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Abstract: Using a combination of experimental and computational approaches, the 

interaction between anastellin, a recombinant fragment of fibronectin, and representative 

biomaterial surfaces has been examined. The molecular interaction was directly quantified by 

atomic force microscope (AFM) based force spectroscopy, complemented by adsorption 

Page 1 of 33

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Journal of Biomedical Materials Research Part A  

2 
 

measurements using quartz crystal microbalance (QCM). It was found that the anastellin 

molecules facilitates a stronger adhesion on polyurethane films (72.0 pN nm-1) than on poly 

(methyl methacrylate) films (68.6 pN nm-1). This is consistent with the adsorption 

measurements of anastellin on the two polymeric surfaces, observed by QCM. Molecular 

dynamics simulations of the behaviour of anastellin on polyurethane in water solution were 

performed to rationalise the experimental data, and show that anastellin is capable of rapid 

adsorption to PU while its secondary structure is stable upon adsorption in water. 

 

INTRODUCTION 

In order to design medical devices that are exposed to physiological environments with 

prolonged service life and enhanced biocompatibility, it is vital to understand how biological 

objects interact with the surface of the engineered component, and the underlying biophysical 

mechanisms. For the development of biomaterials, the predominant mechanisms include the 

adsorption of proteins which is the initial stage for cell adhesion. 1 One of the major proteins 

that significantly affects the compatibility of biomaterials used intracorporeally is fibronectin 

(Fn). This is an important extracellular protein that exists in a variety of forms (e.g. 

circulating plasma, tissue and cellular). 2 It is made up of three types of domain (I, II and III). 

Types I and II are stabilised with disulphide bonds while type III fibronectin domains (FnIII) 

are capable of unfolding under tension. This can expose hidden, cryptic binding sites such as 

the Arg-Gly-Asp (RGD) sequence found in the tenth fibronectin type III domain (FnIII10) 

and the Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth fibronectin type III domain 

(FnIII9). The RGD sequence allows binding to cell-bound integrin receptors, such as α5β1, to 

enable adhesion of cells to the extracellular matrix while the PHSRN sequence has a 

synergistic effect on this binding.3 The RGD peptide sequence has been incorporated onto 
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biomaterials, 4-6 in its linear form, or cyclic forms, or as part of a larger fragment in order to 

improve aspects of biocompatibility such as osseointegration. 4 Use of a protein fragment 

offers advantages over whole Fn such as improved stability and increased density of desired 

sequences on the surface. 7 

Another area of Fn that has been shown to elicit potentially useful interactions is the C-

terminal fragment of the first FnIII domain (FnIII1c), known as anastellin, which has 76 

amino acid residues. 8-12 The FnIII1 domain has been identified as a region associated with 

matrix formation by Fn-Fn interactions. 13 When mixed with whole Fn molecules, anastellin 

can create a different form of Fn known as superfibronectin which is adept at supporting cell 

adhesion and spreading. 10,14 Anastellin and superfibronectin have been reported to contribute 

towards anti-tumour, anti-metastatic, and anti-angiogenic performance through a mechanism 

that involves extracellular signal-regulated kinases (ERK) and a decrease in cyclin D1, cyclin 

Al, and cyclin-dependent kinase 4 (cdk4). 9,15-18 

Upon adsorption to solid surfaces, the conformation of Fn at the interface appears to depend 

largely on the characteristics of the surface. Proteins tend to adopt an extended conformation 

on hydrophilic surface but a compact, globular conformation on hydrophobic surfaces. 19,20 

Furthermore, other factors such as surface chemistry and topography have been found to play 

an important role. 21,22 Hydrophobic surfaces adsorb more Fn than hydrophilic surfaces, 19 the 

globular conformation adapted could accommodate more molecules and hence a greater 

packing density. 23 The change of conformation to an elongated form is important since it can 

expose the aforementioned binding sites such as RGD and PHSRN and allow matrix 

formation and cell attachment. Interaction between protein and solid surface and the 

consequent confirmation can be examined with a wide range of experimental approaches 

including atomic force microscopy (AFM), quartz crystal microbalance, fluorescence 
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resonance energy transfer (FRET), measuring the adsorption amount of labelled Fn, and 

enzyme-linked immunosorbent assays (ELISA). 19,20,24,25 

With the readily controlled molecular structure, chain length, and functional groups, 

polymers have been widely used as biomaterials. Examples include polyurethane (PU) for 

ureteral catheters, 26 poly (methyl methacrylate) (PMMA) as bone cement, 27 

polytetrafluoroethylene (PTFE) as artificial heart valves and vascular grafts, 28 and ultra-high 

density polyethylene in joint replacement implants. Palacio et al. 29,30 have investigated the 

adhesion of whole Fn, bovine serum albumin and collagen to PMMA surfaces as well as di- 

and triblock copolymers of PMMA with poly (2-hydroxyethyl methacrylate) (PHEMA) 

and/or poly (acrylic acid) (PAA). They used AFM in force-volume mode with probes coated 

with silane and protein, and reported that the PMMA regions of the polymer had lower 

adhesion than PAA regions due to weaker interactions between the polymer and hydrophobic 

regions of Fn. The adhesive force between Fn and PMMA was reduced from 1.0 nN to 0.7 

nN as the pH of the surrounding medium is decreased from 7.4 to 6.2. It is possible that the 

protein is less negatively charged at lower pH so that the electrostatic repulsion from the acid 

groups of the polymer is reduced. Hydrophobicity ought to be an indicator of adhesion since 

it would affect the repulsive force between the protein and the polymer.  

For a number of years, a molecular simulation approach has been used to investigate protein-

surface adsorption, 31 giving significant insight into the mechanism of adsorption and the 

factors that drive this. Due to its relevance to biomaterials 1 the adsorption of a number of 

fibronectin modules onto surfaces have been investigated. 32-34 These have shown that 

fibronectin adsorption is relatively non-specific, with it readily adsorbing onto organic, 33 

inorganic, 34 and graphite surfaces. 32 
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In the present work, adhesion and adsorption of anastellin on to two polymeric films, PMMA 

and PU, were measured by AFM and QCM. Influences of both chemical composition and 

hydrophobicity of the polymeric surfaces on the protein-surface interaction were examined. 

The experimental results were then compared with the results of molecular dynamics 

simulations.  

 

MATERIALS AND METHODS 

Materials 

Poly (methyl methacrylate) (PMMA; MW 94,600) was purchased from Acros Organics. 

Polyurethane (PU) was purchased from Fluka. The FnIII1c protein fragment, phosphate 

buffered saline (PBS; pH 7.4) tablets, tetrahydrofuran (THF; ≥ 99.9 %), ethylene glycol (EG; 

99.8 %), diiodomethane (DIM; 99 %) and ethanol (≥ 99.8 %) were purchased from Sigma. 

Spin Coating 

Silica wafer (SW) was cleaned with deionised water, followed by 70 % ethanol and finally 

with THF in order to sterilise the surface and remove both water-soluble and organic 

contaminants. Polymers were dissolved in THF (2 % w/v). Consequently, the polymer 

solution was spin coated onto silica wafer at 2,000 rpm for 30 s with a Laurell WS-400-6NPP 

spin coater as per Mallinson et al. 35 

Contact Angle Goniometry 

The advancing contact angles (θA) of three solvents (deionised water (DW), ethylene glycol 

(EG) and diiodomethane (DIM)) on the two polymer surfaces were measured in order to 

calculate the surface energy (γs) and surface energy components of the surfaces. As per 

Mallinson et al. 35 small drops of DW (18.2 MΩ; surface tension (γL) 72.8 mN m-1 at 20 °C), 
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EG (γL 48.0 mN m-1 at 20 °C) and DIM (γL 50.8 mN m-1 at 20 °C) were placed on the surface 

with a needle, followed by measuring both the left and right contact angles with a Krüss 

DSA30B contact angle goniometer (CAG). At least 2 repeats were made for each surface 

with 3 drops per sample, resulting in at least 12 measurements per sample. Using these 

contact angle values, the surface energies were calculated using a Visual Basic application 

developed by Lamprou et al, 36 based on the formula proposed by Good and Oss. 37 

Circular Dichroism 

Circular dichroism (CD) was performed in order to determine whether the protein fragment 

retained the expected structure when reconstituted. The protein sample was dissolved in PBS 

solution (pH 7.4) at 200 µg mL-1. Spectra were read with a Chirascan CD spectrophotometer 

(Applied Photophysics) in the wavelength range 190-280 nm, with step size of 1 nm and 

bandwidth of 1 nm, using a quartz cuvette with a path length of 0.1 mm (Hellma). Three 

spectra were averaged and data were processed with Chirascan Viewer and with Microsoft 

Excel. 

Atomic force microscopy 

AFM measurements were performed in ambient using a Bruker Multimode 8 AFM equipped 

with a Nanoscope Controller V and SNL-10 probes (cantilever C: nominal spring constant 

0.24 N m-1 and nominal resonant frequency 56 kHz). Cantilevers were silanised to allow 

protein functionalisation by submerging in 2 mM APTES in toluene for 5 min as per Couston 

et al. 38 The cantilevers were subsequently washed with toluene and deionised water in order 

to remove unbound silane. The FnIII1c protein fragment was added by incubating the tip in a 

drop of 1 mg mL-1 protein solution (in PBS pH 7.4) for 10 min followed by a thorough 

rinsing with deionised water to remove unbound protein. Each polymer surface was scanned 

4 times with each AFM probe before and after protein functionalisation. This was done with 
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two different probes. For each of the AFM images approximately 160 curves were chosen at 

random from each of the force-volume images (20 curves x 4 areas x 2 probes). Deflection 

sensitivity was calibrated with a sapphire reference sample and the tip radius was determined 

with a PA01 spiked reference sample (Mikromasch). Ramps were made over 1 × 1 µm 

squares. 

Surface roughness was determined using images captured using unfunctionalised probes in 

PeakForce-Quantitative Nanomechanical (PF-QNM) mode. Images were analysed with 

Bruker Nanoscope Analysis version 1.5 to view force curves and calculate surface roughness. 

Adhesion values were extracted from the ramps using an in-house Python script. Adhesive 

forces were then normalised for the effect of tip radius by dividing by tip radius in 

accordance with equation 1 by Sugawara et al. 39 

A = 4πRT       (Eq.1) 

where A is the corrected adhesion, R is tip radius and T is surface tension of the medium. 

Quartz Crystal Microbalance  

Quartz crystal microbalance (QCM) is a technique that uses a mass sensor 40-42 to measure the 

adsorption of biopolymers 43,44 or synthetic electrolytes 45 from liquid and allows observation 

of not only the adsorption kinetics and adsorbed mass but also of the viscoelastic properties 

of adsorbed polymer layers at the solid liquid interface. 23,46,47 The technique relies upon the 

resonant frequency of a quartz crystal. A frequency shift (∆f) will be induced by any change 

in adsorbed mass, as ∆f is related to the adsorbed mass per unit surface ∆m, by a linear 

relationship known as the Sauerbrey equation (Eq. 2). 

          (Eq. 2) 
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where n is the overtone number (n = 1 in the present case) and C is a constant that describes 

the sensitivity of the device the changes in mass. Additionally, the exponential decay of the 

oscillation amplitude, D, is recorded which can reveal information about the viscoelastic 

properties of the adsorbed layer. 

PU and PMMA thin films were formed on gold coated AT-cut quartz crystals by spin-

coating, by the same protocol as on the Si wafers, and a SiO2 crystal was used to replicate the 

silica wafer surface. All crystals were purchased from Testbourne Ltd. The crystals were 

placed in a home-built quartz crystal microbalance and all measurement were taken at room 

temperature. For adsorption measurements, the QCM chamber was flooded with HPLC-grade 

water solution and left until the frequency stabilises to an equilibrium state at the liquid/solid 

interface may be achieved. The protein fragment was initially dissolved in PBS buffer (pH 

7.4) with a concentration of 1.0 mg mL-1, and further diluted by HPLC-grade water to a 

concentration of 0.025 mg mL-1. The HPLC-water in the QCM chamber was then replaced by 

the protein solution while the change in frequency and dissipation was recorded. A 

representative QCM adsorption result is presented in Fig. 1 where changes in frequency and 

corresponding adsorbed amount are shown.  

 

Fig. 1 Second axis graphs with frequency and mass. 

 

Molecular dynamics 

The simulated system consisted of a single anastellin molecule, a slab of PU, water and ions. 

The PU surface was constructed from slab of crystalline PU, consisting of 48 chains (three 

layers of sixteen), with each chain containing two monomer units. The slab was constructed 
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using the crystal structure for the trans-trans-dicyclohexylmethane 4,4’-diisocynate (HMDI) 

monomer determined by Nigar et al. 48 An energy minimisation followed by short (20 ps) 

NVT and NpT simulations of the slab in contact with a vacuum were performed. The 

remainder of the simulation box was filled with water and an energy minimization and short 

NVT run were performed on the resulting system. The structure of the surface was then held 

fixed for the remainder of the simulations.  

The structure of anastellin was taken from RCSB (accession code: 1Q38). Initially the protein 

centre-of-mass is placed at z = 40 Å, approximately 20 Å from the PU surface. Four different 

initial orientations were used: Arg-down where the cluster of arginine residues was orientated 

towards the surface; Arg-up where the cluster of arginine residues orientated away from the 

surface; N-down where the N-terminus pointed towards the surface and C-down where the C-

terminus pointed towards the surface. Cl- and Na+ ions are added to neutralise the +5e charge 

on the protein and simulate different salt conditions. The system is periodic in the x and y 

directions and has repulsive Lennard-Jones walls in the z-direction. 

The protein was modelled using the Charmm27 force field (with CMAP corrections), 49 the 

Charmm Generalised Force Field 50 was used to model the PU surface, and water was 

modelled using the Charmm-variant of TIP3P water (with van der Waals interaction sites on 

the hydrogen atoms). All simulations were performed at 298 K, with the velocity rescaling 

algorithm of Bussi et al. 51 used to control the temperature. For each starting orientation and 

salt concentration simulations of 100 ns were performed, with a timestep of 2 fs. Bonds 

involving hydrogen atoms were constrained using the LINCS algorithm 52 and the water 

geometry was held fixed using the SETTLE algorithm. 53 Long-range electrostatics were 

modelled using particle-mesh Ewald summation 54 with a real space cut-off of 10 Å and a 

reciprocal space grid spacing of 0.16 Å-1. Van der Waals interactions were truncated at 10 Å. 
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The simulations were performed using the Gromacs MD package, version 4.6.3. 55 Standard 

Gromacs tools were used to set up and analyse the simulations. 

Statistical Analysis 

Statistical analysis was performed in Microsoft Excel, Python and Minitab 17. A significance 

level of 5 % was chosen. Significance between adhesive forces under different conditions 

were determined with a one-way ANOVA with a Tukey test. 

 

RESULTS AND DISCUSSION 

Contact Angle Goniometry and Surface Energies 

The contact angles of water on all substrates used are presented in Table 1 and agree well 

with the literature values for PMMA (74 ° 56 and 69 ° 29), PU (85.1 ° 35) and silica wafer (57.9 

° 35). From the chemical structures of PU and PMMA, it can be estimated that PMMA would 

be more hydrophobic since displays a greater frequency of lone electron pairs. The surface 

energies and surface energy components for all the surfaces are shown in Table 2. The Ra 

values (Table 2), based on the surface topography images collected with AFM, show that the 

films are smooth – 2.0 ± 0.1 nm and 3.1 ± 0.3 nm for PMMA and PU respectively. This 

suggests that the adsorption of Fn 57 and water contact angle 35 are not affected by surface 

roughness. 

Table 1 Advancing contact angles of SW, PMMA and PU surfaces, n = 12. 

 

Table 2 Surface energy components by CAG and surface roughness by AFM of SW, PMMA, 
and PU surfaces. 
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Circular Dichroism 

The negative maximum at 218 nm (Fig. 2) suggests anti-parallel beta sheets 58 as is expected 

for the protein fragment in its native conformation as imaged by Briknarova et al 59 with 

NMR spectroscopy. 

 

Fig. 2 Circular dichroism (CD) spectrum of FnIII1c. 

 

Atomic Force Microscopy 

Anastellin functionalisation increases adhesion on all surfaces tested (Fig. 3). This may be 

partly due to the protein functionalisation process possibly adding a small layer of crystals 

from the PBS as well as the intended protein fragment. Such increases in tip radius do not 

appear to be the only factor since the differences between the PMMA (16.8 % increase) and 

PU (12.5 % increase) values are greater than those between the silica values (48.2 % 

increase). Since tip radius is accounted for, the difference between the polymers and the 

APTES-functionalised and protein-ATPES-functionalised probes is likely due to hydrophilic-

hydrophobic interactions between protein fragment and elements of the polymer chains as 

found by Palacio et al. with the interactions between Fn and PMMA and poly (acrylic acid) 

(PAA). 29 It appears that the adhesion of the anastellin-functionalised probes to the PU films 

was greater than to PMMA films (data not shown), contrary to previous work. This could be 

at least partly due to the fact that while Palacio et al.’s 29 experiments were performed under 

liquid these were performed in air at ambient humidity reducing the role of hydrophilic-

hydrophobic interactions. 
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Fig. 3 Difference in adhesion force by surface between silanised probes (APTES) and 
protein-functionalised probes (anastellin). All differences are significant. 

 

 

Quartz crystal microbalance  

 

Fig. 4 Density of anastellin on SiO2, PU and PMMA surfaces. 

Fig. 4a shows a representative measurement of protein adsorption on PMMA, in which both 

frequency and the corresponding mass change are presented as a function of time. It is clear 

that upon the introduction of protein solution, the mass at the already equilibrated polymer-

buffer solution interface is increased, which confirms the adsorption of protein on the 

polymeric film. And the adsorption amounts of the protein (the changed frequency) on three 

different surfaces are compared in Fig. 4b. It was found that protein adsorbed the most on the 

silica surface, which is consistent with the AFM measurements where strong adhesion 

between protein and silica surface was observed. The PU surface shows a higher adsorption 

than the PMMA albeit the relative broad error bar, which agrees with the adhesion results. 

The increase in experimental error between silica and the polymer coated surfaces can be 

attributed to the increased surface roughness on the polymer thin films present as proven in 

the contact angle experiments.  

Page 12 of 33

John Wiley & Sons, Inc.

Journal of Biomedical Materials Research: Part A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Journal of Biomedical Materials Research Part A  

13 
 

Molecular dynamics 

The adsorption mechanism and adhesion of anastellin to the polymer surfaces required 

further investigation by molecular dynamics. Due to high adhesion in the AFM studies and 

high adsorption in the QCM studies PU was selected for these further studies. 

Independent of starting orientation the protein adsorbs onto PU surface within 100 ns, 

however, the equilibrium protein-surface separation and orientation depend on the initial 

configuration (Fig. 5). Starting from the Arg-down configuration the protein adsorbs rapidly 

onto the surface with little change in the orientation (the protein lies parallel to the surface 

across the entire simulation). In this case the final protein centre of mass position is ~32 Å, 

which is comparable to the width of the PU layer plus half the protein width. For the other 

starting configurations, adsorption typically takes longer and often involves transient contacts 

between the surface and protein before permanent adsorption. Additionally, the final 

separation between the protein centre-of-mass and surface is substantially larger, suggesting 

that in these cases the bulk of the protein lies further from the surface. This can be seen 

through the protein orientation. In particular, when starting from the Arg-up configuration the 

protein reorients so the N-terminus is towards the surface, so the final orientation of the 

protein in this case is close to that found form starting in the N-down conformation. For the 

C-down starting conformation, for most of the simulation the protein lies normal to the 

surface with the C-terminus pointing down (θ ~180 °) but slow reorientations of the protein 

are evident, notably towards the end of the simulation. 

 

Fig. 5 Protein centre-of-mass position (top) and orientation (bottom) for no salt simulations. 
Simulations starting in the Arg-down, Arg-up, C-down, and N-down conformations are 
denoted by black, red, green, and blue lines respectively. 
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Fig. 6 Simulation snapshots showing adsorption of anastellin on to polyurethane surface. (a) 
Protein in Arg-down starting configuration at (left to right) t = 0 ns, 13 ns, 25 ns, 47 ns, 50 ns, 
and 100 ns. (b) Protein in Arg-up starting configuration at (left to right) t = 0 ns, 5 ns, 10 ns, 
48 ns, 55 ns, and 100 ns. (c) Protein in N-down starting configuration at (left to right) t = 0 
ns, 1 ns, 15 ns, 20 ns, 50 ns, and 100 ns. (d) Protein in C-down starting configuration at (left 
to right) t = 0 ns, 1 ns, 10 ns, 27.5 ns, 47 ns, and 100 ns. Residues involved in adsorption (see 
text) are highlighted. 

 

Qualitative information on protein adsorption may be found from viewing simulation 

snapshots. For the Arg-down conformation (Fig. 6), these show the rapid adsorption of the 

protein onto the PU surface, with little subsequent change to either the protein structure or 

orientation. From the Arg-up conformation, the protein initially reorients itself in solution so 

that the N-terminus is directed towards the surface (t = 5 ns), followed by attachment to the 

surface through this region. While adsorbed on the surface, the protein can slowly reorient. 

Similarly, when the protein is initially placed in the N-down conformation, the protein’s N-

terminus rapidly adsorbs onto the surface (t = 1 ns). For the C-down conformation the protein 

attaches through the C-terminus (t = 10 ns) but more slowly than for N-down conformation 

(whereas the N-down conformation attached to the surface after only 1 ns the C-down 

conformation is still in bulk water at this time). Compared to the N-down conformation the 

protein appears to have greater orientational freedom, which may also be seen from the 

variation in protein angle over time. While the initial attachment is through the residues at the 

extreme end of the C-terminus, this changes towards the end of the simulation, with residues 

at the C-terminus end of the beta-sheet coming into contact with the surface. 
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Fig. 7 Residue centre-of-mass positions for protein starting in (top to bottom) Arg-down, 
Arg-up, C-down, and N-down conformations. 

The different starting orientations lead to attachment through different regions of the protein. 

This may be seen through considering the centre-of-mass positions of the individual residues 

(Fig. 7). Apart from the Arg-down conformation, in which most of the residues lie close to 

the surface, only small numbers of residues are typically in contact with the surface. For both 

Arg-up and N-down these are the N-terminus and the loop joining the third and fourth beta-

strands (around residue 61). This second region contains a number of residues with 

hydrophilic side-chains, which are capable of forming hydrogen bonds with the polar groups 

in the PU surface. For the C-down orientation while the initial contact is through the C-

terminal end at the end of the simulation this has detached from the surface with a loop 

containing residues 22 to 26 (joining the first and second beta-strands). Again this is a 

predominately hydrophilic region, which is consistent with the highest adsorption being 

found for hydrophilic surfaces. The residues that are in contact with the surface (taken to be 

those with separation between the surface and centres-of-mass less than 5 Å) are shown in 

Table 3. 

Table 3 Residues in contact with surface 

 

 

Fig. 8 (a) Secondary structure amounts for (top to bottom) Arg-down, Arg-up, C-down, and 
N-down starting conformations. Black, red, and green lines denote turn, beta-strand, and 
random coil respectively. (b) Secondary structure distributions for (top to bottom) Arg-down, 
Arg-up, C-down, and N-down starting conformations. 
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Surface adsorption has little effect on the structure of the protein. Shown in Fig. 8a are the 

secondary structure compositions for the different starting structures. In all cases the structure 

remains predominately beta-strand, with turn and random coil. Apart from N-down, there is a 

slight increase in the amount of random coil when the protein adsorbs, with the amount of 

turn decreasing. For N-down the amount of random coil and turn remains largely unchanged 

across the simulation, in agreement with the CD measurements. The distribution of the 

different secondary structure motifs is also largely unchanged during the simulations (Fig. 

8b). 

From consideration of all of the simulations it may be seen that three particular regions of the 

protein are especially important in mediating attachment; these are the loop joining the first 

and second beta-strands (around residue 23), the loop joining the third and fourth beta-

strands, and the C-terminus. These contain predominately hydrophilic residues, with 

attachment being driven by hydrogen bonding between these groups and the N-H and C=O 

groups in the PU. Adsorption through flexible regions suggests that these play a role in 

mediating surface adsorption, similar to the fly-casting mechanism exhibited by some DNA-

binding proteins. 60 

The use of silanisation to functionalise the AFM probe means that the protein attaches to the 

probe via the N-terminal 61 since this allows covalent bonding. Protein that is not covalently 

bonded to the AFM probe ought to be removed by the washing stages. This method for 

protein functionalisation has been used previously for antibodies 38 and for Fn. Attachment of 

protein by the N-terminal would suggest that the C-down, Arg-down and Arg-up orientations 

used in the MD simulations are most relevant to the situation in the AFM experiments while 

all orientations are relevant to the QCM experiments. 
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CONCLUSION 

In this paper the adsorption of anastellin, a C-terminal fragment of the fibronectin type III 

domain, onto biomaterial surfaces was investigated using a combination of experimental and 

theoretical methods. Understanding the adsorption of proteins onto synthetic surfaces is of 

interest in the development of new materials for medical applications. By combining a 

number of different methods, this work provides a picture of the adsorption ranging from the 

molecular to macroscopic levels. 

Agreement between adhesion data and adsorption results confirm that there is greater 

interaction between anastellin and PU than between anastellin and PMMA. There appears to 

be agreement between the circular dichroism data and the molecular dynamics simulations of 

anastellin which both indicate a stable secondary structure. Molecular dynamics simulations 

of anastellin on polyurethane show that adsorption is strong and occurs rapidly. The 

simulations also show that the secondary structure of anastellin is stable upon adsorption to 

polyurethane in water and remains mostly stable even in saline solutions. Analysis of the 

simulations suggest that adsorption onto polyurethane is mediated by hydrophilic amino 

acids, due to hydrogen bonding with C=O and N-H groups in the polymer backbone, and 

residues in flexible regions of the protein. 
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Figure captions 

Fig. 1 Second axis graphs with frequency and mass. 

Fig. 2 Circular dichroism (CD) spectrum of FnIII1c. 

Fig. 3 Difference in adhesion force by surface between silanised probes (APTES) and 

protein-functionalised probes (anastellin). All differences are significant. 

Fig. 4 Density of anastellin on SiO2, PU and PMMA surfaces. 

Fig. 5 Protein centre-of-mass position (top) and orientation (bottom) for no salt simulations. 

Simulations starting in the Arg-down, Arg-up, C-down, and N-down conformations are 

denoted by black, red, green, and blue lines respectively. 

Fig. 6 Simulation snapshots showing adsorption of anastellin on to polyurethane surface. (a) 

Protein in Arg-down starting configuration at (left to right) t = 0 ns, 13 ns, 25 ns, 47 ns, 50 ns, 

and 100 ns. (b) Protein in Arg-up starting configuration at (left to right) t = 0 ns, 5 ns, 10 ns, 

48 ns, 55 ns, and 100 ns. (c) Protein in N-down starting configuration at (left to right) t = 0 

ns, 1 ns, 15 ns, 20 ns, 50 ns, and 100 ns. (d) Protein in C-down starting configuration at (left 

to right) t = 0 ns, 1 ns, 10 ns, 27.5 ns, 47 ns, and 100 ns. Residues involved in adsorption (see 

text) are highlighted. 

Fig. 7 Residue centre-of-mass positions for protein starting in (top to bottom) Arg-down, 

Arg-up, C-down, and N-down conformations. 

Fig. 8 (a) Secondary structure amounts for (top to bottom) Arg-down, Arg-up, C-down, and 

N-down starting conformations. Black, red, and green lines denote turn, beta-strand, and 

random coil respectively. (b) Secondary structure distributions for (top to bottom) Arg-down, 

Arg-up, C-down, and N-down starting conformations.Error! Reference source not found.
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Table 1 Advancing contact angles of SW, PMMA and PU surfaces, n = 12. 

 Contact Angle (θA ° ) 

Surface DW DIM EG 

SW 56.6 ± 1.3 42.2 ± 2.6 33.9 ± 6.5 

PMMA 74.7 ± 3.8 40.7 ± 1.1 59.2 ± 2.5 

PU 85.9 ± 12.2 42.1 ± 7.5 60.0 ± 1.6 

 

 

 

Table 2 Surface energy components by CAG and surface roughness by AFM of SW, PMMA, 

and PU surfaces. 

 Surface energy (mJ m-2) Roughness by AFM 

Surface γs
LW γs

+ γs
- γs Ra (nm) 

SW  38.49 0.30 23.98 43.81 0.11 ± 0.01 

PMMA 39.26 0.14 13.63 42.02 2.00 ± 0.11 

PU 38.54 0.00 4.07 38.67 3.06 ± 0.25 

 

Table 3 Residues in contact with surface 

Conformation Residues in Contact 

Arg-down K21, N23, Q64, E65, T67, R68, D70 

Arg-up P7, Y61 

C-down N21, V23 

N-down A6, P7, Q8, Q60, Y61, G62 
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Equations 

Equation 1 

A = 4πRT 

 

Equation 2 Sauerbrey equation 
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Fig. 1 Second axis graphs with frequency and mass.  
 

218x161mm (111 x 111 DPI)  
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Fig. 2 Circular dichroism (CD) spectrum of FnIII1c.  
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Fig. 3 Difference in adhesion force by surface between silanised probes (APTES) and protein-functionalised 
probes (anastellin). All differences are significant.  
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Fig. 4 Adsorbed mass of anastellin on SiO2, PU and PMMA surfaces.  
 

174x113mm (150 x 150 DPI)  
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Fig. 5 Protein centre-of-mass position (top) and orientation (bottom) for no salt simulations. Simulations 
starting in the Arg-down, Arg-up, C-down, and N-down conformations are denoted by black, red, green, and 

blue lines respectively.  
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Fig. 6 Simulation snapshots showing adsorption of anastellin into polyurethane surface. (a) Protein in Arg-
down starting configuration at (left to right) t = 0 ns, 13 ns, 25 ns, 47 ns, 50 ns, and 100 ns. (b) Protein in 
Arg-up starting configuration at (left to right) t = 0 ns, 5 ns, 10 ns, 48 ns, 55 ns, and 100 ns. (c) Protein in 

N-down starting configuration at (left to right) t = 0 ns, 1 ns, 15 ns, 20 ns, 50 ns, and 100 ns. (d) Protein in 
C-down starting configuration at (left to right) t = 0 ns, 1 ns, 10 ns, 27.5 ns, 47 ns, and 100 ns. Residues 

involved in adsorption (see text) are highlighted.  
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Fig. 7 Residue centre-of-mass positions for protein starting in (top to bottom) Arg-down, Arg-up, C-down, 
and N-down conformations.  
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Fig. 8 (a) Secondary structure amounts for (top to bottom) Arg-down, Arg-up, C-down, and N-down starting 
conformations. Black, red, and green lines denote turn, beta-strand, and random coil respectively. (b) 
Secondary structure distributions for (top to bottom) Arg-down, Arg-up, C-down, and N-down starting 

conformations.  
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