UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

Self-control mediates the relationship between time perspective and BMI

Price, Menna; Higgs, Suzanne; Lee, Michelle

DOI:

10.1016/j.appet.2016.09.034

License:

Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Price, M, Higgs, S & Lee, M 2016, 'Self-control mediates the relationship between time perspective and BMI', *Appetite*. https://doi.org/10.1016/j.appet.2016.09.034

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- •Users may freely distribute the URL that is used to identify this publication.
- •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 11. May. 2024

Accepted Manuscript

Title: Self-control mediates the relationship between time perspective and BMI

Menna Price, Suzanne Higgs, Michelle Lee

PII: S0195-6663(16)30491-3

DOI: 10.1016/j.appet.2016.09.034

Reference: APPET 3173

To appear in: Appetite

Received Date: 19 May 2016

Revised Date: 29 September 2016 Accepted Date: 29 September 2016

Please cite this article as: Price M., Higgs S. & Lee M., Title: Self-control mediates the relationship between time perspective and BMI, *Appetite* (2016), doi: 10.1016/j.appet.2016.09.034.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Title: Self-control mediates the relationship between time perspective and BMI.

Menna Price^{a*}, Suzanne Higgs^b, Michelle Lee^a

^a Department of Psychology, College of Human and Health Sciences, Swansea University, Singleton Park, Swansea, UK.

^b School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK.

^{*}Correspondence: Menna Price: email: m.j.price@swansea.ac.uk; Department of Psychology, College of Human and Health Sciences, Swansea University, Singleton Park, Swansea, UK (Tel: (44) 1792 295279).

1	Title: Self-control	madiates the	rolationchin	hotwoon time	norchoctivo	224 DV/I
1	TIME. Self-Commor	mediates me	Telanonsino	Derween iiiie	DEISDECTIVE	and bivii

Menna Price, Suzanne Higgs, Michelle Lee

3

2

4 Abstract

5 Trait future time perspective measures the extent to which behaviour is dominated by a 6 striving for future goals and rewards. Trait present time perspective measures orientation 7 towards immediate pleasure. Previous research has explored the relationship between 8 future and present time perspective and BMI with mixed findings. In addition, the psychological mechanism underlying this relationship is unclear. Self-control is a likely 9 candidate, as it has been related to both BMI and time perspective, but the relationship 10 between all of these concepts has not been examined in a single study. Therefore, the aim 11 of this study was to examine if trait self-control mediates the relationship between time 12 perspective (future and present) and BMI. Self-report time perspective (ZTPI), self-control 13 (SCS) and height/weight data were collected using an online survey from a mixed student 14 15 and community sample (N=218) with wide ranging age (mean 29, SD 11, range 18-73 years) 16 and BMI (mean 24, SD 4, range 15-43). The results of a structural equation model including both facets of time perspective suggested that the traits are related yet distinct measures 17 that independently predict BMI through changes in self-control. Bootstrap mediation 18 analysis showed that self-control mediated the relationship between both future time 19 perspective (95% CI, -.10 to -.02) and present time perspective (95% CI, .03 to .17), and BMI 20 in opposite directions. Participants with higher future time perspective scores (higher 21 22 present time perspective scores) had higher (lower) self-control, which predicted lower 23 (higher) BMI. These results are consistent with previous research suggesting an important role for time perspective in health outcomes. Self-control likely mediates the relationship 24 between temporal perspectives and BMI, suggesting that time perspective may be a target 25 for individualised interventions. 26

28

27

Key words: Time perspective; Self-control; BMI

29

Introduction

30	Trait time perspective has been shown to predict a number of self-report health behaviours,
31	including alcohol use (Keough, Zimbardo, & Boyd, 1999), smoking (Adams & Nettle, 2009),
32	and fatty food consumption (Hall, Fong, & Cheng, 2012). However, there is a relative paucity
33	of research investigating the relationship between time perspective and obesity (Hall, Fong,
34	& Sansone, 2015). The purpose of the current study is to investigate the extent to which
35	time perspective predicts overweight and obesity, and to explore self-control as a potential
36	mediating mechanism. Establishing the nature of any relationships between time
37	perspective and obesity may be useful for informing individualised weight loss
38	interventions.
39	Studies that have measured trait time perspective in relation to general health behaviours
40	have often made use of two separate sub-scales that capture both future and present time
41	orientation (Keough et al., 1999; Henson, Carey, Carey, & Maisto, 2006; Daugherty & Brase,
42	2010; Joireman, Shaffer, Balliet, & Strathman, 2012; Guthrie, Lessl, Ochi, & Ward, 2013;
43	Belsky, Epel, & Tomiyama, 2014; Dassen, Houben, & Jansen, 2015). Future time perspective
44	is the tendency to consider the reward of attaining future goals when making decisions in
45	the present moment (for example, goals for weight loss or abstinence when confronted with
46	a tempting food or an alcoholic beverage). Present time perspective is the tendency to make
47	decisions based on immediate rewards in the present moment (for example, goals for
48	present enjoyment when confronted with a tasty food or alcoholic beverage). Although
49	these may appear conceptually to be opposite ends of the same continuum, evidence
50	suggests that they are related, yet distinct traits independently predicting different
51	outcomes (Joireman et al., 2012). For example, studies have shown present time
52	perspective to be a stronger predictor of alcohol intake and future time perspective to be a
53	stronger predictor of smoking (Henson et al., 2006; Daugherty and Brace, 2010).
<i>J J</i>	stronger predictor of smoking (henson et al., 2000, Daugherty and Brace, 2010).
54	Although behavioural measures of time preference, such as the delay discounting task, have
55	often been applied in obesity research, with outcomes suggesting a tendency to discount
56	the future is higher in overweight/obese populations (for example, Weller, Cook, Avsar, &
57	Cox, 2008; Jarmolowicz, Cherry, Reed, Bruce, Crespi, Lusk, et al., 2014; Price, Higgs, Maw,
58	&Lee, 2016), self-report measures of time perspective have not been applied to this

59	population as readily. Self-report time-perspective does not correlate robustly with delay
60	discounting outcomes (Teuscher & Mitchell, 2011), and these measures do not predict
61	health behaviours in the same way (Daugherty & Brase, 2010), suggesting that self-report
62	time perspective is independent from delay discounting tendencies and thus merits further
63	investigation. Self-report measures of time perspective that have been related to eating
64	behaviour and obesity include Zimbardos' Time Perspective Inventory (ZTPI; Keough,
65	Zimbardo & Boyd, 1999), the Consideration of Future Consequences Scale (CFCS; Strathman,
66	Gleicher, Boninger, & Edwards, 1994) and the Time Perspective Questionnaire (TPQ; Fong
67	and Hall, 2003). Each of these includes a future time perspective scale, but only the ZTPI and
68	CFCS also have an additional present (or immediate) time perspective scale.
69	A number of studies have found higher scores on various future time perspective scales to
70	predict a lower BMI (Adams & White, 2009; Adams & Nettle, 2009; Belsky et al., 2014; Hall,
	Fong, & Sansone, 2015), with the exception of Guthrie et al. (2013) who failed to find
71	differences in future time perspective between lean and obese participants in their sample.
72	
73	Present time perspective has been studied less frequently in relation to BMI, with
74	inconsistent findings (Belsky et al., 2014; Guthrie et al., 2013). Interestingly, Hall et al. (2015)
75	found that the relationship between future time perspective and BMI was mediated by
76	health behaviours. Hall et al. (2012) used a diet specific version of the TPQ (TPQ-D) in a
77	sample newly diagnosed with Type 2 diabetes and found that TPQ-D predicted self-reported
78	fatty food consumption at six months follow-up. However, BMI was not assessed and so the
79	downstream effects of fat consumption on weight change is not known. In addition, the
80	study did not include separate scales for future and present time perspective so the relative
81	influence of these traits on eating behaviour was not investigated.
82	Joireman et al. (2012) used the future and immediate sub-scales of the CFCS and using
83	factor analysis showed that the two sub-scales were distinct and that they differentially
84	predicted healthy eating intentions. Whereas CFCS future scores predicted healthier eating
85	attitudes and intentions, scores on the CFCS immediate scale did not predict eating
86	attitudes or intentions. The authors concluded that future and present time perspective
87	predict different self-regulatory techniques that vary in their impact on eating behaviour
88	intentions. Dassen et al. (2015) used both a general and food-specific version of the CFCS
89	future and immediate scales, and found that only CECS-food scores predicted self-report

90	healthy eating and the general CFCS did not. In summary, the relationship between future
91	time perspective and BMI has been demonstrated, but there is less research examining the
92	relationship between present time perspective and BMI which merits further investigation.
93	Trait time perspective may influence other mediating mechanisms that in turn impact on
94	BMI (e.g. Hall et al., 2012; Hall et al., 2015). We argue here that self-control may be a
95	general behaviour that mediates the relationship between time perspective and BMI.
96	Engaging in future goal oriented thoughts when in a tempting situation (e.g. attending a
97	tasty buffet lunch, choosing whether to watch television or exercise during leisure time)
98	may increase behaviours consistent with future goals and intentions (health and weight
99	maintenance). Engaging in thoughts about immediate pleasures however may increase
100	behaviours inconsistent with future health goals. In this sense, tendencies to either over-
101	ride or engage in behavioural responses that are incongruent with long-term goals can be
102	viewed as self-control. Construal level theory (CLT; Trope & Liberman, 2003) maintains that
103	a future time perspective allows for a psychological 'distancing' from a tempting situation
104	that affords higher level thought processes and greater self-control. Research has shown
105	that priming a higher level construal, enhances self-control in general (Peters & Buchel,
106	2010; Fujita, Trope, Liberman, & Levin-Sagin, 2006) and reduces consumption of high energy
107	dense snack food (Daniel, Stanton, & Epstein, 2014; Price, Higgs, & Lee, 2016). Therefore, a
108	trait tendency to maintain temporal distance from a situation may predict a trait tendency
109	to exert more self-control. Future time perspective has been positively correlated with
110	scores on the Self Control Scale (SCS; Tangney, Baumeister & Boone, 2004) (Barber, Munz,
111	Bagsby, & Grawitch, 2009; Milfont & Schwarzenthal, 2014) and Hall et al. (2012) found that
112	scores on the TPQ-Diet (future) predicted perceived self-control over dietary intake.
113	Therefore, evidence is supportive of a link between future time perspective and self-control.
114	In turn, there is evidence that self-control is highly predictive of overeating, overweight and
115	obesity (e.g. Vainik, Dagher, Dube, & Fellows, 2013; Appelhans, French, Pagoto, &
116	Sherwood, 2016; Higgs, 2015; Rollins, Dearing, & Epstein, 2010; Carr, Daniel, Lin, & Epstein,
117	2011).
118	Self-control in general has been reported to predict BMI and related behaviours (healthy
119	eating, physical activity), as well as to time perspective and is supported as a potential
120	mediating mechanism between time perspective and BMI. However, no study to date has

examined the relationship between both present and future time perspective, general self-control and obesity. Therefore, the aim of the current study was to examine the mediating role of trait self-control in the relationship between both future and present time perspective and BMI, within a single structural equation model.

125 Method

Participants

Participants were recruited from the student populations at Swansea University, and the University of Birmingham, as well as from the wider community (*N*=218). The demographic and questionnaire items were presented to participants online using Survey Monkey (Palo Alto, California, USA), alongside a battery of other personality questionnaires (see below), the results of which are reported elsewhere (see Price, Higgs, & Lee, 2015). Ethical approval for the study was granted by the Swansea University Department of Psychology Research Ethics Committee. See Table 1 for sample characteristics.

Table 1: Sample characteristics and reliability estimates

Measure	N/Mean (SD); Range	Cronbach Alpha
Age (years)	29 (11); 18-73	
Sex	Male: Female 38:180	
ВМІ	24 (4); 15–43	
Population	Student:Community129:88*	
ZTPI future	44 (8); 20-61	.79
ZTPI present	20 (5); 9-40	.76
Self-Control Scale	40 (9); 18-65)	.83

BMI (Body Mass Index); ZTPI (Zimbardo Time Perspective Inventory). *Data missing for N=1

Measures

- The following questionnaires were used in the current study. Means, standard deviations and internal reliability estimates for the sample are in Table 1.
- 139 Zimbardo Time Perspective Inventory (ZTPI; Keough, Zimbardo & Boyd, 1999)

140	Data was collected using the future and present sub-scales of the ZTPI, as described by
141	Keough, Zimbardo, and Boyd (1999). The future sub-scale contains 13 items measured on a
142	5-point scale ranging from 1 (very untrue of me) to 5 (very true of me). Example items
143	include 'I believe that a person's day should be planned ahead each morning' and 'When I
144	want to achieve something, I set goals and consider specific means of reaching those goals'.
145	The internal reliability in the current sample was good (.79). The present sub-scale contains
146	9 items also measured on a 5 point scale (as above). Example items include 'I try to live one
147	day at a time' and 'I believe getting together with friends to party is one of life's important
148	pleasures'. The internal reliability in the current sample was good (.76).
149	Self-Control Scale – Brief (SCS; Tangney, Baumeister & Boone, 2004)
150	Self-control was measured using the brief self-control scale, which has 13 items assessing
151	behaviour on a scale ranging from 1 (not at all like me) to 5 (very much like me). Example
152	items include 'I am good at resisting temptation' and 'I have a hard time breaking bad habits
153	(reverse scored)'. Internal reliability in the current sample was good (.83).
154	Demographic information
155	Participants self-reported their height and weight. Body Mass Index (BMI) was calculated
156	using the standard formula kg/m ² . Although self-reporting BMI tends to result in under
157	estimating weight and overestimating height, it is highly correlated with actual BMI across
158	age groups (Vainik, Neseliler, Konstabel, Fellows, & Dagher, 2015; Pursey, Burrows,
159	Stanwell, & Collins, 2014; Ng, Korda, Clements, Latz, Bauman, Lu, et al., 2011). Participants
160	also completed several demographic questions asking about age (years), occupation
161	(student or otherwise), and sex (male or female).
162	Other Questionnaires
163	As the measures used in the current study were delivered alongside a battery of other
164	questionnaires, these are listed here: The Power of Food Scale (PFS: Short version: Lowe,
165	Butryn, Didie, Annunziato, Thomas, Crerand et al., 2009); The Emotional Eating Scale (EES;
166	Arnow, Kenardy, & Agras, 1995); The Three Factor Eating questionnaire (TFEQ short version;
167	Karlsson, Persson, Sjostrom, &Sullivan, 2000); The Dutch Eating Behaviour Questionnaire
168	(DEBQ; Van Strien, Frijter, Bergers, & Defares, 1986); The Barrett Impulsiveness Scale (BIS

169	11; Patton, Stanford, & Barrett, 1995); The Yale Food Addiction Scale (YFAS; Gearhardt,
170	Corbin, & Brownell, 2009).
171	Data Analysis
172	All of the variables in the model were entered into a correlation matrix along with potential
173	covariates, age and sex. Any significant covariates were controlled for in the subsequent
174	structural equation model (SEM). To address the hypothesis that future and present time
175	perspective independently predict BMI, through the mediating influence of self-control, a
176	SEM was tested using IBM SPSS AMOS 22.0 software. This type of analysis was selected over
177	two separate regression-based mediation models as it allows for direct and indirect
178	pathways from two independent (exogenous) variables (ZTPI future and present) to be
179	tested within a single model. This controls for any potential overlap between the two
180	independent variables and indicates the independent influences from each. It also allows for
181	measurement error for all dependent (endogenous) variables (in this case, self-control and
182	BMI), making outcomes more reliable. Bootstrap sampling was performed to indicate the
183	significance of the indirect pathway. The model was set to 1,000 bootstrap samples, with a
184	95% confidence interval. The fit of the overall model was judged using the Chi-square test,
185	Root Mean Square Error of Approximation (RMSEA), and the Normal Fit Index (NFI).
186	Results
187	Correlations
188	Preliminary correlations are reported in Table 2. The ZTPI future sub-scale was positively
189	correlated with self-control and the present sub-scale was negatively correlated with self-
190	control. Neither sub-scale of the ZTPI was correlated with BMI. Self-control was negatively
191	related to BMI. This is supportive of an indirect (but not a direct), pathway between time
192	perspective and BMI. Age positively correlated with BMI, self-control and ZTPI future and so
193	was controlled for in the subsequent SEM model.
194	
195	

Table 2: Pearson's correlations (two-tailed) between ZTPI future, ZTPI present, self-control,
 BMI, age and sex.

	1	2	3	4	5
1. ZTPI future					
2. ZTPI present	32**				
3. Self-control	.44**	45**			
4. BMI	.07	02	15*		
5. Age	.24**	06	.17*	.35**	
6. Sex	.07	02	10	10	05

^{*}p<.05 **p<.01. Sex coded 1=male 2=female.

Structural Equation Model

The model proposed in Figure 1 was a good fit to the data. Chi-square = .66 (df=1, p=.42), RMSEA= .00 and NFI= .99. A good fit is indicated by a non-significant chi-square (i.e. the actual data does not differ significantly from the model), a small RMSEA (<.08), and a large NFI (>.9). For the indirect pathway between ZTPI future and BMI, through self-control, the lower level (LL) and upper level (UL) bootstrap confidence intervals (CI) did not pass through zero (LLCI = -.10; ULCI = -.02), indicating that the indirect pathway is significant. For the indirect pathway between ZTPI present and BMI, through self-control, confidence intervals did not pass through zero (LLCI=.03; ULCI = .17), indicating that this indirect pathway was also significant. See Figure 1 for the significant pathways in the final model.

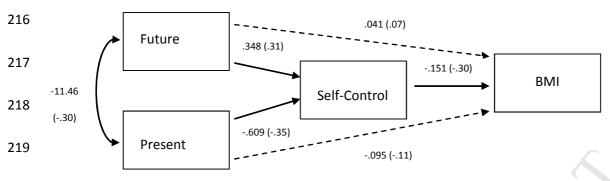


Figure 1: Final model (controlling for age). Solid arrows indicate significant pathways (p<.0001), dotted arrows indicate non-significant pathways (p>.12). Unstandardized regression weights are included (standardised in parentheses).

Squared multiple correlations indicated that ZTPI future and present explained 30.0% of the variance in self-control, with the contribution of all predictors (including age) explaining 18.8% of the variance in BMI.

Discussion

The aim of the current study was to examine the mediating role of trait self-control in the relationship between both future and present time perspective and BMI, within a single structural equation model. The model provided a good fit to data. Future and present time perspective were supported as related, yet distinct personality traits that indirectly predicted BMI through changes in self-control. Greater future time perspective predicted higher self-control and a lower BMI. Conversely, greater present time perspective predicted lower self-control and a higher BMI.

The current findings support previous research that future and present time perspective are distinct constructs that independently contribute to health outcomes (Henson et al., 2006; Daugherty & Brase, 2010; Joireman et al., 2012; Dassen et al., 2016). Our results also support previous findings that future time perspective is positively related to self-control (Barber et al., 2009; Hall et al., 2012; Milfont & Schwarzenthal, 2014). In addition, we provide evidence that present time perspective negatively predicts self-control.

A relationship between various self-control measures and obesity outcomes has been reported previously. Specifically, self-report self-control has been shown to predict both

healthy eating patterns (Vainik et al., 2015) and BMI (Jungen & Kampen, 2010). We provide
support for these findings using the self-control scale, but acknowledge that the relationship
between self-control and BMI is modest (r =15). The extent to which the self-control and
time perspective measures used in our study overlap with the variance in BMI accounted for
by other related processes remains to be tested (e.g. Uncontrolled Eating, Vainik et al.,
2015; Food Reward Responsivity, Price et al., 2015) and suggests the need for a full model to
be tested that includes such measures. Future time perspective has been reported to
predict BMI in some studies (Adams & White, 2009; Adams & Nettle, 2009), but not in
others (Guthrie et al., 2013). Present time perspective has been reported to be significantly
lower in a group of lean calorie restrictors compared to overweight/obese controls (Belsky
et al., 2014), but Guthrie et al. (2013) failed to find any differences between weight groups
in their community sample. We hypothesised that the pathway between time perspective
and BMI may be indirect, exerting influence through changes in general self-control, and
this was supported in our current findings. We found no direct relationship between time
perspective and BMI, suggesting that an indirect pathway better describes the relationship.
Construal level theory (Trope & Liberman, 2003) maintains that a future directed construal
allows for a psychological distancing from a tempting situation, and enhances consideration
of future goals and values (e.g. weight loss goals). This in turn enhances self-control.
Conversely, a present minded construal facilitates attention to the details of the immediate
moment which, in a tempting situation (e.g. when offered a tasty chocolate bar), reduces
self-control (Fujita et al, 2006). Here we find support for a relationship between trait
temporal perspective and self-control that is in-line with temporal construal theory. Further,
we report an association with BMI. Hall et al. (2015) reported that future time perspective
predicted BMI through the mediating influence of health behaviours. It is logical then to
suggest that trait self-control enhances the use of these health behaviours (healthy eating,
physical activity), which in turn directly impact BMI. It would be useful for future research to
include measures of weight-related health behaviours and investigate the full serial pathway
between time perspective and BMI, via self-control and health behaviours within one study.
Another avenue for future research would be to investigate the present model further using
behaviour specific measures of time preference and self-control. For example, Dassen et al.
(2015) reported that only food specific measures of time perspective predicted healthy

274	eating intentions, and not general time perspective. Therefore, the use of behaviour specific
275	measures may show even stronger effects. In addition, an experimental approach
276	measuring food intake and food preference as outcome variables would inform us of the
277	predictive validity of this model for actual eating behaviour.
278	It is not possible to draw conclusions about the direction of the relationship between time
279	perspective and BMI due to the cross-sectional design of the design of the study. Previous
280	research and theory would support that suggestion that a present time perspective may
281	undermine self-control of eating leading to a greater probability of weight gain, but it is
282	plausible that an increase in BMI causes individuals to consider their increased health risk
283	and adopt a more present minded perspective. Future studies should use prospective
284	designs to investigate the long-term effects of trait time perspective on self-control, eating
285	behaviour and obesity to establish the causal factors. The study was also based on an
286	opportunity sample, and although this allowed for a wider sample than the standard
287	undergraduate, female populations, the number of males, and non-students was not large
288	enough to test the model on these groups separately. Therefore, future research should
289	look to replicate these findings in specific populations (e.g. males versus females) to see if
290	the model fits in the same way. Prospective studies of weight change over time and success
291	with interventions would also be highly desirable. The limitations of structural equation
292	modelling (SEM) using questionnaire data in general should also be noted. SEM assumes
293	that data is at an interval level, whereas questionnaire data is strictly speaking, ordinal by
294	nature. Although SEM can model error arising from both interval and ordinal data, ordinal
295	data is limited in range and therefore truncated. This can produce attenuation of the
296	coefficients in the correlation matrix used by SEM. If ordinal data is used, then it should at
297	least come from questionnaires using likert scales with five categories or more and be
298	normally distributed, both of which are present in this study. A second issue surrounding the
299	use of SEM is the assumption of linearity. It is unlikely that all of the relationships within the
300	model are linear and this can be a potential source of error, with underestimation of
301	explained variance. Lastly, as we took a strictly confirmatory approach to our SEM, the
302	model has not been tested against any other models and can only strictly be considered as a
303	'not-disconfirmed' model at this stage. It would therefore be useful for future research to

304	compare the model presented here to one that includes other measured behaviours, such
305	as dietary control or exercise, as previously suggested.
306	In conclusion, future and present time perspective are related, yet distinct, traits that
307	predict BMI through directional changes in self-control. Overweight/obese individuals, high
308	in present time perspective or low in future time perspective represent vulnerable sub-
309	groups for whom self-control interventions may be particularly effective.
310	References
311	Adams, J., & Nettle, D. (2009). Time perspective, personality and smoking, body mass,
312	and physical activity: An empirical study. British journal of health psychology,
313	<i>14</i> (1), 83-105.
314	Adams, J., & White, M. (2009). Time perspective in socioeconomic inequalities in smoking
315	and body mass index. Health Psychology, 28(1), 83.
316	Appelhans, B. M., French, S. A., Pagoto, S. L., & Sherwood, N. E. (2016). Managing
317	temptation in obesity treatment: a neurobehavioral model of intervention
318	strategies. Appetite, 96, 268-279.
319	Arnow, B., Kenardy, J. & Agras, W.S. (1995). The Emotional Eating Scale: The development
320	of a measure to assess coping with negative affect by eating. International Journal
321	of Eating Disorders, 18 (1), 79-90.
322	Barber, L. K., Munz, D. C., Bagsby, P. G., & Grawitch, M. J. (2009). When does time
323	perspective matter? Self-control as a moderator between time perspective and
324	academic achievement. Personality and Individual Differences, 46(2), 250-253.
325	Belsky, A. C. I., Epel, E. S., &Tomiyama, A. J. (2014). Clues to maintaining calorie
326	restriction? Psychosocial profiles of successful long-term restrictors. Appetite, 79,
327	106-112.
328	Carr, K. A., Daniel, T. O., Lin, H., & Epstein, L. H. (2011). Reinforcement pathology and
329	obesity. Current drug abuse reviews, 4(3), 190.

330	Dassen, F. C., Houben, K., & Jansen, A. (2015). Time orientation and eating behavior:
331	Unhealthy eaters consider immediate consequences, while healthy eaters focus
332	on future health. Appetite, 91, 13-19.
333	Daugherty, J. R., &Brase, G. L. (2010). Taking time to be healthy: Predicting health
334	behaviors with delay discounting and time perspective. Personality and Individual
335	differences, 48(2), 202-207.
336	Fong, G. T., & Hall, P. A. (2003). Time perspective: a potentially important construct for
337	decreasing health risk behaviors among adolescents. Reducing adolescent risk:
338	Toward an integrated approach, 106-112.
339	Fujita, K., Trope, Y., Liberman, N., & Levin-Sagin, M. (2006). Construal levels and self-
340	control. Attitudes and Social Cognition, 90(3), 351-367.
341	Gearhardt, A.N., Corbin, W.R. & Brownell, K.D. (2009). Preliminary validation of the Yale
342	Food Addiction Scale. <i>Appetite</i> , 52: 430-436.
343	Guthrie, L. C., Lessl, K., Ochi, O., & Ward, M. M. (2013). Time perspective and smoking,
344	obesity, and exercise in a community sample. American journal of health
345	behavior, 37(2), 171.
346	Hall, P. A., Fong, G. T., & Cheng, A. Y. (2012). Time perspective and weight management
347	
	behaviors in newly diagnosed Type 2 diabetes: a mediational analysis. Journal of
348	behaviors in newly diagnosed Type 2 diabetes: a mediational analysis. <i>Journal of behavioral medicine</i> , 35(6), 569-580.
348 349	
	behavioral medicine, 35(6), 569-580.
349	behavioral medicine, 35(6), 569-580. Hall, P. A., Fong, G. T., &Sansone, G. (2015). Time Perspective as a Predictor of Healthy
349 350	behavioral medicine, 35(6), 569-580. Hall, P. A., Fong, G. T., &Sansone, G. (2015). Time Perspective as a Predictor of Healthy Behaviors and Disease-Mediating States. In <i>Time Perspective Theory; Review,</i>
349 350 351	behavioral medicine, 35(6), 569-580. Hall, P. A., Fong, G. T., &Sansone, G. (2015). Time Perspective as a Predictor of Healthy Behaviors and Disease-Mediating States. In <i>Time Perspective Theory; Review, Research and Application</i> (pp. 339-352). Springer International Publishing.
349350351352	behavioral medicine, 35(6), 569-580. Hall, P. A., Fong, G. T., &Sansone, G. (2015). Time Perspective as a Predictor of Healthy Behaviors and Disease-Mediating States. In <i>Time Perspective Theory; Review, Research and Application</i> (pp. 339-352). Springer International Publishing. Henson, J. M., Carey, M. P., Carey, K. B., & Maisto, S. A. (2006). Associations among

356	Jarmolowicz, D.P., Cherry, J.B.C., Reed, D.D., Bruce, J.M., Crespi, J.M. Lusk, J.L., et al.
357	(2014). Robust relation between temporal discounting rates and body mass.
358	Appetite, 78 (2014), pp. 63–67.
359	Joireman, J., Shaffer, M. J., Balliet, D., & Strathman, A. (2012). Promotion orientation
360	explains why future-oriented people exercise and eat healthy evidence from the
361	two-factor consideration of future consequences-14 scale. Personality and Social
362	Psychology Bulletin, 38(10), 1272-1287.
363	Junger, M., & van Kampen, M. (2010). Research Cognitive ability and self-control in
364	relation to dietary habits, physical activity and bodyweight in adolescents. Int J
365	BehavNutrPhys Act, 7, 22.
366	Karlsson, J., Persson, L. O., Sjöström, L., & Sullivan, M. (2000). Psychometric properties
367	and factor structure of the Three-Factor Eating Questionnaire (TFEQ) in obese
368	men and women. Results from the Swedish Obese Subjects (SOS) study.
369	International Journal of Obesity & Related Metabolic Disorders, 24(12).
370	Keough, K. A., Zimbardo, P. G., & Boyd, J. N. (1999). Who's smoking, drinking, and using
371	drugs? Time perspective as a predictor of substance use. Basic and applied social
372	psychology, 21(2), 149-164.
373	Lowe, M. R., Butryn, M. L., Didie, E. R., Annunziato, R. A., Thomas, J. G., Crerand, C. E.,
374	& Halford, J. (2009). The Power of Food Scale. A new measure of the psychologica
375	influence of the food environment. Appetite, 53(1), 114-118.
376	Milfont, T. L., & Schwarzenthal, M. (2014). Explaining why larks are future-oriented and
377	owls are present-oriented: Self-control mediates the chronotype-time
378	perspective relationships. Chronobiology international, 31(4), 581-588.
379	Ng, S. P., Korda, R., Clements, M., Latz, I., Bauman, H., Liu, B., et al. (2011). Validity of self-
380	reported height and weight and derived body mass index in middle-aged and
381	elderly individuals in Australia. Australia and New Zealand Journal of Public
382	Health, 35(6), 557e563.

383	Patton, J. H., & Stanford, M. S. (1995). Factor structure of the Barratt impulsiveness scale
384	Journal of clinical psychology, 51(6), 768-774.
385	Peters, J., & Büchel, C. (2010). Episodic future thinking reduces reward delay discounting
386	through an enhancement of prefrontal-mediotemporal interactions. Neuron,
387	<i>66</i> (1), 138-148.
388	Price, M., Higgs, S., & Lee, M. (2015). Self-reported eating traits: Underlying components
389	of food responsivity and dietary restriction are positively related to BMI. Appetite
390	<i>95</i> , 203-210.
391	Price, M., Higgs, S., Maw, J., & Lee, M. (2016). A dual-process approach to exploring the
392	role of delay discounting in obesity. Physiology & behavior, 162, 46-51.
393	Pursey, K., Burrows, T. L., Stanwell, P., & Collins, C. E. (2014). How accurate is web-based
394	self-reported height, weight, and body mass index in young adults? Journal of
395	medical Internet research, 16(1), e4.
396	Rollins, B. Y., Dearing, K. K., & Epstein, L. H. (2010). Delay discounting moderates the
397	effect of food reinforcement on energy intake among non-obese women.
398	Appetite, 55(3), 420-425.
399	Strathman, A., Gleicher, F., Boninger, D. S., & Edwards, C. S. (1994). The consideration of
400	future consequences: Weighing immediate and distant outcomes of behavior.
401	Journal of personality and social psychology, 66(4), 742.
402	Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good
403	adjustment, less pathology, better grades, and interpersonal success. Journal of
404	personality, 72(2), 271-324.
405	Teuscher, U., & Mitchell, S. H. (2011). Relation between time perspective and delay
406	discounting: a literature review. The Psychological Record, 61(4), 613.
407	Trope, Y., & Liberman, N. (2003). Temporal construal. <i>Psychological review</i> , 110(3), 403.

408	Vainik, U., Dagher, A., Dubé, L., & Fellows, L. K. (2013). Neurobehavioural correlates of
409	body mass index and eating behaviours in adults: a systematic review.
410	Neuroscience & Biobehavioral Reviews, 37(3), 279-299.
411	Vainik, U., Dubé, L., Lu, J., & Fellows, L. K. (2015). Personality and situation predictors of
412	consistent eating patterns. PloS one, 10(12), e0144134.
413	Vainik, U., Neseliler, S., Konstabel, K., Fellows, L. K., & Dagher, A. (2015). Eating traits
414	questionnaires as a continuum of a single concept. Uncontrolled eating. Appetite
415	90, 229-239.
416	Van Strien, T., Frijters, J. E., Bergers, G., & Defares, P. B. (1986). The Dutch Eating
417	Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and
418	external eating behavior. International Journal of Eating Disorders, 5(2), 295-315.
419	Weller, R. E., Cook, E. W., Avsar, K. B., & Cox, J. E. (2008). Obese women show greater
420	delay discounting than healthy-weight women. Appetite, 51(3), 563-569.
421	
422	