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Whisker Formation in Porosity in Al Alloys

WILLIAM DAVID GRIFFITHS, AHMED ELSAYED,
and MAHMOUD AHMED EL-SAYED

An examination of the fracture surfaces of tensile test bars from Al alloy castings held in the
liquid state for up to 20 minutes revealed porosity which in some cases contained whisker-like
features. Energy-dispersive X-ray analysis in a SEM suggested that these might be oxide
whiskers forming in an oxide-related pore or double oxide film defect. Such entrainment defects
(also known as bifilms) may entrap a small amount of the local atmosphere when they form and
become incorporated into the liquid metal. This atmosphere may be predominantly air, which
then subsequently reacts with the surrounding melt, firstly by reaction with oxygen and secondly
by reaction with nitrogen. A CFD model of the heat distribution associated with the reactions
between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy
suggested that highly localized increases in temperature, up to about 2000 K to 5000 K (1727 �C
to 4727 �C), could occur, over a scale of a few hundred micrometers. Such localized increases in
temperature might lead to the evaporation or disassociation of oxide within the pore, followed
by condensation, to form the whisker structures observed. Hydrogen might also be expected to
diffuse into the bifilm and may play a role in the chemical reactions associated with the
development of the bifilm.

DOI: 10.1007/s11663-016-0783-x
� The Author(s) 2016. This article is published with open access at Springerlink.com

I. INTRODUCTION

DOUBLE oxide films have become recognized as
significant defects in Al and Mg alloys, leading not only
to a reduction in mechanical properties but, perhaps just
as detrimental, an increase in the scatter of properties.[1]

The defects are caused during the casting process when
liquid metal is transferred, e.g., from a melting or
holding furnace to a crucible, or during mold filling. The
defects occur when the oxidized liquid metal surface is
folded over onto itself, trapping the local mold atmo-
sphere, and is then carried into the bulk liquid metal.[2]

If parts of the oxide film come into contact, it is thought
that they should not bond, owing to their relatively low
temperature in the liquid metal. Once the defects
become submerged into the bulk liquid, they may be

carried into the mold cavity and trapped during solid-
ification. Their variable effect on the mechanical prop-
erties depends upon various factors such as whether the
section of the casting in which they reside is under load
or not in service, the orientation of the defect to the
applied load, and its morphology.[1–3]

Double oxide film defects are seen as symmetrical
defects on either side of a fracture surface in tensile test
bars.[1] They are identified as oxides by EDX analysis
during scanning electron microscopy. Different alloys
are associated with different oxides on the liquid metal
surface; for example, commercial-purity Al should form
alumina (Al2O3), while a Mg content of between 0.02
and 1.5 wt pct has been suggested to form MgAl2O4

spinel. With a Mg content of more than 1.5 wt pct,
magnesia, MgO, would be expected to form.[4]

Once a double oxide film defect has become incorpo-
rated into the melt, it would be expected to contain an
atmosphere that would be predominantly air (although
other mold gases may also be present), which would be
expected to react with the surrounding liquid metal. It
was proposed by Nyahumwa et al.[5] that oxygen in the
internal atmosphere would react first, followed by
nitrogen. As the interior gases were consumed, the sides
of the oxide film defect would come together, perhaps
making the defect less detrimental. Studies by Griffiths
et al.[6,7] and El-Sayed et al.[8,9] of the rates of consump-
tion of air bubbles trapped in Al melts containing Mg
have supported this idea, and the rates of reaction
deduced from these experiments have been used to gain
some understanding of the possible life cycle of a freshly
created double oxide film defect.
The reactions of oxygen and nitrogen with the

surrounding liquid alloy are as follows[10–12]:
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4Al þ 3O2 ¼ 2Al2O3

2Al2O3 þ 2MgO ¼ 2MgAl2O4

2Mg þ O2 ¼ 2MgO

2Al þ N2 ¼ 2AlN:

These are exothermic reactions,[13,14] which raises the
question as to where the heat evolved in these reac-
tions diffuses to, and whether temperature increases in
the vicinity of a double oxide film defect can be
expected. This paper reports SEM observations of
whisker-like structures found inside pores in cast Al
alloys, together with modeling of the heat evolved by
reaction of the interior gases of a double oxide film
defect with the surrounding melt, to suggest an expla-
nation for their formation.

II. EXPERIMENTAL PROCEDURE

A. Casting Experiments

Castings were produced from three different Al alloys,
commercially pure Al (>99.7 pct Al), Al-7Si-0.3Mg
(2L99), and Al-5Mg, with each alloy being expected to
produce different oxide films which might have different
behaviors (Al2O3, MgAl2O4, and MgO, respectively). In
each experiment, about 10 kg of the alloy was melted
and held at about 1073 K (800 �C) under a reduced
pressure of about 80 mbar for one hour, in an attempt
to remove previously introduced bifilms in the melt, by
expansion and flotation to the surface.[15,16] The liquid
metal was then poured from a height of about 1 m into a
preheated investment mold, then placed in an induction
furnace to stir the melt. This was intended to cause the
creation and entrainment of new double oxide film
defects, of a known age. The experimental procedure
has been described in detail elsewhere.[17,18]

Three experiments were carried out for each alloy. In
one experiment, the casting was allowed to solidify
immediately to preserve any double oxide film defects
created during mold filling and melt stirring. In the other
two experiments, the ceramic molds were placed in a
furnace at 1073 K (800 �C) for 10 and 20 minutes,
before removal and solidification. Thus any oxide films
found in the solid casting in these cases could be
interpreted as being about 10 and 20 minutes old
respectively. The change in the hydrogen content of each
melt during holding was determined using a Severn
Science Hyscan H-measuring device.

After solidification, the castings were machined into
rectangular test bars, of 13 mm width, 10 mm thickness,
and 75 mm gage length, for the measurement of their
tensile properties, to determine the effect on the mechan-
ical properties of any bifilms present. The fracture
surfaces of the test bars were studied using SEM coupled

with EDX to investigate the effect of the holding
treatment on the morphology of oxide film defects.

B. Modeling of the Temperature Distribution Around a
Double Oxide Film Defect

It has been suggested that the movement of a bifilm
within an Al melt could form cracks in the oxide skin,
allowing the oxygen and nitrogen inside the bifilm to
react with the melt.[11] These exothermic reactions would
be expected to locally raise the temperature of the oxide
layer forming the bifilm and also the surrounding liquid
metal, and this temperature change was modeled in 3-D
using FLUENT (version 6.3.26) (a commercial CFD
software).
An experimental study of the dimensions of bifilms

using 3D micro X-ray tomography suggested an
approximately square shape with dimensions 2.2 9
2.2 9 0.1 mm, giving a volume of 0.48 mm3 and a
surface area of 10.6 mm2.[19] These dimensions were
adopted for this model. Due to the assumption of
symmetry, only one half of the bifilm was modeled, with
the plane of symmetry placed within the interior
atmosphere, parallel to the oxide walls of the bifilm, as
shown in Figure 1. The model consisted of three
domains, representing liquid Al, the oxide film, and
the entrapped air. The liquid Al domain has the
dimensions of 2.2 9 2.2 mm in area and 0.5 mm in
depth. The oxide film thickness was assumed to be 2 lm,
and 50 lm represented the entrapped air, as shown in
Figure 1. The volume of air trapped in the bifilm and to
be consumed was therefore 0.05 9 2.2 9 2.2 =
0.242 mm3, and the surface area of the reaction was
assumed to be 2.2 9 2.2 = 4.84 mm2, the area of the
face of the oxide layer.
Two cases were considered. In the first one, it was

assumed that all reactions would occur by the rupture
and resealing at a single location in the oxide film, as
shown in Figure 1(a). This might arise because the
region that was fractured and then resealed by the
reaction between the melt and the gas inside the defect
would be the weakest point in the oxide film and would
have a greater tendency to tear again under the stresses
associated with the movement of the bifilm within a
melt. This was modeled by assuming a rupture with the
dimensions of 10 9 10 9 2 lm and a volume of
2 9 10�16 m3, placed in the center of the oxide layer
in the model, at which the heat source associated with
the reactions was then applied.
In a second model, the reactions were considered to

occur at multiple points of rupture along the oxide layer
(Figure 1(b)), and the heat source assumed to be
generated by the reactions was therefore applied to the
entire oxide layer for one side of a bifilm, with
dimensions 2.2 mm 9 2.2 mm 9 2 lm and a volume
of 9.68 9 10�12 m3.
Table I shows the heat of formation (expressed in

J mol�1 of O2 or N2, of the reactants) of the different Al/
Mg oxides and AlN,[13,14] together with the suggested
consumption rates for the different Al alloys (expressed
as mol m�2 s�1 of O2 and N2, for the atmosphere in the
bifilm), taken from Reference 9 (based on the surface
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area of the reaction between the melt and the bifilm
atmosphere). The consumption rates of O and N inside
a bifilm of the dimensions assumed were then estimated
(expressed in mol s�1). The time required for the
consumption of O and N in the different Al melts was
taken from Reference 9 and is also given in Table I, to
arrive at a rate of heat generation per unit volume, due
to the consumption of oxygen and nitrogen in the
different alloys, calculated for the two cases described
above.

The model geometry was created using GAMBIT
(version 2.3.16). The domain was divided into three
zones, to represent the volume of air, oxide film, and

liquid metal, as described earlier. A fourth domain was
created to represent the heat source assumed to be a
single point of rupture, in Case I. The horizontal faces of
the four zones were first meshed using a Quad/Map
scheme with a number of intervals (interval count) of 80
on each edge. The volumes of the zones were then
meshed using a Hex/Cooper scheme resulting in 52,129,
36,556, 110,135, and 1770 nodes in the liquid Al, air,
oxide, and rupture zones, respectively (See Figure 1(c)).
The mesh density of the whole domain was
7.2 9 105 cells per mm3. In the model, all the outer
boundaries of the different zones were set to be
stationary walls with a constant temperature of

Fig. 1—Schematic illustrations of the model geometry (dimensions are in mm), when (a) the heat source was localized at a single point of rup-
ture and (b) the heat source was distributed uniformly over the oxide film. (c) Mesh of the geometry showing different zones in the model.
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1073 K (800 �C). The heat transfer from the volumetric
heat source applied to the oxide layer was considered to
be due to conduction through the oxide zone and the
convection and conduction through the air and liquid Al
zones.
The grid was exported as a mesh file from GAMBIT

into FLUENT for solution. A 3D segregated, unsteady
first-order implicit solver was selected. The physical and
thermal properties (e.g., viscosity, thermal conductivity,
and specific heat capacity) of the different materials
(liquid aluminum, alumina, spinel, MgO, and air) were
assigned to the corresponding zones.[20,21] These values
are given in Table II.
The operating pressure and initial temperature were

set to 101,325 Pa (1 bar) and 1073 K (800 �C), respec-
tively. The velocity–pressure coupling was solved using
the SIMPLE algorithm. Quick Scheme was used for
discretization of the momentum equation and a sec-
ond-order upwind scheme was used for discretization of
the energy equation. The unsteady solver was set to a
1-second time step with a maximum number of itera-
tions per time step of 60.
At the end of each iteration, the residual sum for each

of the conserved variables was determined. Convergence
was considered to have occurred when the residuals of a
variable fell below a predetermined value, 10�5, for the
continuity, momentum, and energy equations. Temper-
atures at different locations in the domain were recorded
while running the solution. These monitors were also
indicators of convergence, if they did not change
significantly for successive iterations. With these criteria,
60 iterations per time step were found to be sufficient for
convergence of the solution.
In the model, for pure Al and for Case I, a volumetric

heat source of 6.87 9 1010 Wm�3 was applied at the
location of the rupture for 62 seconds, to represent the
period of oxygen consumption. The heat source was
then decreased to 1.03 9 1010 Wm�3 and applied at the
same location for 461 seconds, to represent the heat
evolved during the subsequent consumption of nitrogen.
The heat source was then removed and the model was
allowed to run for another 180 seconds before halting.
In Case II, the volumetric heat source (see Table I) was
applied to the volume of the half oxide layer used in the
model. For 2L99 and Al-5Mg alloys, the same proce-
dure was adopted with the appropriate values for the
heat source and the corresponding application times, as
shown in Table I.

III. RESULTS

A. Microscopy

Figure 2(a) shows a SEM image from a pore on the
fracture surface of a tensile test bar of commercial-pu-
rity Al held in the liquid state for 20 minutes before
solidification. Inside the pore, what appears to be an
oxide layer seems to be entrapped between two dendrite
arms, with whisker-like structures appearing to have
grown from the surface of the oxide layer. EDX
analysis, shown in Figure 2(b), indicated the presence
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of aluminum oxide. Higher magnification views of these
whiskers are shown in Figures 2(c) and (d).

Two other examples of whiskers found within pores
on the fracture surfaces of two tensile test bars of
Al-5Mg alloy, also held in the liquid state for 20 minutes
before solidification, are shown in Figures 3 and 4. In
both figures, (a) shows a SEM image showing the
whisker structure, while (b) shows a higher magnifica-
tion image of the whisker. The results of EDX analysis
at points X1 and X2, shown in (c) and (d), respectively,
indicated the presence of MgO.

No whiskers were found on the fracture surfaces of
samples, from both commercial-purity Al and Al-5Mg
alloys, either when solidified immediately or held in the
liquid state for 10 minutes before solidification. Also
no whisker structures were found in pores on the
fracture surfaces of test bars from any of the 2L99
alloy castings.
The whiskers shown in Figures 2 through 4 may be

interpretable as due to chemical reactions occurring
within the pore atmosphere, resulting in the deposition
of what appear to be ceramic whiskers.

Table II. Physical and Thermal Properties [at 1073 K (800 �C)] of the Materials Used in the Model Zones[20,21]

Density
(kg m�3)

Thermal
Conductivity (W m�1 K�1)

Specific Heat
Capacity (J kg�1 K�1)

Viscosity
(kg m�1 s�1)

Alumina 3970 7.2 1150 NA
Spinel 3640 3.1 1193 NA
MgO 3580 10.1 1267 NA
Air 0.40 0.068 1138 4.18 9 10�5

Liquid Al 2331 208 1160 1.3 9 10�3

Fig. 2—(a) Whisker structures developed on an oxide layer seen on the fracture surface in commercial-purity Al alloy, held for 20 min in the liq-
uid state before solidification. (b) EDX analysis at location labeled ‘‘X’’ in (a). (c) Magnified image of the area containing the whiskers and (d)
further magnification of the area circled in (c).
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B. Results of Modeling

Figures 5(a) and (b) show the distribution of iso-
therms for an alumina double oxide film defect, across a
vertical plane for the two cases, respectively (after a
simulation time of 2 minutes). Figure 5(a) shows the
temperature distribution when the reactions were con-
sidered to occur only at the location of a single rupture
of the oxide film (Case I), for which the maximum
temperature in the model at this time was predicted to
be about 2600 K (2327 �C). Around the rupture loca-
tion, the temperature decreased with distance and
reached 1073 K (800 �C), the initial melt temperature,
at a distance of about 15 lm from the point of rupture.

For Case II, in which it was assumed that the heat
evolved by the reactions was distributed uniformly along
the oxide layer, the maximum predicted temperature
after 2 minutes (see Figure 5(b)) was much lower, about
1500 K (1227 �C), with the maximum occurring at the
center of the alumina film. The temperature decreased
gradually toward both ends of the modeled oxide film,
where it again reached 1073 K (800 �C). The layers of
air and Al melt adjacent to the alumina film had almost
similar temperatures as predicted for the alumina film,
but showed steep temperature gradients normal to the

oxide film. The temperature at the upper boundary of
the air zone (i.e., at the center of the assumed bifilm) was
predicted to be about 1200 K (927 �C). At a distance of
about 0.4 mm normal to the oxide film, the temperature
of the liquid Al had declined to reach the bulk liquid
temperature of 1073 K (800 �C) (see Figure 5(b)). The
distribution of temperature was similar for the three
different alloys, for both modeled cases.
Figures 6(a) through (c) show the predicted change in

temperature with time, for the alumina, magnesia, and
spinel films, respectively, for the two cases. The maxi-
mum temperatures occurred, of course, at the times
corresponding to the complete consumption of the
internal atmosphere of the defects. For the alumina
film (Figure 6(a)), when the heat source was applied to
the location of the rupture, the temperature at this point
was predicted to increase over 9 minutes to reach a
maximum value of about 5000 K (4727 �C). When the
heat source was distributed over the entire Al2O3 film,
the temperature of the alumina layer reached a maxi-
mum, again after 9 minutes, of about 2200 K (1927 �C).
The MgO film (Figure 6(b)) showed similar behavior

to that of the alumina film. The temperature increased
with time to reach predicted peak values (after about

Fig. 3—(a) SEM image from the fracture surface of a test bar from an Al-5Mg alloy held for 20 min in the liquid state before solidification,
showing whisker-like structures linking parts of the porosity. (b) Magnified image of the zone circled in (a). (c and d) EDX analysis of locations
X1 and X2 in (a), respectively.
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6 minutes) of about 5100 K and 2200 K (4827 �C and
1927 �C), respectively, for the two cases when the heat
source was applied at a single point of rupture or across
the whole film.

For the spinel film (Figure 6(c)), the temperature
increased with time to reach a maximum value of about
3000 K (2727 �C), for the application of the heat source at
a point of rupture, and about 1900 K (1627 �C), for the
application of the heat source across the whole oxide film.
However, the time to reach the maximum temperature was
assumed to take a longer time of about 25 minutes.

Finally, in all cases, after cessation of the application of
the heat source the temperature of the oxide layer decreased
as the heat was conducted away, reaching the bulk melt
temperature of 1073 K (800 �C) in about 2 to 3 minutes.

IV. DISCUSSION

The whisker-like structures found within pores on the
fracture surfaces of castings from commercially pure Al,
shown in Figure 2, were found after a holding period of
20 minutes. Such structures were suggested to be alu-
mina by EDX analysis. Comparable whiskers were also
detected inside pores on the fracture surfaces of Al-5Mg
castings after 20-minutes holding, as shown in Figures 3
and 4, which were demonstrated by EDX to be probably

MgO. Previous work, involving the use of mass spec-
troscopy and a pore gas analyser to determine the
changing composition of an air bubble held in liquid Al
alloy melts, suggested that the internal atmosphere of an
oxide-related pore should consist largely of H2 and N2.

[6]

The whisker-like growths are suggestive of ceramic
structures grown from a vapor phase, which suggests
that the whisker-like oxide structures may have formed
within oxide-related porosity that may have contained
an atmosphere consisting substantially of hydrogen.
The modeling results for the three alloys suggested a

significant increase in the temperature of a double oxide
film defect due to heat released by the reaction between the
interior atmosphere of the oxide film defect and the
surrounding melt, and it is possible that this might generate
the heat required to bring about the deposition of the
ceramic structures from the vapor phase suggested above.
For example, it was suggested by DeVries and

Sears[22,23] that heating of an alumina substrate to
temperatures of up to 2273 K (2000 �C), in the presence
of hydrogen, would cause the vaporization of alumina
to produce gaseous Al2O and water vapor. When the
temperature was subsequently reduced to about 1873 K
(1600 �C), the reaction was reversed and alumina was
deposited in the form of whiskers. In an experiment by
Edwards and Happel,[24] the formation of alumina
whiskers on the surface of an alumina substrate was

Fig. 4—(a) SEM image of the fracture surface of a test bar from an Al-5Mg alloy held for 20 min in the liquid state before solidification, show-
ing whisker-like structures. (b) Higher magnification image of the circled region in (a). (c and d) EDX analysis of the locations labeled X1 and
X2 in (a), respectively.
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suggested to occur, at 1673 K (1400 �C) in an atmo-
sphere of moist hydrogen, over a period of about
2 hours. Also, Hayashi and Saito reported the

formation of magnesia whiskers by a vapor phase
reaction of magnesium and water vapor at 1673 K
(1400 �C) and at atmospheric pressure.[25]

Fig. 5—Results of the model, showing (a) temperature contours after 2 min of application of the heat source at the location of a single rupture
point in the alumina layer, and (b) temperature contours after 2 min of application of the heat source distributed uniformly over the alumina layer.
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The model suggested that, for commercially pure Al
and Al-5Mg alloys, during holding of the melt, the
reactions of Al or Mg with the O2 and N2 in the bifilm
atmosphere may locally increase the temperature of parts
of the modeled bifilm up to about 2000 K to 5000 K
(1727 �C to 4727 �C). Such increases in temperature, in
addition to the diffusion of H into the bifilm atmosphere,
could cause the partial reduction of the alumina or
magnesia forming the bifilm, producing Al2O or Mg
respectively (which would be expected to occur as a vapor
phase at these temperatures), and water vapor. During
solidification, if all of the O2 and N2 had been consumed,
the temperature would begin to decrease, perhaps result-
ing in the reaction of Al2O or Mg with water vapor to
produce the alumina and magnesia in whisker form, as
observed in Figures 2 through 4.

It was suggested that a bifilm could take up to
25 minutes to lose its entire atmosphere by reaction with

the surrounding melt,[6] depending mainly upon the
alloy composition, and its oxide. The absence of
whiskers observed inside pores on the fracture surfaces
from castings with 0- or 10-minute holding before
solidification may either indicate that they were present,
but not observed, or their absence could have been due
to the local temperature inside the bifilm not reaching
that required for the whisker formation mechanism to
operate, which might occur only after the consumption
of the majority of oxygen and nitrogen inside the bifilm.
The nature of the oxide film may also have an effect

on the possibility of whisker formation, as no whiskers
were observed inside oxide-related pores in the case of
2L99 alloy, whatever the duration of the holding period.
Previous research has suggested that the characteristics
of a spinel double oxide film defect meant it would have
the smallest amount of H diffusing into its internal
atmosphere during holding.[7,8,26] Also, the modeling

Fig. 6—Graph showing the change in maximum temperature within the oxide layer over time when the heat source was applied (i) to the loca-
tion of a single point of rupture and (ii) distributed uniformly over the oxide layer. (a) For the case of pure Al, having an alumina oxide film.
(b) For the case of Al-5Mg, having a magnesia oxide film. (c) For the case of an Al-Si-Mg alloy, (2L99), having a spinel oxide film.
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results suggested an increase in the temperature of a
spinel bifilm during holding which was around half of the
increase in temperature associated with the alumina and
magnesia bifilms (see Figure 6(c)), due to lower reaction
rates. This might prevent the growth of whiskers asso-
ciated with the spinel film due to an insufficient amount
of heat and/or H within the bifilm atmosphere.

Apart from any effect such as the deposition of the
ceramic whiskers observed, the model suggests the
intriguing possibility that parts of a double oxide film
defect, and its immediate locality, can experience tem-
perature excursions of up to several thousand degrees.
The boiling points of aluminum, alumina, and magnesia
are 2792 K, 3250 K, and 3873 K (2519 �C, 2977 �C, and
3600 �C), respectively,[13] which suggests that localized
boiling of the material might occur. This is an aspect of
the behavior of double oxide film defects that needs to
be taken into account in order to fully understand their
behavior.

V. CONCLUSIONS

1. Whisker-like structures of oxides were found in pores
in castings of commercially pure Al and Al-5 pct Mg
alloys solidified after holding for 20 minutes in the
liquid state.

2. A CFD model of the increase in temperature of an
alumina, spinel, and a magnesia oxide layer (due to
the formation of Al2O3 or MgO, and AlN within a
bifilm) suggested a highly localized increase of the
temperature inside a bifilm that could be as high as
5000 K (4727 �C).

3. The increase in the bifilm temperature might be suf-
ficient to evaporate some portions of the oxides from
the bifilm walls. During subsequent cooling and
solidification, this material might then be redeposited
in the form of ceramic (oxide) whiskers.

4. The presence of the whisker structures could perhaps
be interpreted as due to chemical reactions resulting
in the deposition of ceramic whiskers, which in turn
suggests an atmosphere present in the pores that was
superheated and rich in hydrogen.

5. With commercial-purity Al and Al-5Mg alloys, no
whiskers were observed inside oxide-related pores at
holding periods of less than 20 minutes. In addition,
no whiskers were observed in the case of 2L99 alloy,
at any duration of the holding period. It is suggested
that this might be due to an insufficient amount of
heat generated, and/or hydrogen present, within the
bifilm gap for the whisker formation mechanisms to
operate.
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