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Prolonged exposure to movement perturbations leads to creation of motor memories
which decay towards previous states when the perturbations are removed. However, it
remains unclear whether this decay is due only to a spontaneous and passive recovery
of the previous state. It has recently been reported that activation of reinforcement-
based learning mechanisms delays the onset of the decay. This raises the question
whether other motor learning mechanisms may also contribute to the retention and/or
decay of the motor memory. Therefore, we aimed to test whether mechanisms of
error-based motor adaptation are active during the decay of the motor memory. Forty-
five right-handed participants performed point-to-point reaching movements under an
external dynamic perturbation. We measured the expression of the motor memory
through error-clamped (EC) trials, in which lateral forces constrained movements to
a straight line towards the target. We found greater and faster decay of the motor
memory for participants who had access to full online visual feedback during these
EC trials (Cursor group), when compared with participants who had no EC feedback
regarding movement trajectory (Arc group). Importantly, we did not find between-group
differences in adaptation to the external perturbation. In addition, we found greater
decay of the motor memory when we artificially increased feedback errors through the
manipulation of visual feedback (Augmented-Error group). Our results then support the
notion of an active decay of the motor memory, suggesting that adaptive mechanisms
are involved in correcting for the mismatch between predicted movement trajectories
and actual sensory feedback, which leads to greater and faster decay of the motor
memory.

Keywords: motor adaptation, visual feedback, motor memory, trajectory prediction error, active unlearning

INTRODUCTION

Mechanisms underlying human motor learning have been extensively studied by applying
external visuomotor or dynamic perturbations during performance of reaching movements
(for a review see Wolpert et al., 2011). Motor adaptation is an active error-based learning
mechanism that relies on the updating of internal models following sensory-prediction
errors (Shadmehr and Mussa-Ivaldi, 1994; Flanagan and Wing, 1997; Krakauer et al., 2000).
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In addition, information regarding the success or failure of
a given movement drives reinforcement learning (Abe et al.,
2011; Izawa and Shadmehr, 2011; Shmuelof et al., 2012; Galea
et al., 2015), and use-dependent learning relies on movement
repetition, which biases performance towards the repeated
movement (Classen et al., 1998; Verstynen and Sabes, 2011). It
has been recently proposed that motor learning may result from
combining these learning processes (Huang et al., 2011), which
may occur in parallel (Diedrichsen et al., 2010).

Prolonged exposure to movement perturbations leads to
generation of motor memories, which can be recalled hours,
and even months after being created (Shadmehr and Brashers-
Krug, 1997; Joiner and Smith, 2008). Interestingly, recently
createdmotormemories can be assessed by exposing participants
to error clamped (EC) trials immediately after adaptation,
in which a virtual ‘‘channel’’ is created by generating lateral
forces that constrain the movement to a straight line towards
the target; the visual feedback also reflects the straight
movement. By using EC trials, we can measure the forces
that participants apply towards the wall of the virtual channel
because they anticipate and compensate for the perturbation
that they previously experienced. It has been shown that when
participants are exposed to EC trials, their motor memories
decay towards previous states (Ingram et al., 2013; Vaswani
and Shadmehr, 2013; Brennan and Smith, 2015; Vaswani
et al., 2015). The rationale for using EC trials to evaluate
the decay of the motor memory is that they are thought to
disengage mechanisms of motor adaptation due to a lack of an
error-signal (Smith et al., 2006). Thus decay during EC trials
suggests that the process does not depend on visual feedback
errors.

However, it has recently been reported that manipulating
features of the EC trials may modify the decay of the motor
memory—both the rate of decay, and the decay onset—(Vaswani
and Shadmehr, 2013; Vaswani et al., 2015). Vaswani et al. (2015)
found different patterns of motor memory decay determined by
the similarity of EC trials distribution to participant’s behavior
during the adaptation phase. The authors suggested that the
experimental manipulation of the EC feedback led to exploratory
behavior, resulting in slower decay of the motor memory
because of the engagement of reinforcement-based learning
processes (Vaswani et al., 2015). However, when Brennan
and Smith (2015) tried to replicate Vaswani’s hypothesis of
motor memory decay dependent on the detection of changes
in context, the authors failed to find a significant effect of
context manipulation over participants’ behavior on EC trials.
Brennan and Smith (2015) showed that the decay of the motor
memory started—without delay—even when context changes
were masked.

Thus, there is controversy regarding whether motor
memories—created based on movement errors—are intrinsically
volatile and decay during EC trials, or whether there is an
active motor learning process occurring during the extended
EC testing of the motor memory. Therefore, we aimed to test
whether motor adaptation, driven by error signals based on the
sensory feedback (visual or proprioceptive) available during
EC trials, contributes to the decay of the motor memory. This

study evaluated whether the decay of the motor memory can
be experimentally modified by manipulating online visual
feedback during EC trials. We tested three groups of participants
in a force-field (FF) adaptation paradigm. We measured the
motor memory following adaptation using EC trials, in which
there is no positional deviation of the hand, and compared
the rate of decay between participants with online visual
feedback of movement distance only vs. a veridical cursor,
which showed the movement constrained to a straight line
towards the target. We also tested a group of participants who
were shown an augmented visual feedback error-signal (i.e., a
cursor trajectory curved in the opposite direction to the expected
movement).

MATERIALS AND METHODS

Participants
We recruited 45 self-reported right-handed participants, who
were randomly allocated to one of three experimental groups.
We first recruited 30 participants, who were allocated to the
Arc (mean age: 23.5 ± 1.2; 10 females) and Cursor (mean
age: 23.3 ± 1.2; 10 females) groups, whereas a final group of
15 participants were allocated to the Augmented-Error group
(mean age: 23.07 ± 4.5; 11 females). All participants were
naive to the experimental paradigm, and the purpose of the
experiment. All participants gave written informed consent in
accordance with the Declaration of Helsinki, and the study
was approved by the ethics committee of the University of
Birmingham.

Experimental Procedure
Participants were comfortably seated in front of a display
system. They were asked to perform point-to-point reaching
movements in the sagittal plane (distance 15 cm) with a 2-D
robotic manipulandum (a Vbot; Howard et al., 2009). Visual
feedback was displayed on a screen (refresh rate: 60 Hz), which
was viewed via a mirror, so that the image was coplanar with
the hand (see Figure 1A). The start and target positions were
displayed as dots of 2 cm diameter. Visual feedback regarding
hand position, when present, was shown as a cursor of 1 cm
diameter.

Subjects were asked to hit the target within 400 ± 50 ms.
Trials finished when the cursor reached the target position—so
no terminal positional errors at trial end were available.
Feedback regarding performance speed was given at the end
of each trial. If subjects moved too fast, target and start
position became blue and a message ‘‘Too Fast’’ was presented
in the screen. Conversely, when the pointing movement
was too slow, target and start position became red and a
message ‘‘Too Slow’’ could be read on the screen. Finally,
when the cursor reached the target on time, target and
start position became yellow. Moreover, an explosion-like
feedback was presented when subjects reached the target
on time.

The aim of the task was ‘‘to hit the target on time’’
throughout the entire experimental session. Participants were
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FIGURE 1 | (A) Represents our experimental setup. Participants from the Arc group were presented an expanding arc centered on the starting position during EC
and IEC Trials. The arc radius equaled the distance between the hand and the start position, thus conveying information regarding movement distance, but not
regarding movement direction. The Cursor group saw a cursor identical to that shown to both groups in N and FF trials. The Augmented-Error group was presented
a cursor trajectory that followed a gently curved path, in the opposite direction to the one shown by participants from Arc and Cursor groups at the end of FF blocks.
(B) Shows a schematic representation of the main experimental protocol used in this study, which is based on protocol from Herzfeld et al. (2014). N, null-field; FF,
force-field; EC, error-clamped; IEC, interspersed error-clamped. Participants performed 22 separate blocks that alternated between adaptive FF and assessment EC
trials.

given the opportunity to practice (192 trials in total) under non-
perturbed conditions (Null-Field, N). After the familiarization
period, participants performed 617 trials in total, which were
divided into 22 blocks (two N blocks, 10 FF blocks, and 10 EC
blocks). A scheme of the experimental design is represented in
Figure 1B; and is based on the protocol reported byHerzfeld et al.
(2014).

On FF trials a velocity-dependent FF was applied to the
reaching movement by the robotic manipulandum. This force
was proportional and orthogonal to the movement velocity. For
a given movement velocity Ėv =

[
ẋ ẏ

]T , the robot produced a

force EF =
[
Fx Fy

]T equal to EF = BĖv, where B =
[

0 b
−b 0

]
.

The parameter b was defined as 15 N/(m/s), thus determining
a clockwise curl field. During EC trials the robotic device
constrained motion to a straight line towards the target by
generating reactive forces (Scheidt et al., 2000). These reactive
forces create a virtual spring with stiffness of 5000 N/m, and
damping of 30 N/m/s in the axis orthogonal to the constrained
path. Participants were also exposed to small numbers of EC
trials unpredictably interspersed within blocks of N and FF trials
(Interspersed EC (IEC) Trials; see Figure 1B for more details).

The main experimental manipulation of this study was
introduced on EC and IEC trials. Whereas participants from
the Cursor group were presented an online visual cursor during
EC and IEC trials, participants from the Arc group could not
see the cursor and instead were presented an expanding semi-
circular arc, which was centered on the start position (see
Figure 1A). The radius of the arc was equivalent to the distance
between the Vbot handle and the start position, thus presenting

participants information regardingmovement distance, although
not regarding movement direction. Participants from the
Augmented-Error group were presented an online visual
feedback on EC blocks, which followed a gently curved path,
in the opposite direction to the one shown by participants
from Arc, and Cursor groups at the end of FF blocks (see
dashed lines from Figure 2). This online visual feedback was
position-dependent, so its forward trajectory was equivalent to
the position of the participant’s hand on the Y-axis, whereas the
position in theX-axis followed a circular arc. There was no lateral
deviation at start or end of the movement, and the maximal
lateral deviation of the cursor was 1 cm to the left of the straight
line channel, at the mid-way point between the start and target
positions.

Data Collection and Analysis
Data was collected at a sample rate of 1000 Hz, and it was saved
in a PC for offline analysis. Customized Matlab scripts were used
to analyze each trial’s positional data.

We calculated trial-by-trial movement duration (Movement
Time) as the time from movement onset to trial end. Trials
were considered started when the cursor left the start position
(i.e., distance between center of start position and center of
cursor >2.25 cm). Trials were considered finished when the
cursor reached the target (i.e., distance between cursor and target
centers<0.75 cm).We then defined peak velocity, and calculated
movement error as the angle (Directional Error, in degrees)
between two vectors linking the position at movement onset with
the target, and the position of peak velocity, respectively. For EC
trials and IEC trials we measured the force participants exerted
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FIGURE 2 | This figure represents the average reach trajectory across participants from the experimental groups Arc, Cursor and Augmented-Error
for the initial six trials (solid lines), and the last six trials (dashed lines) of each block of FF trials.

against the virtual wall at peak velocity, and normalized this force
value based on peak velocity (Force at Peak Velocity).

Analysis of Baseline Performance
We tested for between-group differences at Baseline by
performing separate univariate analysis of variance (Univariate
ANOVA) for the Directional Error, Movement Time and Force
at Peak Velocity collected at Baseline (N1)—when participant
had not yet experienced perturbations.

Analysis of Motor Adaptation
In order to test for participants’ adaptation to the external
dynamic perturbation along time, we performed an analysis of
variance for repeated measures (ANOVA-RM) for the average
within-block Directional Error, using a mixed model with Block
(FF1–FF10) as a within-subject factor, and Group (Arc, Cursor,
Augmented-Error) as a between-subject factor. We further
explored for motor adaptation by performing an ANOVA-RM
for the average within block value of the Force at Peak Velocity
on IEC trials interspersed among FF trials. We used Block
(FF1–FF10) as within-subject factor, and Group (Arc, Cursor,

Augmented-Error) as between-subject factor. We further control
for the potential interference of peak velocity on our analysis
of directional error by performing an analysis of covariance
(ANCOVA), with Directional Error as dependent variable, and
Peak Velocity as covariate.

Analysis of the Motor Memory
To test for differences in the expression of motor memory,
we performed an ANOVA-RM for the average within-block
Force at Peak Velocity, with Block (EC1–EC9) as within-subject
factor, and Group (Arc, Cursor, Augmented-Error) as between-
subject factor. In order to evaluate whether manipulation of
visual feedback in blocks of EC trials resulted in significant
between-group differences for peak velocity, we performed
a Univariate-ANOVA with Group (Arc, Cursor, Augmented-
Error) as between-subject factor.

When significant between-group differences were found
—either for motor adaptation or for the expression of
the motor memory—we followed the analysis by calculating
the average value for bins of six consecutive trials from
the same experimental block. We then performed two separate
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ANOVA-RM, for the initial and final within block performance,
respectively. This allowed us to test whether average between-
group differences were driven by performance differences
already evident at block onset, or alternatively by differences
emerging at block end.

Analysis of Success Rates
Reinforcement learning has been suggested as key mechanism
for protection of motor memories (Pekny et al., 2011).
Since participants had to reach the target within a time
window in order to successfully complete the trial and
avoid a speed-warning message, we calculated the probability
of being successful (i.e., not warned) based on movement
duration. We considered trials successful when Movement
Time was 350–450 ms. We then calculated the average
within block probability of success for each experimental
group. To test for potential between-group differences at
baseline, we first performed a Univariate-ANOVA for the
probability of success measured at N1, with Group (Arc,
Cursor, Augmented-Error) as between-subject factor. We then
performed an ANOVA-RM with Block (FF1–FF10) as within-
subject factor, and Group (Arc, Cursor, Augmented-Error)
as between-subject factor, to test for differences on the
probability of success during adaptation. To test for differences
on the probability of success during motor memory decay,
we performed an ANOVA-RM with Block (EC1–EC9) as
within-subject factor, and Group (Arc, Cursor, Augmented-
Error) as between-subject factor. We finally performed a one-
way ANOVA for the probability of success measured when
evaluating the re-expression of the motor memory (EC10)
after a washout period (N2), with Group as between-subject
factor.

Analysis of the Motor Memory Re-Expression
To test for differences in the pattern of re-expression of the
motor memory, we performed an ANOVA-RM for the average
Force at Peak Velocity for bins of six consecutive trials after
the washout period (EC10), with Bin (1–5) as within-subject
factor and Group (Arc, Cursor, Augmented-Error) as between-
subject factor. To evaluate whether participants recall previous
states when re-exposed to EC trials, we performed an ANOVA-
RM for the average Force at Peak Velocity at the end of blocks
EC9–EC10, with Block as within-subject factor and Group (Arc,
Cursor, Augmented-Error) as between-subject factor.

For all ANOVA-RM, post hoc comparisons were performed
with Bonferroni corrections when a significant result was found.
Greenhouse-Geisser corrections were performed when data
violated the assumption of sphericity (fractional degrees of
freedom for F-values are shown accordingly). A p-value ≤ 0.05
was considered significant for all tests. We performed the
statistical analysis with the Statistical Package for the Social
Sciences (SPSS; version 22.0).

Estimation of Rates of Decay
We estimated the rate of decay of the motor memory by
fitting a single exponential model of the form y = a ∗ eb ∗ x + c
to the data within each EC block. Because fitting curves to

individual participants’ data can be unstable, we performed
a sub-sampling bootstrap analysis (Politis et al., 1999; in
Ingram et al., 2013). Specifically, the 15 participants from each
group were used to generate three separate subsets of 455
unique sub-samples (i.e., 455 subsets per each experimental
group), each consisting of 12 subjects. The single exponential
model was then fit to the across-participants average data
series of the 30 EC trials for each of the 455 unique
sub-sets. The between-group difference for the initial state
parameter a, the decay rate parameter b (i.e., rate of change
of the exponential curve) and the curve asymptote parameter
c were then calculated for each possible pair-wise group
comparison. Furthermore, we performed a permutation test
on each of the 455 bootstrap iterations, for each of the three
pair-wise analyses. We randomly assigned each of the 24
participants selected for each iteration to one of two experimental
groups (pair-wise, comparing Arc, Cursor, Augmented-Error).
We then fit the average trial-by-trial data for each new
group with a single exponential model, and calculated the
difference between groups for the three parameters. We then
calculated the proportion of permutation samples larger than
the mean difference found for the bootstrap procedure, as
a measure of how likely it would be to find our results
in a population where the two analyzed groups did not
differ.

RESULTS

Baseline Performance
To test for between-group differences at Baseline (N1),
we performed three separate Univariate ANOVAs for the
Directional Error, Movement Time and Force at Peak Velocity,
respectively. We did not find significant between-group
differences for Directional Error (F(2,42) = 1.33; p = 0.27),
or Force at Peak Velocity (F(2,42) = 0.39; p = 0.68). We
found significant between-group differences for Movement
Time (F(2,42) = 35.41; p < 0.001), and post hoc comparisons
revealed that participants from the Augmented-Error group
performed the reaching task significantly slower at baseline than
participants from both the Cursor and Arc groups (p < 0.001
for both comparisons; see Figure 5). As we show later, this
difference was not maintained during the adaptation phase, and
it did not have an effect on the rate of success (i.e., it would not
influence reinforcement learning).

Motor Adaptation
Directional Error at Peak Velocity
Trial-by-trial average directional error shown by participants
at N and FF blocks is presented in Figure 3. An ANOVA-RM
for the average within-block directional error measured
during FF blocks showed a significant effect for Block
(FF1–FF10: F(2.6,110.8) = 7.91; p < 0.001; Figure 4).
We did not find a significant effect for Group (Arc,
Cursor, Augmented-Error: F(2,42) = 0.55; p = 0.58), or a
significant Block × Group interaction (F(5.3,110.8) = 0.94;
p= 0.46).
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FIGURE 3 | Across participants average trial-by-trial directional error (degrees) measured at blocks of N (N1, N2) and FF (FF1–FF10) trials. Values are
shown as mean ± SEM.

We further analyzed motor adaptation by calculating the
average value for the initial and final performance shown at each
FF block (values were calculated based on bins of six consecutive
trials). An ANOVA-RM for the initial performance revealed
a significant effect for Block (FF1–FF10: F(3.7,155.9) = 7.69;
p < 0.001). However, we did not find significant effect for
Group (F(2,42) = 0.47; p = 0.63), or significant Block × Group
interaction (F(7.4,155.9) = 0.79; p = 0.60). An ANOVA-RM
for the performance showed by participants at the end of FF

FIGURE 4 | This figure represents the absolute directional error shown
by participants at peak velocity. Values are represented as mean ± SEM.

blocks revealed a significant effect for Block (F(4.5,188.5) = 4.95;
p < 0.001). We did not find significant effect for Group
(F(2,42) = 1.14; p = 0.33), or significant Block × Group
interaction (F(9.0,188.5) = 0.96; p = 0.48). Thus participants
showed significant adaptation to the perturbation forces, but
in all measures the FF performance of the three groups was
similar.

We also control for the potential influence of peak velocity
on our analysis of directional error by performing an ANCOVA,

FIGURE 5 | Average movement time for the N and FF blocks, for each
experimental group. Values are shown as mean ± SEM.
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with Directional Error as dependent variable, and Peak
Velocity as covariate. We found a significant effect of Block
(F(9,419) = 2.64; p= 0.006) and Group (F(2,419) = 4.59; p= 0.011)
factors. We did not find a significant Block × Group interaction
(F(18,419) = 0.31; p = 0.997). Post hoc comparisons revealed
a significantly smaller directional error for the Cursor group,
compared both with the Arc (p = 0.018) and Augmented-Error
(p= 0.03) groups.

Movement Time
Since feedback about performance success was determined
by movement time (see ‘‘Materials and Methods’’ Section),
subjects had to adjust to changes in movement time resulting
from introduction of the dynamic perturbation. Thus, we
performed an ANOVA-RM for movement duration, with
Block (FF1–FF10) as within-subject factor, and Group (Arc,
Cursor, Augmented-Error) as between-subject factor. Results
showed a significant effect for Block (F(3.6,151.0) = 20.29;
p < 0.001; Figure 5). However, we did not find an effect
for Group (F(2,42) = 1.91; p = 0.16), or a significant
Block × Group interaction (F(7.2,151.0) = 0.81; p = 0.59). Thus,
all three groups equally adapted their movements on the time
dimension when the perturbation was introduced, although
they were not fully successful in complying with the time
constraints.

We further analyzed movement duration by calculating the
average value for the initial and final performance from each FF
block (values were calculated based on bins of six consecutive
trials). An ANOVA-RM for the initial performance revealed
a significant effect for Block (FF1–FF10: F(2.9,122.5) = 23.04;
p < 0.001). However, we did not find significant effect for
Group (Arc, Cursor, Augmented-Error: F(2,42) = 1.16; p= 0.32),
or significant Block × Group interaction (F(5.8,122.5) = 0.94;
p = 0.47). An ANOVA-RM for the performance showed by
participants at the end of FF blocks revealed a significant
effect for Block (F(6.9,290) = 3.42; p = 0.002), and a significant
Block × Group interaction (F(13.8,290.0) = 1.76; p = 0.044). We
did not find significant effect of Group (F(2,42) = 0.52; p = 0.6).
Pair-wise post hoc comparisons revealed significant difference
when movement time from the Arc group at FF8 was compared
with FF1 (p= 0.006) and FF2 (p= 0.031), and when time at FF2
was compared with FF7 (p = 0.049). However, the analysis did
not reveal any between-group significant differences along each
of the 10 blocks of practice (FF1–FF10).

Force at Peak Velocity in Interspersed EC Trials
An ANOVA-RM for the anticipatory lateral force exerted
by participants at peak velocity in IEC trials (e.g., EC trials
interspersed within blocks of FF trials) revealed a significant
effect for Block (F(4.5,189.1) = 4.2, p = 0.002; Figure 6). We
did not find an effect for Group (F(2,42) = 1.0, p = 0.38), or a
Block× Group interaction (F(9.0,189.1) = 1.18, p= 0.31).

Expression of the Motor Memory
An ANOVA-RM for the mean Force exerted at Peak Velocity
during blocks of EC trials (EC1–EC9) revealed significant effect
for Block (F(3.1,130.8) = 8.55; p < 0.001), and a significant

FIGURE 6 | Force applied at peak velocity in IEC trials (e.g., EC trials
introduced within a N and a FF block). Values are represented as across
trials average mean ± SEM.

effect for Group (F(2,42) = 10.61; p < 0.001). We did not
find significant Block × Group interaction (F(6.2,130.8) = 0.87;
p = 0.52). Post hoc comparisons revealed significant differences
between the Augmented-Error (0.3 ± 0.6 N·s·m−1) and Arc

FIGURE 7 | (A) Shows the trial-by-trial Force exerted by participants at peak
velocity on EC and IEC trials. Values are shown as mean ± SEM;
(B) Represents the trial-wise Force at Peak Velocity assessed on the initial six
trials of blocks of EC trials. Values are shown as mean ± SEM.
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FIGURE 8 | Mean development of the motor memory calculated as the
average force applied at peak velocity at baseline (N1), and at blocks
of EC trials (EC1–EC9) following adaptation. Values are shown as
mean ± SEM.

(−3.5 ± 0.6 N·s·m−1) groups (p < 0.001), and a trend for
significance was found when we compared the Augmented-Error
with the Cursor (−1.6 ± 0.6 N·s·m−1) group (p = 0.073), as
well as for the comparison between Cursor and Arc groups
(p = 0.085). Thus, these results suggest a differential expression
of the motor memory for the Augmented-Error group, with the
Augmented-Error group shifting their mean responses to oppose
the curvature of the cursor’s trajectory (Figure 8).

We next analyzed the pattern of change of the motor memory
within blocks of EC trials by calculating the average value for
the initial and final performance within each block (values were
calculated based on bins of six consecutive trials). An ANOVA-
RM for the initial performance revealed a significant effect for
Block (EC1–EC9: F(3.8,160.2) = 6.56; p = < 0.001; Figure 9A),
and Group (F(2,42) = 3.25; p = 0.049) factors. We did not
find significant Block × Group interaction (F(7.6,160.2) = 0.85;
p = 0.56). Post hoc comparisons revealed significant differences
between Augmented-Error (−2.02 ± 0.7 N·s·m−1) and Arc
(−4.66 ± 0.7 N·s·m−1) groups (p = 0.044). An ANOVA-
RM for the performance showed by participants at the end
of the EC blocks revealed both a significant effect for Block
(F(4.8,202.7) = 6.46; p < 0.001) and Group (F(2,42) = 18.54;
p < 0.001; Figure 9B). We did not find a significant
Block × Group interaction (F(9.6,202.7) = 0.57; p = 0.83). Post
hoc comparisons revealed that participants from the Augmented-
Error (1.49± 0.5 N·s·m−1) group showed lesser expression of the
motor memory, when compared both with the Arc (−2.66± 0.5
N·s·m−1) and Cursor (−0.84 ± 0.5 N·s·m−1) groups (p < 0.001
and p = 0.004, respectively). Moreover, we found significant
differences for the motor memory expressed at the end of EC
blocks between the Cursor and Arc groups (p= 0.033).

Since we did not expect to find between-group differences
at the onset of blocks of EC trials, we also analyzed the pattern
of change of the motor memory within blocks of EC trials by

FIGURE 9 | (A) Represents participants’ initial performance at blocks of EC
trials. (B) Represents the average final performance on EC blocks. Results
were calculated as average of six consecutive trials. Values are shown as
mean ± SEM.

calculating the average value of the initial three consecutive
trials within each EC block. An ANOVA-RM revealed a
significant effect for Block (EC1–EC9: F(4.8,200.1) = 5.40;
p < 0.001). However, we did not find significant effect of Group
(F(2,42) = 1.23; p = 0.30), or a significant Block × Group
interaction (F(9.5,200.1) = 0.81; p= 0.61).

These results suggest that the initial retention of the motor
memory was similar for all three groups on entry to each
EC block, but that the Augmented-Error group retention was
most rapidly lost, presumably affected by the change in cursor
trajectory (Figure 9A). Note that adaptation in the interleaved
FF blocks was equivalent for all three groups (Figure 6),
but the groups increasingly deviated across the EC blocks
(Figure 9B). Conversely, the Cursor group performance in EC
block systematically changed across the experiment, suggesting
that the rate of active unlearning of the motor memory was
coupled to the amount of adaptation to the external perturbation
(see Figure 7B).

In order to further test whether between-group differences
found across blocks EC1–EC9 resulted from subtle learning
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FIGURE 10 | This figure represents data resulting from the bootstrap
procedure performed to estimate the rate of decay of the motor
memory. It shows the average trial-by-trial values for the Force exerted at
Peak Velocity, averaged across blocks 1–9 of EC trials. Values are shown as
mean ± SD.

differences, we performed an ANCOVA, with Force at Peak
Velocity averaged across the last six trials of each block as
dependent measure, and Force at Peak Velocity measured
at the initial six trials as covariate. We found a significant
effect for Group (F(2,419) = 98.05; p < 0.001) and Block
(F(9,419) = 4.17; p < 0.001) factors, but we did not find a
significant Block×Group interaction (F(18,419) = 0.82; p= 0.68).
Post hoc comparisons revealed significant differences for all pair-
wise comparisons for the Group factor (p< 0.001 for all pair-wise
comparisons). The Arc group (−2.00 ± 0.14 N·s·m−1) showed
the most negative value of Force at Peak Velocity, followed
by the Cursor (−0.71 ± 0.13 N·s·m−1) and Augmented-Error
(0.77 ± 0.14 N·s·m−1) groups. These results then support the
notion that between-group differences for the motor memory
decay arose mainly during the blocks of EC trials, and that
are not just due to potential between-group differences for
learning.

To test for potential between-group differences for the rate
of decay of the motor memory, we calculated the trial-by-trial
Force at Peak Velocity, averaged for each participant across
nine blocks of EC trials that followed adaptation (EC1–EC9;
Figure 10). Since fitting individual data with a single exponential
model can be is unstable, we performed a sub-sampling bootstrap
for each combination of two experimental groups (pair-wise
comparison of Arc, Cursor, and Augmented-Error) followed by
a permutation test randomly reassigning every participant to one
of two groups. This analysis gave reliable exponential fits, with
a minimum r2 value of 0.89 (mean = 0.95, and SD = 0.01).

TABLE 1 | Summary of the results revealed by the pair-wise comparison of
exponential fits.

Pair-wise p-value initial p-value rate p-value curve
comparison state (a + c of decay asymptote

parameter) (b parameter) (c parameter)

Arc vs. cursor 0.1206 0.0219 0.0285
Arc vs. augmented-error 0.3092 0.0219 0.0022
Cursor vs. augmented-error 0.2500 0.4474 0.0066

Significant values (p < 0.05) are in bold.

A summary of the results from the exponential fit is presented in
Table 1. We did not find significant between-group differences
for the initial state, suggesting that all groups had similar motor
memory at its decay onset. Results found for the rate of decay
(b parameter) revealed that the Cursor (−0.26 ± 0.02) and
Augmented-Error (−0.25 ± 0.03) groups showed a rate of
motor memory decay significantly larger than the Arc group
(−0.08 ± 0.02). Results found for the asymptote (c parameter)
revealed that the Arc group (−2.27 ± 0.23) showed a plateau
value significantly smaller than both the Cursor (−0.90 ± 0.16)
and Augmented-Error (1.15 ± 0.27) groups, whereas the Cursor
group showed a plateau value significantly smaller than the
Augmented-Error group.

Reinforcement-Based Learning
Probability of Success
A Univariate ANOVA for the Probability of Success achieved
by participants at Baseline did not reveal a significant effect
for Group (F(2,42) = 0.1; p = 0.90). However, an ANOVA-
RM for the adaptation phase, Block (FF1–FF10) and Group,
revealed a significant effect for Block (F(9,378) = 12.77, p< 0.001),
and a trend for an effect of Group factor (F(2,42) = 2.48,
p = 0.096; Figure 11A). We did not find a significant
Block × Group interaction (F(18,378) = 1.10, p = 0.35). An
ANOVA-RM for Block (EC1–EC9) and Group revealed no
significant effect for Block (F(8,336) = 0.64, p = 0.74) or Group
(F(2,42) = 1.11, p = 0.34), and no significant Block × Group
interaction (F(16,336) = 0.96, p = 0.50; Figure 11B). A one-
way ANOVA for the probability of success measured at EC10
revealed no between-group differences (Arc: 0.70± 0.17, Cursor:
0.70 ± 0.17, Augmented-Error: 0.71 ± 0.17; F(2,42) = 0.036,
p= 0.96).

Exploratory Behavior
In order to test for between-group exploratory behavior
differences, we analyzed the variance of the directional angle
during FF (FF1–FF10) blocks. We did not find significant
effect for Block (F(5.9,247.3) = 1.41; p = 0.21) or Group
(F(2,42) = 0.04; p = 0.96), and no Block × Group interaction
was found (F(11.8,247.3) = 1.0; p = 0.45). We next performed
an ANOVA-RM for the within block average variance of
the Force applied at Peak Velocity in EC1–EC9. We found
a trend for a significant effect for Block (F(5.2,216.7) = 2.07;
p = 0.068), and Group (F(2,42) = 3.07; p = 0.057) factors.
However, we did not find a significant Block×Group interaction
(F(10.3,216.7) = 0.76; p = 0.68). Post hoc comparisons revealed
only a trend for significant differences between Arc (1.67 ± 0.22
N·s·m−1) and Augmented-Error (2.43 ± 0.22 N·s·m−1) groups
(p= 0.06).

Altogether, these results then suggest that the between-group
difference found for the decay of the motor memory did not
result from differences in engagement of reinforcement-based
learning mechanisms. We did not find between-group difference
for the probability of success, or for the behavioral variance (e.g.,
exploratory behavior) either within blocks of FF or EC trials.
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FIGURE 11 | (A) Represents the average probability of success on blocks of
FF trials. (B) Represents the average probability of success on EC blocks that
followed adaptation (EC1–EC9). Trials were considered successful when
movement duration was 350–450 ms. All Values are shown as mean ± SEM.

Recall of the Motor Memory
An ANOVA-RM for the Force at Peak Velocity measured
at EC10, after the washout block N2, with Time (Initial vs.
Final set of six trials) as within-subject factor and Group as
between-subject factor, revealed a significant effect for Group
(F(2,42) = 9.59; p < 0.001), and a trend for a significant effect
of Time (F(3.1,129.7) = 2.24; p = 0.085). However, we did not
find significant Time × Group interaction (F(6.2,129.7) = 1.35;
p= 0.24). Post hoc comparisons revealed that the force exerted at
peak velocity by participants from the Augmented-Error group
was significantly larger, when compared both with the Arc
and Cursor groups (p < 0.001, and p = 0.019, respectively;
see Figure 12). Moreover, an ANOVA-RM for the Force at
Peak Velocity exerted at the end of blocks EC9–EC10 revealed
a significant effect for Group (F(2,42) = 11.58; p < 0.001),
and a trend for a significant effect of Block (F(1,42) = 3.01;
p = 0.09) although we did not find a Block × Group interaction
(F(2,42) = 2.42; p = 0.101). Post hoc comparisons revealed
that the force exerted by the Arc group was significantly

FIGURE 12 | (A) Shows the smoothed (bins of six trials) Force at Peak
Velocity, measured at recall (during block EC10). (B) Shows that
between-group differences for the Force exerted at Peak Velocity found at the
end of EC9 remained significant at the end of EC10. Values are shown as
mean ± SEM.

more negative compared with the Cursor and Augmented-Error
groups (p = 0.03 and p < 0.001, respectively). Altogether,
these results suggest that when re-exposed to EC trials, all
three groups similarly recalled the motor memory that they
had generated during adaptation (FF1–10), and had previously
expressed at EC9.

DISCUSSION

In this study, we aimed to test whether mechanisms of active
motor adaptation may contribute to the assumed passive decay
of motor memory, by manipulating available visual feedback.
The use of EC trials, which are experimentally manipulated
so the movement is constrained by a channel to be in a
straight line towards the target (Scheidt et al., 2000), has been
extensively reported in the literature for evaluation of the motor
memory (Smith et al., 2006; Vaswani and Shadmehr, 2013;
Brennan and Smith, 2015). Thus, we asked participants to adapt
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to an external dynamic perturbation, and then measured the
motor memory through EC trials. We tested three experimental
groups, and introduced our main experimental manipulation
during EC trials (both EC and IEC trials). One group of
participants (Cursor) were presented with a cursor, which gave
them full access to online visual feedback regarding hand
position—constrained, like the movement itself, to be in a
straight line towards the target. For the second group (Arc),
we reduced the online visual feedback by presenting them with
an expanding arc centered on the start position. The radius
of the arc therefore provided feedback regarding movement
distance, but no directional information. For the final third
group (Augmented-Error), we artificially increased the visual
error signal by showing participants a trajectory curved in the
opposite direction to the expected path of their movements on
non-clamped trials.

We found that greater mismatch between the expected
trajectory and the actual visual information regarding hand
position led to larger and faster decay of the motor memory.
Participants from Augmented-Error and Cursor groups retained
less motor memory than participants from Arc group at the
end of each EC block (EC1–EC9) that followed adaptation in
the FF blocks (Figure 9B), and our analysis suggests that these
differences were driven by a faster rate of decay within the
EC block. Moreover, participants from the Augmented-Error
group showed greater decay of the motor memory, compared
with the Cursor group. Importantly, differences in the decay of
motor memory were not accompanied by significant between-
group differences in the ability to adapt to the external dynamic
perturbation. When evaluating participants’ behavior in the FF
blocks, we only found significant between-group differences
when we corrected values of the directional error by peak
velocity. This analysis revealed that the Cursor group showed
significant smaller corrected directional errors than the Arc
and Augmented-Error groups. However, if this difference in
directional errors was a causal factor for our finding regarding
the motor memory decay, the similar errors between the Arc
and Augmented-Error groups would predict similar decay rates,
which is inconsistent with our findings. Thus, despite visual
feedback differences on IEC trials—the EC trials randomly
interspersed among each block of 18 FF trials—all groups
showed similar levels of adaptation to the imposed perturbations.
Altogether, these results suggest that manipulating the online
visual feedback available on EC trials leads to significant changes
on the rate of decay of the motor memory, although it had no
effect over the ability to adapt to movement perturbation.

A relationship between reinforcement learning mechanisms
and stronger motor memories has previously been proposed
(Huang et al., 2011; Shmuelof et al., 2012). Moreover, Izawa
and Shadmehr (2011) proposed that degrading the quality of
sensory feedback led learners to switch from error-based learning
to a reinforcement-based learning mechanism. This is in line
with recent reports of slower decay of the motor memory when
exploratory adaptive behavior had been triggered by exposing
participants to error clamp trials with non-zero error and zero
variance (Vaswani et al., 2015). Thus, it may be possible that
modification of visual feedback on EC trials for the Arc group

engaged mechanisms of reinforcement-based learning, resulting
in slower decay of the motor memory. In order to discount
this explanation, we evaluated both the probability of success,
and the behavioral variance (i.e., exploratory behavior) for
blocks of EC trials. We did not find significant between-group
differences, which suggest that differences in the decay of the
motor memory did not result from activation of reinforcement-
learning mechanisms in the Arc group. Therefore, our results
support the notion of active motor learning during the decay
of the motor memory (Vaswani and Shadmehr, 2013; Vaswani
et al., 2015), although they suggest a contribution of a learning
mechanism different from reinforcement-based learning.

We suggest instead that error-basedmotor adaptation—based
on sensory-prediction errors—allowed participants from the
Cursor and Augmented-Error groups to actively change their
motor memory more, and faster, than participants from the Arc
group. Crucially, sensory-prediction errors used by Cursor and
Augmented-Error groups could not be based on positional errors
at trial end, since EC trials were specifically designed to avoid
such errors. Thus, we propose that participants used sensory-
prediction errors based on an internal error signal arising
from the difference between predicted and actual movement
trajectories (see Figure 57.1 in Hardwick et al., 2013). When
in an ‘‘adapted’’ state, the motor system would predict non-
straight trajectories, which for the Cursor and Augmented-Error
groups would lead to a mismatch between predicted and actual
sensory feedback during EC blocks. This mismatch would result
in changes of upcoming motor commands. In contrast, the Arc
group received no directional feedback, and thus the slower
change in their performance in EC blocks would reflect a non-
error-based decay. This hypothesis is further supported by our
results found during adaptation to perturbations. Participants
from all three groups must have adapted to the external dynamic
perturbation by using trajectory errors, rather than terminal
errors, since positional errors at trial end were not allowed—note
that participants had to reach the target in order to finish the trial.
Thus, our results suggest that mechanisms of motor adaptation
were active both during adaptation to perturbations and during
the decay of the motor memory, and these mechanisms used
sensory-prediction errors—error signals arising from comparing
predicted movement trajectories with actual sensory feedback
arriving from the periphery to the central nervous system—in
order to modify upcoming motor commands. This is in line
with the notion of active motor learning occurring during
the decay of the motor memory (Vaswani and Shadmehr,
2013; Vaswani et al., 2015), suggesting that this decay can
be actively manipulated not only by engaging mechanisms of
reinforcement-based learning, but also by engaging mechanisms
of error-based motor adaptation.

Our theory hence predicts that artificially manipulating the
available error signal during EC trials would modulate the
rate of decay of the motor memory. Presenting subjects with
a movement trajectory close to the trajectory expected by the
motor system should lead to lesser decay, whereas an augmented
error signal (i.e., movement trajectory directed towards the
same direction than the perturbation previously experienced)
should result in higher rate or magnitude of decay of the
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motor memory. Crucially, when we increased the error signal by
showing participants a trajectory curved to the opposite direction
than the expected path (Augmented-Error group), we found
significant differences for the rate of decay, compared with the
Arc group, and we also found between-group differences for
the maximum value of the motor memory at the end of EC
blocks, when compared both with the Cursor and Arc groups.
Forces applied by participant from the Augmented-Error group
aimed towards the opposite direction than the curved visual
feedback trajectory (i.e., participants tried to correct the visual
error). These results confirm our suggestion, that the decay of
themotormemorymay be driven by activemechanisms ofmotor
adaptation, where movement corrections depend on a mismatch
between expected and actual visual feedback.

We hypothesize that the sensory prediction error causes active
unlearning. For the Arc group, we deny them access to visual
feedback in the EC trials, and as the compensatory forces build
up over EC1–9 (see Figures 6, 9A), there is relatively little change
in the unlearning across the experiment (Figure 7B). In contrast,
for the Cursor group, the sensory prediction error increases
as learning builds up, because they do have access to visual
feedback, and so can derive the error. Hence the unlearning
slope over trials 1–6 steadily increases from a level initially
similar to Arc during EC1 (because there is limited change in
their sensory prediction) to a level in EC9 equal to that of the
Augmented Error group. Finally, the Augmented Error group
show fast early unlearning even in EC1 because even without any
change in their sensory predictions, they experience a prediction
error from the distorted visual feedback. This active unlearning
rate is maintained throughout EC2–9. However, we failed to
find between-group differences for the rate of motor memory
decay when we compared the Augmented-Error and Cursor
groups (parameter b, Table 1), despite our expectation that the
prediction error in the Augmented-Error group should be larger.
We suggest therefore that Figure 7, and particularly Figure 7B
shows evidence of a monotonic relationship between sensory
prediction error and decay of the forces across EC blocks, but this
is probably a relationship that saturates at higher levels—there
is an upper limit to the unlearning rate—and further increase
of the sensory prediction error has less and less effect on
unlearning rate. This would further explain the lack of between-
group differences for the rate of motor memory decay when we
compared the Augmented-Error and Cursor groups, and leads to
future studies aimed to understand the relationship between the
size of the sensory-prediction error against the unlearning rate.

Several theories have been proposed regarding the
mechanisms that govern the decay of the motor memory.
It may be that the decay of the motor memory results from a
process that minimizes a cost function by reducing both the
kinematic error (i.e., trajectory errors) and the effort (i.e., muscle
activation; Emken et al., 2007; Ganesh et al., 2010). Based on
a two-state space model of motor learning proposed by Smith
et al. (2006), the spontaneous recovery theory posits that new
learning is intrinsically volatile and spontaneously decays in
a trial-by-trial basis (Scheidt et al., 2000; Smith et al., 2006;
Criscimagna-Hemminger and Shadmehr, 2008; Galea et al.,
2011; Brennan and Smith, 2015). Crucially, this theory stands on

the assumption that EC trials disengage mechanisms of motor
adaptation, since no positional error-signals are provided. Our
findings challenge this notion since they suggest that availability
of visual feedback regarding hand position during EC do in fact
engage mechanisms of active motor adaptation.

We also found significant between-group differences when
the state of the motor memory was tested after having
washed-out the effect of the perturbation. When participants
were re-exposed to EC trials (EC10) after a washout period
(N2), the Force at Peak Velocity was significantly larger for
the Augmented-Error group, when compared with both the
Arc and Cursor groups. Pekny et al. (2011) reported that
previous motor memories are retrieved when participants are
exposed to increased levels of uncertainty—either by withholding
reinforcement or applying random perturbations—at the onset
of an EC block. Thus, higher levels on uncertainty for Arc group,
due to the lack of visual feedback regarding movement trajectory,
could lead to our results. However, we did not find differences
between groups for the probability of success measured at EC10.
Moreover, changes in the expression of the motor memory
across time (i.e., Force at Peak Velocity measured at the end of
EC9–EC10) were similar for all three groups, since differences
observed at EC9 were maintained at EC10 (see Figure 12B).
Thus, we suggest that re-exposure to the EC trials previously
experienced led to the recall of the ‘‘adapted’’ motor memory for
both experimental groups. This is in line with a motor adaptation
model proposed by Lee and Schweighofer (2009), where a fast
learning process with only one state works in parallel with a slow
learning process with multiple states. Crucially, those authors
suggested that activation of a specific slow state is determined
by environmental conditions. When applied to our data, this
model would predict that, when re-exposed to EC trials, the
motor system would re-activate the slow state associated with
that environmental context. This notion fits our results, since we
found significantly greater Force at Peak Velocity at EC10 for the
Augmented-Error group, when compared both with the Arc and
Cursor groups, resembling the behavior found at the end of the
previous EC block (EC9).

In conclusion, our results extend the notion that active
learning occurs during the decay of the motor memory (Vaswani
and Shadmehr, 2013; Vaswani et al., 2015). More specifically, our
findings suggest an active involvement of motor adaptation
mechanisms based on a mismatch between movement
trajectory predicted by forward models, and actual sensory
feedback.
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