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The origin of Earth’s first continents and the onset of plate tectonics
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'School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2School of GeoSciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3FE, UK

ABSTRACT

The growth and recycling of continental crust has resulted in the
chemical and thermal modification of Earth’s mantle, hydrosphere,
atmosphere, and biosphere for ~4.0 b.y. However, knowledge of the
protolith that gave rise to the first continents and whether the envi-
ronment of formation was a subduction zone still remains unknown.
Here, tonalite melts are formed in high P-T experiments in which
primitive oceanic plateau starting material is used as an analogue for
Eoarchean (3.6-4.0 Ga) oceanic crust generated at early spreading
centers. The tonalites are produced at 1.6-2.2 GPa and 900-950 °C
and are mixed with slab-derived aqueous fluids to generate melts that
have compositions identical to that of Eoarchean continental crust.
Our data support the idea that the first continents formed at ca. 4
Ga and subsequently, through the subduction and partial melting of
~30-45-km-thick Eoarchean oceanic crust, modified Earth’s mantle
and Eoarchean environments and ecosystems.

INTRODUCTION

The mechanisms responsible for generating the first continents and
evidence for the beginning of plate tectonics beneath liquid water oceans
remain topics of substantial debate (Dhuime et al., 2015; Foley et al.,
2002; Moyen and Martin, 2012; Nutman et al., 2012; Rapp et al., 2003;
Smart et al., 2016). Up to 90% of juvenile Eoarchean (3.6-4.0 Ga) con-
tinental crust is composed of plagioclase-rich tonalite, trondjhemite, and
granodiorite (TTG) granitoids (Foley et al., 2002; Hoffmann et al., 2011;
Martin et al., 2005; Nutman et al., 2009; Polat and Hofmann, 2003; Rapp
et al., 2003). Determining how these TTG rocks are generated is key to
identifying what protolith(s) gave rise to the first silicic nuclei, under-
standing what planetary-scale tectonic processes were operating on the
early Earth, and how continent formation could have modified Eoarchean
environments and primitive ecosystems (Kamber, 2010; Nutman et al.,
2012; Wordsworth and Pierrehumbert, 2013).

EOARCHEAN TTG AND THE EARLY EARTH

Eoarchean TTG (ETTG) are mineralogically and geochemically dis-
tinct from other granitoids and have complex and diverse compositions
(Hoffmann et al., 2011; Martin et al., 2005; Nutman et al., 2009; Smithies
etal., 2003). Two recent compilations (Hoffmann et al., 2011; Nutman et
al., 2009) show that ETTG have SiO, >65 wt%, Al,0, mostly 215 wt%,
MgO contents from ~0.2 to 2.6 wt%, Na,0O commonly >3 wt%, negative
Nb-Ta-Ti anomalies on mid-oceanic ridge basalt (MORB)-normalized
multi-element diagrams, and relatively high Sr and low Y contents (95—
497 and <20 ppm respectively) with moderate St/Y ratios (average ~40).
Archean to present-day TTG are thought to be derived from partial melt-
ing of metabasic igneous rocks based on high pressure-temperature (high
P-T) experiments and numerical modeling (Foley et al., 2002; Moyen and
Martin, 2012; Rapp et al., 2003). Nevertheless, previous experiments on
arange of metabasic rocks (amphibolite and eclogite) and compositions
(MORB and island arc) have not generated partial melts with major and
trace element compositions and geochemical patterns similar to ETTG
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(Adam et al., 2012; Beard and Lofgren, 1991; Laurie and Stevens, 2012;
Lépez and Castro, 2001; Patifio Douce and Beard, 1995; Rapp et al., 2003;
Rapp and Watson, 1995; Rushmer, 1991; Sen and Dunn, 1994; Skjerlie
and Patifio Douce, 1995, 2002; Springer and Seck, 1997; Winther, 1996;
Wolf and Wyllie, 1994; Zhang et al., 2013; Ziaja et al., 2014).

Lithological, structural, and geochemical evidence has been presented
in previous studies to suggest that plate tectonics, in some form, existed
from ca. 4 Ga (Kerrich and Polat, 2006; Kusky et al., 2013). The small
volume of surviving metamorphosed Eoarchean mafic rocks have pre-
dominantly island arc basalt, island arc picrite, and boninite compositions,
are probably associated with short-lived subduction initiation processes,
and are older than the ETTG that ultimately intrude them (Nutman et
al., 2015, 2009; Polat and Hofmann, 2003). If subduction was occurring,
then spreading centers must have also been present; as such, oceanic crust
formed at these spreading centers may represent the protolith from which
the first continents were derived. Eoarchean upper mantle is thought to
have been hotter and less depleted in incompatible elements than the pres-
ent-day asthenosphere (Herzberg et al., 2010). Thus, Eoarchean spreading
centers should have been characterized by more extensive partial melting,
producing oceanic crust that was less depleted and thicker (~30-45 km)
than at present (~7 km) (Abbott et al., 1994; Herzberg et al., 2010). Large
eruptive volumes and thick (up to ~35 km) oceanic crust was generated
in the Mesozoic by the partial melting of relatively hot and less incom-
patible element—depleted mantle plume heads to form oceanic plateaus
(Fitton and Godard, 2004; Hastie et al., 2016). Hence, in terms of thick-
ness and geochemistry, if not mode of formation, oceanic plateau crust
may represent a close analogue for Eoarchean oceanic crust generated at
early spreading centers. The lack of continental crust at ca. 4 Ga means
that Eoarchean oceanic crust, analogous to oceanic plateau crust, was the
dominant surface rock type and a likely protolith from which the ETTG
originated. However, no previous high P-T experimental studies have
used natural primitive oceanic plateau material as a starting composition
to investigate TTG genesis.

NEW HIGH P-T EXPERIMENTS

‘We undertook new high P-T experiments at 825-1000 °C and 1.6-2.2
GPa on a primitive and depleted (relatively high MgO and low light rare
earth elements [LREEs], Th, and U) anhydrous sample from the Ontong
Java oceanic plateau (OJP) (see the Methods section of the GSA Data
Repository', and Tables DR1 and DR2 therein). All of the previous starting
compositions reported in the literature are significantly different from our
OJP sample in at least several major elements (Table DR1).

Evidence for Eoarchean subduction compelled us to explore a subduc-
tion environment from which to generate ETTG. A shallow subducting
slab is converted to an amphibolite with ~2-3 wt% water (Peacock, 1993),
and therefore, a similar amount of water was added to the anhydrous OJP
material to form partial melts in equilibrium with an amphibolite contain-
ing plagioclase and/or garnet depending on the P-T conditions. Above

!GSA Data Repository item 2016282, experimental and analytical methods,
and data Tables DR1-DR6, is available online at www.geosociety.org/pubs/ft2016
.htm, or on request from editing @ geosociety.org.
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~900 °C, the OJP sample undergoes partial melting to generate tonalite liq-
uids (Fig. 1A; Table DR3) and our experiments replicate melt-generating
processes that occurred at the top of a subducting Eoarchean slab. Lower
crustal sections (<3—4 km depth) would be essentially anhydrous (Foley
et al., 2002; Moyen and Martin, 2012; Tang et al., 2016), and therefore,
our results do not represent intracrustal melting mechanisms deep within
Eoarchean oceanic crust.

With the exception of K,O, our tonalite melts plot within the major
element liquid lines of descent for ETTG (Hoffmann et al., 2011; Nutman
et al., 2009), and Figures 1B and 1C show this using TiO, and MgO as
examples (see Table DR4 for a full major element comparison). Previous
experimental melts are highly variable but generally have a poor fit with
regards to either TiO, or MgO (or other major elements). Our K,O values
are below those for ETTG (previous experimental liquids are again highly
variable), but K,O, unlike other major elements, is easily mobilized in
subducted slab-derived aqueous fluids, and so ETTG may have gained
K, O from fluids derived by dehydration of subducted crust as well as from
slab melts. Accordingly, we use the methodology of Kogiso et al. (1997)
to mix our tonalites with a theoretical K,O-enriched aqueous slab fluid
that increases the K,O content such that all of our experimental major
element compositions now plot with ETTG (Fig. 1D; Table DR4). Using a
primitive oceanic plateau starting composition with higher K,O concentra-
tions to increase the K,O abundances in our melts is not practical because
primitive oceanic plateau lavas have very low K,O (average of ~0.1 wt%
from the OJP and Caribbean, similar to our starting material) (Fitton and
Godard, 2004; Hastie et al., 2016). Nevertheless, future experiments using
more differentiated oceanic plateau material may be able to generate melts
with higher K,O without requiring the addition of a slab fluid.

Figure 2A shows that the trace element concentrations of our tonalite
liquids also have compositions nearly identical to that of ETTG (Table
DRS5). Importantly, the range of heavy REE (HREE) concentrations is
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Figure 1. A: Normative anorthite-albite-orthoclase classification dia-
gram showing that melts in this study are tonalitic in composition.
B-D: Representative TiO,-SiO,, MgO-SiO,, and K,0-SiO, variation dia-
grams. TiO,-SiO, and MgO-SiO, data illustrate similar liquid lines of
decent of our tonalites with regards to published Eoarchean tonal-
ite, trondjhemite, and granodiorite (TTG) data (Hoffmann et al., 2011;
Nutman et al., 2009). Previous experimental liquids (see data in Table
DR4 [see footnote 1]) can overlap Eoarchean TTG data, but are, for
most part, highly variable. K,0-SiO, plot shows that our data can only
intersect Eoarchean data if aqueous slab-derived fluid is involved.
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replicated, from high-HREE contents with residual plagioclase to pro-
gressively lower HREE concentrations as residual garnet increases in
modal abundance. Additionally, the liquids have low Eoarchean-like Sr
contents ranging from 133 to 474 ppm, with melts in equilibrium with
residual plagioclase having lower values (Fig. 2A). Residual amphibole
and titanomagnetite also generate a characteristic negative Ti anomaly.
Data from previous experimental liquids derived from Hadean greenstone
(Adam et al., 2012) and back-arc starting materials (Rapp et al., 1999)
largely overlap the ETTG data, but several elements plot outside the ETTG
field (e.g., Sr), and the melts generally do not replicate the overall ETTG
pattern as well as our OJP melts—particularly the negative Ti anomaly
(even with residual rutile) (Fig. 2B).

Our tonalites have a variably small negative Nb anomaly (MORB-
normalized [mn] La/Nb__ratios of 0.7-2.3) compared with ETTG (La/
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Figure 2. A: Normal mid-oceanic ridge basalt (N-MORB)-normalized
multi-element diagram showing trace element contents of our experi-
mentally derived melts relative to Eoarchean tonalite, trondjhemite,
and granodiorite (TTG) (Hoffmann et al., 2011; Nutman et al., 2009).
Key shows residual aluminum-bearing phase(s) in equilibrium with
melt (amph—amphibolite; gnt—garnet; plag—plagioclase). B: Multi-
element diagram showing trace element contents of experimental
liquids derived from Hadean greenstone and back-arc starting mate-
rials (Adam et al., 2012; Rapp et al., 1999). C: Multi-element diagram
showing trace element contents of our tonalites that have been mixed
with slab-derived aqueous fluid. All diagrams have inset MORB-nor-
malized (mn) La/Nb-Gd/Ti plot to illustrate magnitude of negative Nb
and Ti anomalies discussed in text.
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Nb_ ratios of 1.3—11.5). However, the La/Nb__ratios in our melts can be
increased if we mix them with the same slab-derived fluid that we used to
increase the K,O (Fig. 1D). We assume that only Th, U, Sr, and the LREEs
are mobile in a slab-derived aqueous fluid (Kogiso et al., 1997) (Table
DR6). A 96% tonalite and 4% slab fluid mixture generates a higher La/
Nb,_ ratio of 1.4-3.5 that brackets about half of the ETTG samples while
still retaining ETTG-like concentrations for the other elements (Fig. 2C).
Oceanic plateau starting material with higher TiO, concentrations may
stabilize rutile as a residual phase instead of titanomagnetite here, and
this could lead to higher La/Nb__in subsequent melts. Primitive oceanic
plateau samples commonly have low TiO, abundances similar to that in
the starting material in our experiments (Fitton and Godard, 2004; Hastie
etal., 2016); however, more differentiated oceanic plateau material does
have commonly higher TiO, and potentially could stabilize rutile. Again,
future experiments using more differentiated oceanic plateau material are
required to explore this possibility. Nonetheless, assuming that Eoarchean
oceanic crust is similar to primitive oceanic plateau basalts, our tonalite
melt and slab fluid mixtures represent the simplest model to explain ETTG
major and trace element compositions.

PLATE TECTONICS ON THE EARLY EARTH AND
ENVIRONMENTAL IMPLICATIONS

‘We demonstrate that partial melting of Mesozoic oceanic plateau—like
material as an analogue for Eoarchean oceanic crust in a subduction
environment generates melts geochemically analogous to the earliest
continental crust (Fig. 2C). Modern-style steep subduction operated later
in the Archean Eon (Abbott et al., 1994; Dhuime et al., 2015; Martin et
al., 2005; Tang et al., 2016), but “flat” subduction or underthrusting of
thick oceanic plateau—like oceanic crust began in the Eoarchean (de Wit,
1998; Martin et al., 2005; Nutman et al., 2015; Smithies et al., 2003).
Supporting this interpretation is that Mesozoic oceanic plateaus in the
present-day ocean basins subduct at a shallow angle when they collide
with convergent margins or continental crust (e.g., Van der Hilst and
Mann, 1994) and generate lavas (adakites) that have similar compositions
to ETTG (Hastie et al., 2015).

Our data support two possible flat-slab subduction scenarios (Nutman
etal., 2015; Smithies et al., 2003): (1) a very thick (~45 km) oceanic slab
underthrusts another equally thick slab (Fig. 3A), or (2) several thick
(~25-30 km) oceanic slabs underthrust each other to form an imbricated
stack of mafic plates (Fig. 3B). The top of the underthrusting plate(s) meta-
morphoses into amphibolites that contain plagioclase and/or garnet. Partial
melting of these amphibolites forms ETTG plutons that ascend without
being contaminated by a thick mantle wedge, and this explains low MgO
contents in ETTG (Martin et al., 2005). The slab melting process gener-
ates huge volumes of ETTG melt that overwhelm the earlier arc-related
magmatism and any accreted sedimentary sequences. Slivers of mantle
material trapped on the subducting shear surface(s) will also contribute
to the petrogenesis of minor volumes of quartz diorite and andesite in the
Eoarchean rock record (Nutman et al., 2015). Additionally, although we
can derive ETTG by fusion of primitive oceanic plateau-like Eoarchean
oceanic crust, the partial melting of accreted island arc—like crust could
still have been a potential protolith for forming ETTG (Hastie et al., 2015).

Underthrusting and/or imbrication of thick Eoarchean oceanic slabs
would have generated emergent crust with predominantly mafic composi-
tions. The existence of subaerial mafic crust on the early Earth is supported
by recent work on Rb/Sr, Ni/Co, and Cr/Zn ratios, REE abundances, and
Nd-Sr isotope systematics in Archean igneous and sedimentary rocks
(Dhuime et al., 2015; Kamber, 2010; Tang et al., 2016). Addition of lower-
density TTG rocks into this emergent mafic crust should have led to
more elevated crustal topography and increased erosion and weathering
rates that increased the rates of modification of ocean and atmospheric
chemistry. Importantly, weathered and eroded mafic crust should have
led to high Ni input into the marine environment to support the dominant
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Figure 3. Two possible tectonic scenarios to explain generation of earli-
est continental crust. In A, ~45-km-thick slab underthrusts another, and
in B, several ~30-km-thick slabs underthust one another to produce
thickened stack of oceanic plates. Slab shear surface(s) undergo par-
tial melting to form large volumes of Eoarchean tonalite, trondjhemite,
and granodiorite (ETTG) magmas that intrude into overlying plate(s).
These scenarios explain existence of small volumes of metavolcanic
rocks with island-arc tholeiite and boninite compositions in Eoarchean
terranes that have been intruded by large volumes of ETTG plutons.

methanogen communities of the Archean (Kamber, 2010). As TTG were
slowly added to the evolving continental crust over time, the supply of Ni
diminished to help bring about the demise of the methanogens (Kamber,
2010; Tang et al., 2016). Volcanic systems built on the new continents
would have also released large volumes of volatile elements (H,O, CO,,
SO,, H,S, H,). These gases would have been contributors to potential
greenhouse warming on the early Earth to help explain why the planet
was not glaciated on a planetary scale despite lower solar energy incident
on Earth in the early Archean (Nutman et al., 2012; Wordsworth and
Pierrehumbert, 2013).
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