing angle φG, the η′ wavefunction becomes

|η′〉 = cosφG sinφp|ηq〉+ cosφG cosφp|ηs〉+ sinφG|gg〉 . (3)

Many phenomenological and experimental studies have been carried out to determine the
values of the mixing angles, and measurements are in the range φp ≈ 38 − 46◦ [6–17].
Refs. [15–17] also contain measurements of the gluonic mixing angle, which are consistent
with zero, albeit with large uncertainties. Most recently, the mixing angles have been
measured by the LHCb experiment using B0

(s) → J/ψη(′) decays, and are found to be

φp = (43.5+1.5
−2.8)◦ and φG = (0± 25)◦ [18].

One consequence of the mixing is the difference in branching fractions for b-hadron
decays to final states containing η and η′ mesons. The gluonic mixing alters the branching
fraction for the decays to η′ mesons compared with the equivalent decay to η mesons.
Possible Feynman diagrams for amplitudes contributing to the Λ0

b→ Λη(′) decays are shown
in Fig. 1, with Fig. 1(a) showing the dominant b→ s transition via a penguin diagram.
Due to the gluonic contribution of the wavefunction, extra Feynman diagrams of similar
amplitude are available for the η′ decay [19]. These include the possible non-spectator
contribution, where the light quark radiates a gluon which can form an η′ meson, as shown
in Fig. 1(b), and the anomalous contribution, where an excited gluon in the decay can
radiate an η′ meson, as shown in Fig. 1(c). The amplitudes for these extra processes
can interfere to enhance or reduce the branching fraction to η′ mesons. For example, the
branching fraction for the B0→ K0η′ decay1 has been measured to be (6.6± 0.4)× 10−5

which is over 50 times larger than the branching fraction for the B0→ K0η decay [20].

1Charge-conjugation is implied throughout.
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(a) Dominant electroweak loop diagram. (b) Non-spectator diagram.

(c) Anomalous diagram.

Figure 1: Feynman diagrams for the Λ0
b→ Λη(′) decay. The non-spectator and anomalous

diagrams are available only to the η′ through the gluonic contribution.

By measuring the relative branching fractions of many different decays to final states
containing η and η′ mesons, it is possible to extract a measurement of the mixing angle φp.
Decays of b-baryons to final states containing η or η′ mesons have not yet been observed;
however, the branching fractions of the Λ0

b decays have been estimated to be in the range
(1.8−19.0)×10−6 [21], depending on the model used to calculate the hadronic form factors.
The interference between the anomalous and non-spectator contributions cancel in such
a way that the branching fractions for the Λ0

b→ Λη′ and Λ0
b→ Λη decays are expected

to be similar. Using the QCD sum rules approach to calculate the hadronic form factors,
the branching fractions are predicted to be in the range (6.0 − 19.0) × 10−6. The pole
model approach predicts smaller branching fractions, in the range (1.8− 4.5)× 10−6. For
comparison, if the anomalous contribution is neglected, the branching fraction for the
Λ0

b→ Λη′ decay would increase to (33− 40)× 10−6 [21].
This paper describes the search for the Λ0

b→ Λη′ and Λ0
b→ Λη decays and measurement

of the relative branching fractions with respect to the B0→ K0η′ decay, using the 3 fb−1

of data in pp collisions collected in 2011 and 2012 by the LHCb experiment.

2 LHCb detector, trigger and event simulation

The LHCb detector [22,23] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
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includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region [24], a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes [25] placed downstream of the magnet. The
tracking system provides a measurement of momentum, p, of charged particles with a
relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The
minimum distance of a track to a primary vertex, the impact parameter, is measured
with a resolution of (15 + 29/pT)µm, where pT is the component of the momentum
transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov (RICH) detectors [26]. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter.
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers [27].

The trigger [28] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, in which all charged particles with
pT > 500 (300) MeV/c are reconstructed for 2011 (2012) data. The software trigger
requires a two-, three- or four-track secondary vertex with a significant displacement
from any primary pp interaction vertex (PV). At least one charged particle must have a
transverse momentum pT > 1.7 GeV/c and be inconsistent with originating from a PV. A
multivariate algorithm [29] is used for the identification of secondary vertices consistent
with the decay of a b-hadron.

In the simulation, pp collisions are generated using Pythia [30] with a specific LHCb
configuration [31]. Decays of hadronic particles are described by EvtGen [32], in which
final-state radiation is generated using Photos [33]. The interaction of the generated
particles with the detector, and its response, are implemented using the Geant4 toolkit [34]
as described in Ref. [35].

3 Event selection

Candidate signal events are identified by reconstructing the Λ0
b→ Λη′ and Λ0

b→ Λη decays.
The decay B0→ K0

Sη
′ is used as a normalisation channel for the measurement of the

branching fractions of the signal decays.
The long-lived K0

S and Λ particles are reconstructed through the K0
S → π+π− and

Λ→ pπ− decays. The reconstruction of these particles is labelled according to where in the
LHCb detector the decay occurs. If the particle decay products produce hits in the vertex
detector then the candidate is classified as Long (L); otherwise the candidate is referred
to as Downstream (D). Since the track resolution is different for the two categories, the
selection is optimised separately for L and D candidates.

The candidate η′ mesons in the Λ0
b→ Λη′ decay are reconstructed as η′→ π+π−γ and

η′→ π+π−η, where the η meson decays into two photons. The candidate η mesons used
in the reconstruction of the Λ0

b→ Λη decay are reconstructed with the η→ π+π−π0 decay,
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with the π0 meson decaying into two photons. Since the charged tracks in the η→ π+π−π0

decay can be used for the trigger selection, the analysis is based on this mode rather than
the neutral decays of the η meson, which would have a lower efficiency.

Events that pass the trigger selection are subject to further requirements consisting
of kinematic, particle identification and multivariate selections. A minimum requirement
is placed on the fit quality of the reconstructed vertices. When reconstructing the B0

and Λ0
b candidates, the direction angle2 and the impact parameter are required to be

consistent with the reconstructed particle originating from a PV, and the calculated
lifetime should be significantly different from zero. The B0 (Λ0

b) candidates are required to
have pT > 1.5 (1.0) GeV/c. The K0

S mesons are required to have pT > 1.2 GeV/c and a flight
distance significantly different from zero. The invariant mass of the π+π− pair should be
within 14 MeV/c2 of the known K0 mass [20] for events in the L category, and be within
23 MeV/c2 for events in the D category, where the mass window is chosen to be three times
the resolution of the invariant mass. The Λ baryon should have pT > 1 GeV/c and an
invariant mass within 15 MeV/c2 of the known Λ mass [20] for the L category, and within
20 MeV/c2 for the D category. The η′ and η mesons from B0 and Λ0

b decays are required
to have pT > 2 GeV/c. Reconstructed π+π−γ and π+π−η candidates are required to have
an invariant mass in the range [0.9,1.05] GeV/c2 and π+π−π0 candidates should have an
invariant mass in a 150 MeV/c2 window around the known η meson mass [20]. Charged
tracks are required to be of good quality with pT > 300 MeV/c. The η mesons from η′

decays, and π0 mesons from η decays are reconstructed from two photons which can be
resolved in the calorimeter, with an invariant mass in a 50 MeV/c2 window around the η
or π0 mass [20], and the η or π0 mesons are required to have pT > 200 MeV/c. Finally,
photons are required to have a transverse energy ET > 200 MeV, and a large p-value for
the single photon hypothesis, in order to reject background from misidentified π0 mesons
where both decay photons form a single merged cluster in the calorimeter.

To improve the resolution of the reconstructed invariant mass, the full decay chain is
refitted, where the tracks and displaced vertices are constrained, with the position of the
PV of the B0 or Λ0

b candidate fixed to the PV refitted using only tracks not associated to
the b-hadron decays, and the invariant mass of the K0

S, Λ, η′ and η particles fixed to their
known masses [36]. Candidates with a poor quality in this constrained fit are rejected,
which removes approximately 90% of background from the L category and 20% of the
background from the D category.

Information from the RICH detectors and the LHCb calorimeter system is used in
a neural network to construct a probability that a track is a pion, a kaon or a proton.
This particle identification (PID) information is used to reduce the background from
misidentified kaons, protons and pions.

A boosted decision tree (BDT) [37,38] is used to obtain further discrimination between
signal and background events. A different BDT is trained for each signal channel and the
normalisation channel, separately for the L and D categories and the 2011 and 2012 data
samples. Samples of simulated events are used to model the signal decays, and events

2The direction angle is defined as the angle between the momentum vector of the particle and the
vector between the PV and the decay vertex.
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in data with a reconstructed invariant mass greater than 100 MeV/c2 above the B0 or Λ0
b

mass [20] are used to model the combinatorial background.
In this analysis, the numbers of candidates in both the signal and the background

samples are limited and the performance of the BDT is improved in two ways. In the
simulated signal sample no requirements are placed on the trigger selection. Instead, the
kinematic distributions of the candidates are reweighted in order to match the harder
distributions of candidates which pass the trigger selection. In addition, the signal and
background samples are split in two, and two BDTs are trained for each channel. The
first half of the sample is used to train a BDT which is applied to the second half of the
data, and vice versa for the second BDT. This way, all data are available in the training
of the BDTs, while any bias in the multivariate selection is avoided.

The BDT uses a set of variables with discriminating power between signal and back-
ground, including kinematic variables and vertex and track quality variables, and combines
them into one variable which separates signal and background well. The selection is
optimised using the figure of merit εMVA/(a

2
+
√
NB) [39], where εMVA is the selection

efficiency for a particular BDT selection, a = 3 is the targeted signal significance in stan-
dard deviations, and NB is the number of combinatorial background events reconstructed
within the signal region and passing the BDT selection, found by performing an unbinned
extended maximum likelihood fit to the sidebands of the data and extrapolating this fit
into the signal region.

The final stage is to ensure that each event passing the selection contains exactly one
B0 or Λ0

b candidate. Due to the poor invariant mass resolution of the η(′) mesons, it is
possible for low energy photons from the underlying event to be reconstructed with signal
pions to create a second η(′) candidate. This happens in about 10%− 20% of events which
pass the selection. In this situation the candidate with the highest ET photon is kept, and
all other candidates in the event are rejected.

The efficiency of this selection is (0.032±0.001)% in the L category and (0.030±0.001)%
in the D category. This includes the efficiency of reconstructing and selecting events which
are simulated within the LHCb detector acceptance.

4 Results

4.1 Fit results and signal yields

An unbinned extended maximum likelihood fit to the candidate b-hadron mass spectrum
is performed on the data which pass the selection. The model used for the fit to both
the signal and normalisation channels consists of an exponential function to describe the
combinatorial background, and a sum of two Gaussian functions with a common mean to
describe the signal. The ratio of the resolutions of the two Gaussian functions and the
ratio of the signal yields are obtained from a fit to the mass distribution in simulated signal
samples. These parameter values are used in the fit to the data, and only the resolution and
signal yield of the first Gaussian function and, for the normalisation channel, the common
mean of the two Gaussian functions are allowed to float. The resolution of the reconstructed
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Figure 2: Mass distribution of the selected B0→ K0
Sη
′ (η′→ π+π−γ) candidates in the 2011

and 2012 data, reconstructed in the L (left) and D (right) categories. The results of the fit, as
described in the text, are overlaid.

K0
Sη
′ invariant mass is 30.0 ± 1.5 MeV/c2 for L candidates and 29.4 ± 1.3 MeV/c2 for D

candidates. For the signal channels, the resolution of the reconstructed Λη′ invariant mass
is 29.1± 1.8 MeV/c2 (31.1± 4.5 MeV/c2) for candidates reconstructed with η′→ π+π−γ in
the L(D) category, and 47.8±9.2 MeV/c2 (56.6±10.9 MeV/c2) for candidates reconstructed
with η′→ π+π−η in the L (D) category. Reconstructed Λη candidates have an invariant
mass resolution of 49.4 ± 3.4 MeV/c2 in the L category and 47.6 ± 9.2 MeV/c2 in the D
category. The parameters of the fit are found to be consistent between the 2011 and 2012
data samples, and so the two samples are added together to perform an overall fit.

The possible presence of physics backgrounds has been investigated. The most likely
backgrounds are: b-hadron decay modes to mesons with open charm and an η(′) meson,
with a π0 meson which is not reconstructed; the nonresonant decays to K0

S or Λ particles
with two charged pions which are combined with a combinatorial photon, π0 or η meson to
form an η(′) meson candidate; or, in the case of the η′→ π+π−γ decays, the nonresonant
B0→ K0

Sπ
+π−γ or Λ0

b→ Λπ+π−γ decays. These backgrounds are rejected well by the
BDT selection, and there are expected to be fewer than one candidate from each category
passing the selection.

For the normalisation channel, the mass distribution of the selected K0
Sη
′ candidates is

shown in Fig. 2, with the result of the fit superimposed. The signal yields are 188± 16 L
candidates and 149± 14 D candidates, and the signal to background ratio is 1.8 in the L
category, and 1.7 in the D category. Fig. 3 shows the invariant mass distribution of the
reconstructed η′ mesons for these decays. The distribution is fitted with two Crystal Ball
functions [40], and the parameters are found to be consistent with fits to the simulated
samples, with a core resolution of 16± 6 MeV/c2 for L candidates and 13± 1 MeV/c2 for D
candidates.

For the signal channel, Fig. 4 shows the Λη′ invariant mass distribution for candidates
reconstructed in the Λ0

b→ Λη′ (η′→ π+π−γ) decay, while Fig. 5 shows the same distribution
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Figure 3: Mass distribution of the reconstructed η′ meson for selected B0→ K0
Sη
′ (η′→ π+π−γ)

candidates, in the L (left) and D (right) categories. The results of the fit, as described in the
text, are overlaid.
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Figure 4: Mass distribution of the selected Λ0
b→ Λη′ (η′→ π+π−γ) candidates in the 2011 and

2012 data, reconstructed in the L (left) and D (right) categories. The results of the fit, as
described in the text, are overlaid.

for candidates in the Λ0
b→ Λη′ (η′→ π+π−η) channel, and Fig. 6 shows the Λη invariant

mass distribution for Λ0
b→ Λη (η→ π+π−π0) candidates. An unbinned extended maximum

likelihood fit is performed using the same model as for the B0 decay, with an exponential
function to describe the combinatorial background and a sum of two Gaussian functions to
model the signal; all parameters are fixed to the values found from fits to the simulation,
and only the numbers of signal and background events are allowed to float in the fit. No
significant signal is observed above the expected background for the Λ0

b→ Λη′ channel,
and so an upper limit is placed on the ratio of branching fractions. From the fits, the
combined signal yields are 1.0± 4.4 Λ0

b→ Λη′ (η′→ π+π−γ) candidates and −4.2± 2.3
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Figure 5: Mass distribution of the selected Λ0
b→ Λη′ (η′→ π+π−η) candidates in the 2011 and

2012 data, reconstructed in the L (left) and D (right) categories. The results of the fit, as
described in the text, are overlaid.
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Figure 6: Mass distribution of the selected Λ0
b→ Λη (η→ π+π−π0) candidates in the 2011 and

2012 data, reconstructed in the L (left) and D (right) categories. The results of the fit, as
described in the text, are overlaid.

Λ0
b→ Λη′ (η′→ π+π−η) candidates. Evidence is seen for the presence of the Λ0

b→ Λη
decay with a signal yield of 5.3± 3.8 candidates, and a significance of 3.0σ.
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Table 1: Components contributing to the scale factor α.

Λη′(π+π−γ) Λη′(π+π−η) Λη(π+π−π0)
Factor L D L D L D

εtot(B
0)/εtot(Λ

0
b) 2.3± 0.1 1.55± 0.08 7.4± 0.6 9.5± 1.4 4.6± 0.3 3.4± 0.2

fB/fΛ0
b

2.5± 0.2 2.5± 0.2 2.5± 0.2

1/Cγ 1 (fixed) 0.95± 0.04 1.13± 0.04
0.5 · B(K0

S)/B(Λ) 0.541± 0.004 0.541± 0.004 0.541± 0.004
B(η′)/B(η(′)) 1 (fixed) 1.71± 0.05 1.31± 0.03

α 3.1± 0.3 2.1± 0.2 17.7± 2.3 22.8± 4.0 9.5± 1.2 7.0± 0.8

4.2 Branching fraction measurement

The ratio of branching fractions can be measured for each signal decay with respect to the
normalisation channel using

R ≡ B(Λ0
b→ Λη(′))

B(B0→ K0η′)

=
NS(Λ0

b)

NS(B0)
× εtot(B

0)

εtot(Λ0
b)
× fB

fΛ0
b

× 1

Cγ
× B(η′)

B(η(′))
× 0.5× B(K0)

B(Λ)

= α× NS(Λ0
b)

NS(B0)
,

(4)

where: NS is the number of signal events determined from the fits to data; εtot is
the total efficiency, which is the product of the detector acceptance, reconstruction and
selection efficiencies; fB/fΛ0

b
is the ratio of B0 to Λ0

b production fractions, previously
measured by LHCb [41]; 1/Cγ is a correction factor applied to account for the photon re-
construction efficiency in the Λ0

b→ Λη′ (η′→ π+π−η) and Λ0
b→ Λη (η→ π+π−π0) decays,

which have more photons in the decay than the normalisation channel; and B(η′)/B(η(′))
and B(K0

S)/B(Λ) are the ratios of η′ to η(′) branching fractions and K0
S to Λ branching

fractions, respectively, from Ref. [20], where the factor 0.5 accounts for the fact that only
half the K0 mesons decay as K0

S mesons. Each of these factors have been measured, as
described in Sec. 5, and are given in Table 1 along with the calculated value of α for each
signal channel.

5 Systematic uncertainties

A summary of systematic uncertainties is given in Table 2. The largest systematic
uncertainty for this analysis is due to the limited knowledge of the ratio of production
fractions, fB/fΛ0

b
, which was measured in Ref. [41] as a function of the Λ0

b pseudorapidity.
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Table 2: Fractional systematic uncertainties, in percent, on the ratio of branching fractions.

Λη′(π+π−γ) Λη′(π+π−η) Λη(π+π−π0)
Source L (%) D (%) L (%) D (%) L (%) D (%)
B (V 0) 0.73 0.73 0.73
B (η(′)) 0.0 2.9 2.3
fB/fΛ0

b
8.0 8.0 8.0

Fit model 1.7 0.3 1.7 0.3 1.7 0.3
Ratio of εacc 2.0 1.8 1.9
Ratio of εsel 5.9 5.3 8.6 14.5 7.5 5.9

εtrig 1.0 1.0 1.0
Cγ – 4.2 4.6

PID 2.1 0.9 2.0 1.0 2.0 1.0
Multiple Cand 1.4 1.9 2.2 1.4 2.0 1.7

Total 10.6 10.1 13.4 17.5 12.7 11.5

For the average Λ0
b pseudorapidity in our signal sample, the ratio fB/fΛ0

b
has a value of

2.5± 0.2.
The systematic uncertainty on the ratio of the branching fractions of the K0

S, Λ and
η(′) decays is calculated from the average values from Ref. [20].

There is an uncertainty on the number of signal decays due to the fit model. To
evaluate this uncertainty, the parameters that are fixed in the extended unbinned maximum
likelihood fit are varied within the uncertainties obtained from the fit to the simulated
samples, and the systematic uncertainty is the relative change in the yield obtained from
the fit. This is found to be a small effect, 1.7% for the L model and 0.3% for the D model.

The selection efficiencies are calculated with independent simulated samples, produced
with different trigger conditions. The uncertainty on the measured ratio of efficiencies is
the statistical uncertainty due to the number of simulation events generated. In addition,
there is a systematic uncertainty due to the measured efficiency of the trigger selection as
the software trigger changed during the data taking in 2012. The early 2012 setup is not
modelled in the simulated samples, and so it is assumed that the efficiency of this stage of
the trigger selection is the same for both periods. The uncertainty due to this assumption
is taken to be 5%, which is consistent with differences in the efficiencies measured in
analyses of similar decays. Since this data comprises ∼ 20% of the total data sample, the
overall uncertainty on the trigger efficiency is 1%.

The reconstruction efficiency of the photons cannot be determined using the simulated
samples, and so a data-driven method is used to correct for this efficiency [42]. The
correction factor, Cγ, is found in bins of photon pT by comparing the relative yields of
reconstructed B+→ J/ψK∗+(→ K+π0) and B+→ J/ψK+ decays. Since the Λ0

b→ Λη′

(η′→ π+π−γ) decay contains the same number of photons as the normalisation channel, this
correction cancels in the ratio of efficiencies. However, for the Λ0

b→ Λη′ (η′→ π+π−η) and

10



Λ0
b→ Λη (η→ π+π−π0) decays, there is an extra photon in the signal channel compared

to the normalisation channel. The correction factor is therefore applied to these channels,
and an uncertainty is introduced due to the limited size of the data sample used to measure
it.

The systematic uncertainty of the PID selection is estimated by the difference between
the efficiency estimates obtained in data from calibration samples, and the efficiency
extracted from the simulation after reweighting the PID variables to match the respective
distribution observed in data.

Finally, there is an uncertainty due to the procedure for handling events with more
than one candidate. The efficiency for selecting the best candidate using the procedure
described earlier, and the fraction of events which contain more that one candidate are
both estimated using simulated samples of signal decays. The estimated uncertainty on
each of these quantities is around 10%, which is chosen as a conservative uncertainty. This
introduces an overall systematic uncertainty of 1.4% to 2.2% depending on the signal
channel.

6 Confidence Intervals

The number of signal events observed in each of the signal decays can be used to place a
limit on the ratio of branching fractions of the signal decay with respect to the normalisation
channel. The unified approach method presented in Ref. [43] is used to place a limit on
the branching fraction. This method constructs confidence intervals based on a likelihood
ratio method using the probability of observing Nobs signal events for a given branching
fraction. For this analysis the probability is assumed to follow a Gaussian distribution

with a resolution of σ =
√
σ2

syst + σ2
stat, where σsyst is the systematic uncertainty described

above and σstat is the statistical uncertainty on the number of events observed.
The 68% and 90% confidence level (CL) intervals are obtained for the Λ0

b→ Λη and
Λ0

b→ Λη′ decays respectively, by combining the likelihoods of each category. The weighted
average of the observed ratio of branching fractions is calculated from the number of events
observed in each signal channel with their uncorrelated systematic uncertainties and the
values of α in Table 1, and this is used to construct the confidence intervals. The combined
L and D categories are used to construct confidence intervals for the Λ0

b→ Λη decay.
The likelihoods from the Λ0

b→ Λη′ (η′→ π+π−γ) and Λ0
b→ Λη′ (η′→ π+π−η) decays are

then combined, with the L and D combined, to give a limit on the branching fraction
for the Λ0

b→ Λη′ decay. The limit on the ratio of branching fraction with respect to the
normalisation channel is found to be

B(Λ0
b→ Λη′)

B(B0→ K0η′)
< 0.047 at 90% CL,

for the Λ0
b→ Λη′ decay, and for the Λ0

b→ Λη decay the 68% CL intervals are

B(Λ0
b→ Λη)

B(B0→ K0η′)
= 0.142+0.11

−0.08.
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Multiplying by the known value of B (B0→ K0η′) gives a limit on the branching fraction
of the Λ0

b→ Λη′ decay

B(Λ0
b→ Λη′) < 3.1× 10−6 at 90% CL,

and the 68% CL intervals for the Λ0
b→ Λη decay are

B(Λ0
b→ Λη) = (9.3+7.3

−5.3)× 10−6.

7 Conclusions

A search is performed for the Λ0
b→ Λη′ and Λ0

b→ Λη decays in the full dataset recorded
by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity
of 3 fb−1. No significant signal is observed above background for the Λ0

b→ Λη′ decay, and
some evidence is seen for the Λ0

b→ Λη at the level of 3σ. The B0→ K0η′ decay is used
as a normalisation channel, so that a limit is placed on the ratio of Λ0

b→ Λη(′) branching
fractions with respect to the B0→ K0η′ branching fraction using the unified approach.
With the known value of the B0→ K0η′ branching fraction, the upper limit on the absolute
branching fraction of the Λ0

b→ Λη′ decay is B(Λ0
b→ Λη′) < 3.1× 10−6 at 90% CL. The

branching fraction of the Λ0
b→ Λη decay is B(Λ0

b→ Λη) = (9.3+7.3
−5.3)× 10−6.

These values can be compared with the branching fractions calculated in Ref. [21],
and given in Sec. 1. The predicted branching fractions depend strongly on the method
used to calculate the hadronic form factors, and on the parameters used in the calculation,
as discussed earlier. Our results favour the branching fractions calculated using the pole
model to estimate the hadronic form factors. In addition, our results are inconsistent with
the prediction for B (Λ0

b→ Λη′) obtained by neglecting the anomalous contribution to the
decay amplitude, indicating that a gluonic component of the η′ wavefunction should be
present.
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[30] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput.
Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

[31] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb
simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.

[32] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.
A462 (2001) 152.

[33] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections
in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[34] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE
Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4:
A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[35] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and
experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[36] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth.
A552 (2005) 566, arXiv:physics/0503191.

[37] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[38] B. P. Roe et al., Boosted decision trees as an alternative to artificial neu-
ral networks for particle identification, Nucl. Instrum. Meth. A543 (2005) 577,
arXiv:physics/0408124.

[39] G. Punzi, Sensitivity of searches for new signals and its optimisation,
arXiv:physics/030863.

[40] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime
and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986,
DESY-F31-86-02.

[41] LHCb collaboration, R. Aaij et al., Study of the kinematic dependences of Λ0
b production

in pp collisions and a measurement of the Λ0
b → Λ+

c π
− branching fraction, JHEP 08

(2014) 143, arXiv:1405.6842.

[42] E. Govorkova, Study of photon reconstruction efficiency using B+ → J/ψK(∗)+ decays
in the LHCb experiment, arXiv:1505.02960.

[43] G. J. Feldman and R. D. Cousins, A unified approach to the classical statistical
analysis of small signals, Phys. Rev. D57 (1998) 3873, arXiv:physics/9711021.

15

http://dx.doi.org/10.1088/1748-0221/8/02/P02013
http://arxiv.org/abs/1210.6861
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1742-6596/331/3/032047
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1016/S0168-9002(01)00089-4
http://dx.doi.org/10.1140/epjc/s2005-02396-4
http://arxiv.org/abs/hep-ph/0506026
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://dx.doi.org/10.1016/j.nima.2005.06.078
http://arxiv.org/abs/physics/0503191
http://dx.doi.org/10.1016/j.nima.2004.12.018
http://arxiv.org/abs/physics/0408124
http://arxiv.org/abs/physics/030863
http://inspirehep.net/record/230779/
http://dx.doi.org/10.1007/JHEP08(2014)143
http://dx.doi.org/10.1007/JHEP08(2014)143
http://arxiv.org/abs/1405.6842
http://arxiv.org/abs/1505.02960
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://arxiv.org/abs/physics/9711021


LHCb collaboration

R. Aaij38, B. Adeva37, M. Adinolfi46, A. Affolder52, Z. Ajaltouni5, S. Akar6, J. Albrecht9,
F. Alessio38, M. Alexander51, S. Ali41, G. Alkhazov30, P. Alvarez Cartelle53, A.A. Alves Jr57,
S. Amato2, S. Amerio22, Y. Amhis7, L. An3, L. Anderlini17,g, J. Anderson40, M. Andreotti16,f ,
J.E. Andrews58, R.B. Appleby54, O. Aquines Gutierrez10, F. Archilli38, P. d’Argent11,
A. Artamonov35, M. Artuso59, E. Aslanides6, G. Auriemma25,n, M. Baalouch5, S. Bachmann11,
J.J. Back48, A. Badalov36, C. Baesso60, W. Baldini16,38, R.J. Barlow54, C. Barschel38,
S. Barsuk7, W. Barter38, V. Batozskaya28, V. Battista39, A. Bay39, L. Beaucourt4, J. Beddow51,
F. Bedeschi23, I. Bediaga1, L.J. Bel41, I. Belyaev31, E. Ben-Haim8, G. Bencivenni18, S. Benson38,
J. Benton46, A. Berezhnoy32, R. Bernet40, A. Bertolin22, M.-O. Bettler38, M. van Beuzekom41,
A. Bien11, S. Bifani45, T. Bird54, A. Birnkraut9, A. Bizzeti17,i, T. Blake48, F. Blanc39,
J. Blouw10, S. Blusk59, V. Bocci25, A. Bondar34, N. Bondar30,38, W. Bonivento15, S. Borghi54,
M. Borsato7, T.J.V. Bowcock52, E. Bowen40, C. Bozzi16, S. Braun11, D. Brett54, M. Britsch10,
T. Britton59, J. Brodzicka54, N.H. Brook46, A. Bursche40, J. Buytaert38, S. Cadeddu15,
R. Calabrese16,f , M. Calvi20,k, M. Calvo Gomez36,p, P. Campana18, D. Campora Perez38,
L. Capriotti54, A. Carbone14,d, G. Carboni24,l, R. Cardinale19,j , A. Cardini15, P. Carniti20,
L. Carson50, K. Carvalho Akiba2,38, R. Casanova Mohr36, G. Casse52, L. Cassina20,k,
L. Castillo Garcia38, M. Cattaneo38, Ch. Cauet9, G. Cavallero19, R. Cenci23,t, M. Charles8,
Ph. Charpentier38, M. Chefdeville4, S. Chen54, S.-F. Cheung55, N. Chiapolini40, M. Chrzaszcz40,
X. Cid Vidal38, G. Ciezarek41, P.E.L. Clarke50, M. Clemencic38, H.V. Cliff47, J. Closier38,
V. Coco38, J. Cogan6, E. Cogneras5, V. Cogoni15,e, L. Cojocariu29, G. Collazuol22, P. Collins38,
A. Comerma-Montells11, A. Contu15,38, A. Cook46, M. Coombes46, S. Coquereau8, G. Corti38,
M. Corvo16,f , B. Couturier38, G.A. Cowan50, D.C. Craik48, A. Crocombe48, M. Cruz Torres60,
S. Cunliffe53, R. Currie53, C. D’Ambrosio38, J. Dalseno46, P.N.Y. David41, A. Davis57,
K. De Bruyn41, S. De Capua54, M. De Cian11, J.M. De Miranda1, L. De Paula2, W. De Silva57,
P. De Simone18, C.-T. Dean51, D. Decamp4, M. Deckenhoff9, L. Del Buono8, N. Déléage4,
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C. Göbel60, D. Golubkov31, A. Golutvin53,31,38, A. Gomes1,a, C. Gotti20,k,
M. Grabalosa Gándara5, R. Graciani Diaz36, L.A. Granado Cardoso38, E. Graugés36,
E. Graverini40, G. Graziani17, A. Grecu29, E. Greening55, S. Gregson47, P. Griffith45, L. Grillo11,
O. Grünberg63, B. Gui59, E. Gushchin33, Yu. Guz35,38, T. Gys38, C. Hadjivasiliou59,

16



G. Haefeli39, C. Haen38, S.C. Haines47, S. Hall53, B. Hamilton58, T. Hampson46, X. Han11,
S. Hansmann-Menzemer11, N. Harnew55, S.T. Harnew46, J. Harrison54, J. He38, T. Head39,
V. Heijne41, K. Hennessy52, P. Henrard5, L. Henry8, J.A. Hernando Morata37,
E. van Herwijnen38, M. Heß63, A. Hicheur2, D. Hill55, M. Hoballah5, C. Hombach54,
W. Hulsbergen41, T. Humair53, N. Hussain55, D. Hutchcroft52, D. Hynds51, M. Idzik27,
P. Ilten56, R. Jacobsson38, A. Jaeger11, J. Jalocha55, E. Jans41, A. Jawahery58, F. Jing3,
M. John55, D. Johnson38, C.R. Jones47, C. Joram38, B. Jost38, N. Jurik59, S. Kandybei43,
W. Kanso6, M. Karacson38, T.M. Karbach38,†, S. Karodia51, M. Kelsey59, I.R. Kenyon45,
M. Kenzie38, T. Ketel42, B. Khanji20,38,k, C. Khurewathanakul39, S. Klaver54,
K. Klimaszewski28, O. Kochebina7, M. Kolpin11, I. Komarov39, R.F. Koopman42,
P. Koppenburg41,38, M. Korolev32, L. Kravchuk33, K. Kreplin11, M. Kreps48, G. Krocker11,
P. Krokovny34, F. Kruse9, W. Kucewicz26,o, M. Kucharczyk26, V. Kudryavtsev34, A.
K. Kuonen39, K. Kurek28, T. Kvaratskheliya31, V.N. La Thi39, D. Lacarrere38, G. Lafferty54,
A. Lai15, D. Lambert50, R.W. Lambert42, G. Lanfranchi18, C. Langenbruch48, B. Langhans38,
T. Latham48, C. Lazzeroni45, R. Le Gac6, J. van Leerdam41, J.-P. Lees4, R. Lefèvre5,
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