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Highlights 

 A novel double temperature chiller with zeotropic refrigerant is proposed. 

 This chiller can produce chilled water with two different temperatures for THICS. 

 Effect of refrigerant mass fraction on COP and second law efficiency is studied. 

 Effect of water flow rate and temperature on chiller performance is studied. 

 

Abstract 

A novel chiller with double evaporating temperatures is proposed in this paper, which can be applied in 

temperature and humidity independent control system (THICS). A zeotropic mixture R32/R236fa is selected as the 

refrigerant, and chilled water with two different temperatures is produced. The experimental coefficient of 

performance (COPexp), theoretical coefficient of performance (COPth), and second law efficiency (η) of the chiller 

are studied. The performance of the chiller is studied by varying the mass fraction of R32 in the R32/R236fa 

(W(R32)), chilled water temperature, and the flow rates of the heat transfer media (chilled water and cooling water). 

The results show that the high temperature chilled water (TH,out) can be at 15-18 °C, and the low temperature chilled 

water (TL,out) can be at 6-8 °C. When TH,out is 17 °C and TL,out is 7 °C, the maximum COPth and COPexp are 4.73 and 

3.97, respectively. Second law efficiency, η, increases to 31% as W(R32) increases from 0.3 to 0.6. 

Keyword: double evaporating temperature; zeotropic refrigerant; second law efficiency; COP; chiller; 
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Nomenclatures 

COP coefficient of performance 

Cp specific heat capacity (kJ kg
-1

 K
-1

) 

G heat transfer media flow rate (kg s
-1

) 

GTD gliding temperature difference(
o
C) 

GWP global warming potential 

h enthalpy (kJ kg
-1

) 

ṁ mass flow rate of refrigerant (kg s
-1

) 

N power consumption (kW) 

NBP normal boiling point (
o
C) 

ODP ozone depression potential 

P pressure (Pa) 

Pc critical pressure (Pa) 

Q refrigerating capacity (kW) 

S entropy (kJ K
-1

) 

T temperature (
o
C) 

Tc critical temperature (
o
C) 

W(R32) mass fraction of R32 in mixture R32/R236fa 

Greek symbol 

 difference 

 relative error 

 second law efficiency 
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 isentropic efficiency 

Subscripts 

b bubble point temperature 

com compressor 

cw cooling water 

d dew point 

eva evaporator 

exp experiment 

H high temperature chilled water 

in inlet 

L low temperature chilled water 

lo lorenz 

out outlet 

r refrigerant 

suc suction 

th theoretical 

1. Introduction  

With the development of China’s economy and society, the amount of energy consumed by buildings, as a 

percent of the total energy consumed nationally, is increasing rapidly; air conditioning is one of the main energy 

consumers (Cai et al., 2009). Therefore, energy conservation in air conditioning systems plays an important role in 

reducing the energy consumption of China. 

In southern China, air humidity is very high in summer, and the humidity load takes up 50% of the cooling load 
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(Jiang, 2005). Many scholars put forward the temperature and humidity independent control system (THICS) (Wang 

et al., 2013; Liu et al., 2013), which separately controls air temperature and humidity, and can avoid the irreversible 

losses of the traditional air conditioning system (Waugaman et al., 1993; Zhao et al., 1994). In addition, it is hard for 

the traditional air conditioning system to meet the requirements of air temperature and humidity simultaneously 

(Zhao et al., 2011). At present, THICS usually uses liquid and solid desiccants to remove the latent heat and chilled 

water to remove the sensible heat (Ge et al., 2011; Kessling et al., 1998). Zhang (2011) proposed an operation 

strategy of THICS and analyzed the performance of the key components, which indicated that THICS can save 

20%-30% of the consumed energy, when compared with the conventional air conditioning system. Zhao et al. (2011) 

tested the performance of THICS, and analyzed its yearly energy consumption. The research results showed that 

THICS had a significant potential for energy savings. Liquid desiccant dehumidification systems, however, have 

some problems such as the corrosion of pipelines and the low efficiency, which limit its applications (Lowenstein et 

al., 2006). There are many problems for solid desiccant dehumidification as well, such as the significant spatial 

requirements for the equipment and large amount of adsorbent, which increases the initial costs. In addition, solid 

desiccant regeneration calls for a high-grade heat source. For example, the regeneration temperature of silica gel is 

usually expected to be above 100 °C for practical application (Yang et al., 2012).  

The L-M cycle was proposed by Lorenz and Meutzner (1975). The L-M cycle uses a zeotropic refrigerant 

mixture as the working fluid, which has an appropriate gliding temperature difference (GTD) during the evaporating 

and condensing processes. The energy saving potential of the L-M cycle was evaluated by several researchers: 

Lorenzand Meutzner (1975) experimentally observed 20% energy savings compared to the R12 system when an 

R12/R11 mixture was used; Jung (1991) reported that the COP increased significantly, by 15%-18%, with mixtures 

of R22/R123 and R32/R141b; and Zerwekh et al. (2012) and Yoon et al. (2012) showed that the energy 

consumption of the optimized L-M cycle using R290/R600(40%:60%) was 11.2% lower than that of a bypass 
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two-circuit cycle using R600a. 

By taking advantage of the L-M cycle, a novel chiller, using R32/R236fa as the refrigerant, is presented in this 

paper. This chiller can provide two kinds of chilled water with different temperatures; namely, the high temperature 

chilled water at 17 °C and the low temperature chilled water at 7 °C. These chilled water lines can be used to handle 

the indoor sensible heat load and latent heat load, respectively (i.e., THICS). Both theoretical and experimental 

investigations are conducted in this paper. Performance of the chiller is measured as a function of the following 

variables: the mass fraction of R32 in mixture R32/R236fa (W(R32)), the chilled water temperature, and the flow 

rates of heat transfer media (chilled water and cooling water). This work can provide a database for the application 

of this chiller.  

2. Theoretical analysis 

2.1. Introduction of the theoretical system 

A schematic of the theoretical cycle is shown in Fig. 1, which is composed of a compressor, a condenser, an 

expansion valve and two evaporators. In this system, later referred to as a chiller, the refrigerant entering the 

compressor is denoted by point 1. The state of the fluid after compression and before the condenser is point 2. After 

rejecting heat in the condenser, the refrigerant reaches point 3, which is just prior to the expansion valve. In the 

expansion valve, the refrigerant mixture is throttled, after which it reaches point 4. Between points 4 and 5, the 

refrigerant evaporates inside the low temperature evaporator and produces low-temperature chilled water. Following 

point 5, the fluid moves through the high temperature evaporator and evaporates again, producing high-temperature 

chilled water. This completes the system and returns the fluid to point 1, the inlet of the compressor. Fig. 2 shows the 

T-S diagram corresponding to the points in Fig. 1. 

Based on REFPROP 8.0, some basic properties of the refrigerants (R32 and R236fa) are presented in Table 1. 

Table 2 shows the properties of the mixture R32/R236fa with different mass fraction of R32 (W(R32)), consisting of 
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molar mass, NBP (normal boiling point), critical temperature, critical pressure, ODP (ozone depletion potential), 

GWP (global warming potential), the latent heat capacity, and the temperature glide. It demonstrates that the ODP of 

the refrigerant mixture is zero. In addition, the refrigerant mixture has a large temperature glide, with the minimum 

temperature glide of 14.5 °C, which means that the chiller can meet the demands of THICS.  

2.2. System performance calculation 

In order to calculate the theoretical performance of the proposed chiller, the following assumptions are made: 

(1) Pressure losses and the heat losses are neglected. 

(2) The refrigerant leaving the condenser and high temperature evaporator is in a saturated state.  

(3) The isentropic efficiency () of the compressor is assumed to be 0.7.  

(4) The temperature difference during heat transfer in the condenser and evaporators is 5 °C. 

 The theoretical refrigerating capacity (Qth), power consumption of the compressor (Nth) and theoretical 

performance (COPth) are calculated in the following equations, 

1 4
( )

th r
Q m h h                                      (1) 

  2 1

2 1

( )
r s

th r

m h h
N m h h




                                  (2) 

th

th

th

Q
C O P

N
                                       (3) 

Where ṁr is the mass flow rate of refrigerant. 

To further analyze the proposed chiller, the ideal Lorenz cycle is studied, which consists of two isentropic 

processes and two isobaric processes, as shown in Fig. 3. The whole cycle can be divided into two Lorenz cycles: 

cycle 1-2-7-6-1 and cycle 5-7-3-4-5. In the ideal Lorenz cycle, the temperature difference between the refrigerants 

and the heat sources (chilled water and cooling water) is zero. In addition, the inlet temperature of the chilled water 

in the low temperature evaporator (TL,in) is usually lower than the outlet temperature of chilled water in the high 

temperature evaporator (TH,out). Therefore, there is a temperature jump between point 5 and point 6.  
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The evaporating temperature is assumed to be the average of the inlet and outlet temperatures of the chilled 

water, and the condensing temperature is regarded as the average of inlet and outlet temperatures of cooling water. 

The COP of the Lorenz cycle can be calculated using Equation (4). 

4 5 4 ' 5 ' 1 6 5 ' 1 '

3 7 4 5 4 ' 5 ' 2 7 1 6 5 ' 1 '

( ) ( )

(( ) ( )) (( ) ( ))
lo

T T S T T S
C O P

T T T T S T T T T S

 

 

    


        
                (4) 

In the experiment, the temperature difference of the chilled water, between the inlet and outlet of the evaporator, 

is controlled around 5 
o
C (i.e., T5-T4=T1-T6). Therefore, 

   
4 ' 5 ' 5 ' 1 '

S S
 

                                      (5) 

    2 3

7
2

T T
T


                                       (6)

The COP of the Lorenz cycle can be simplified as 

4 5 1 6

2 3 4 5 1 6
2( ) ( )

lo

T T T T
C O P

T T T T T T

  


    
                            (7) 

3. Experimental analysis  

3.1. Test apparatus  

A schematic of the experimental setup is shown in Fig. 4. The chiller includes four loops: the refrigerant loop, 

the cooling water loop and two chilled water loops. The refrigerant loop consists of a compressor (1), a condenser 

(2), a reservoir (3), an expansion valve (4), a low temperature evaporator (5), and a high temperature evaporator (6). 

The cooling water loop and chilled water loop have the same components, which include a water pump (7), an 

electrical heater (8), a flow meter (9), a water tank (10), and a valve (11).  

The compressor is a hermetically-sealed rotary compressor with a rated power of 1.1 kW. The condenser is a 

double-pipe heat exchanger and has a rated heat transfer capacity of 6 kW. Cooling water is circulated by a water 

pump with a rated pump capacity of 0.22 kg·s
-1

. An electrical heater, controlled by a digital regulator, is used to 

ensure that the water entering the condenser is at the desired temperature. The low temperature evaporator and high 

temperature evaporator are double-pipe heat exchangers, each with a rated heat transfer capacity is 3 kW. An 
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electrical heater, controlled by a digital regulator, is used to ensure the chilled water entering the low-temperature 

and high-temperature evaporators is at the desired temperature. Chilled water is circulated by a water pump. 

3.2. Test conditions and measurements  

The temperature, pressure, and flow rates of the working fluids are measured at several locations, as shown in 

Fig. 4. T-type chrome-nickel thermocouples are used to measure the temperature of the working fluids with an 

accuracy of ±0.1 °C. The temperature of the refrigerant is measured at the inlet and outlet of the condenser, 

evaporator, and compressor. The temperature of the chilled water is measured at the inlet and outlet of the 

evaporators. Cooling water temperature is measured at the inlet and outlet of the condenser. Four bourdon type 

manometers are used at the inlet and outlet of the compressor and expansion valve. Turbine flow-meters are used to 

measure the flow rates of the chilled water and cooling water. The compressor input power is measured by a digital 

wattmeter. The working refrigerant is R32/R236fa, with W(R32) between 0.3 and 0.6. 

3.3. Uncertainty of the experimental data  

Some parameters, such as the temperature and pressure, are measured directly, while the other parameters, such 

as the COP, refrigerating capacity, and the second law efficiency cannot be measured directly. The uncertainties 

resulting from measuring devices and experimental fluctuations are analyzed according to the principle of 

uncertainty propagation, as shown in Eqs. (8-10). The average uncertainties of the calculated parameters are shown 

in Table 3, 

 
1 2

( , , ..., )
n

y f x x x                                     (8) 

                    
1 2

1 2

n

n

f f f
y x x x

x x x

  
          

  
                            (9) 

                  
1 2

1 2

1
n

n

y f f f
x x x

y y x x x


    
           

                            (10) 

Where y represents the overall uncertainty associated with independent parameter y. Variables x1, x2, x3 ....xn 
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represent the uncertainties of the measuring devices and the experimental fluctuations associated with independent 

parameters x1,x2, x3,. . . , xn. The relative error of parameter y is denoted by ε. 

3.4. Performance of experimental setup  

The experimental coefficient of performance (COPexp) for the proposed chiller is evaluated using the following 

equation: 

   , , , ,exp , ,

exp

P H H in H out P L L in L outeva H eva L

com com com

C G t t C G t tQ Q Q
COP

N N N

  
              (11) 

The second law efficiency of the proposed chiller () is defined as the ratio between the chiller performance 

and the performance of the ideal Lorenz cycle (COPlo). 

                              
e x p

lo

C O P

C O P
                                        (12) 

4. Results and discussion  

4.1. System performance with varying mass fraction of R32 

Fig. 5 shows the variation in theoretical performance (COPth) and experimental performance (COPexp), of the 

proposed chiller, caused by varying the mass fraction of R32 (W(R32)), with different chilled water outlet 

temperatures (TL,out and TH,out). Both COPth and COPexp increase as W(R32) increases from 0.3 to 0.6; this is because 

the specific refrigerating capacity of R32 is larger than that of R236fa under the same working conditions. The 

maximum COP occurs as W(R32) is 0.6. In Fig. 5(a), the maximum COPth is 4.5, while the maximum COPexp is 

3.87. In Fig. 5(b), the maximum COPth and COPexp are 4.6 and 3.92, respectively. In Fig. 5(c), the maximum COPth 

is 17.5% larger than COPexp. In Fig. 5(d), the maximum COPth is 4.8, and the maximum COPexp is 4.1.  

4.2. Second law efficiency with varying mass fraction of R32 

Fig. 6 shows the second law efficiency () is affected by changes in the mass fraction of R32 (W(R32)), with 

different chilled water outlet temperatures (TL,out and TH,out). As shown, η increases significantly with the increase of 

W(R32); this is a result of an increasing COPexp as W(R32) increases, as shown in Fig. 5, while the COPlo remains 
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constant. When W(R32) increases from 0.3 to 0.6, η increases to an average of 31%. When TH,out is 16 °C and TL,out 

is 6 °C, the maximum and minimum η are 0.318 and 0.239, respectively. When TH,out is 17 °C and TL,out is 7 °C, the 

maximum and minimum η are 0.311 and 0.242, respectively. When TH,out is 17 °C and TL,out is 8 °C, the maximum η 

is 0.309, and the minimum η is 0.24.  

4.3. System performance with varying chilled water temperature 

Table 4 shows the changes in theoretical performance (COPth), experimental performance (COPexp), and the 

second law efficiency (η) of the proposed chiller, while varying the chilled water temperature and mass fraction of 

R32 (W(R32)). It can be seen that the proposed chiller can produce chilled water with different temperatures, where 

the low temperature chilled water can be at 6-8 °C, and the high temperature chilled water can be at 14-18 °C. Both 

COPexp and COPth increase with the increase of the chilled water temperature. When W(R32) is 0.3, the maximum 

COPexp and COPth are 3.18 and 4.54, respectively, while the minimum COPexp and COPth are 2.81and 4.09, 

respectively. When W(R32) is 0.4, the maximum COPexp and COPth are 3.73 and 4.58, respectively, and the 

minimum COPexp and COPth are 3.41and 4.11, respectively. As W(R32) is 0.5, the maximum COPexp and COPth are 

3.89 and 4.7, while the minimum COPexp and COPth are 3.58 and 4.28 respectively. When W(R32) is 0.6, the 

maximum COPexp and COPth are 4.11 and 4.89, respectively, and the minimum COPexp and COPth are 3.82 and 4.46 

respectively. The second law efficiency is not significantly influenced by varying the chilled water temperature. 

When W(R32) is 0.3, 0.4, 0.5 and 0.6, the second law efficiency is around 0.24, 0.285, 0.3, and 0.31, respectively. 

4.4. System performance with varying flow rates of heat transfer media 

Fig. 7 shows the change in experimental performance (COPexp) while varying the flow rates of heat transfer 

media (chilled water and cooling water), where TL,out=7 
o
C, TH,outt=16 

o
C and Tcw,out=32 

o
C. In general, COPexp 

increases as the cooling water flow rate (Gcw) increases. This is because a higher cooling water flow rate will 

decrease the condensing temperature when the inlet and outlet temperatures of the cooling water in the condenser 
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are held constant; this results in lower power consumption of the compressor. In addition, the increased chilled 

water flow rate (GH and GL) can improve the performance of the proposed chiller. This is due to the fact that a 

higher chilled water flow rate will decrease the evaporating temperature when the inlet and outlet temperatures of 

the chilled water in the evaporators remain constant; this leads to higher refrigerating capacity and lower power 

consumption of the compressor.  

In Fig. 7(a), the maximum COPexp is 3.97 when the flow rate of the chilled water is 0.125 kgs
-1

 and the flow 

rate of the cooling water is 0.22 kg s
-1

. The minimum COPexp is 3.26 when the flow rate of the chilled water is 0.069 

kg s
-1

 and the flow rate of the cooling water is 0.11 kg s
-1

. The COPexp increases by 22% due to the increased flow 

rates of the chilled water and cooling water. In Fig. 7(b), the maximum COPexp is 4.08 while the flow rate of the 

chilled water is 0.125 kg s
-1

 and the flow rate of the cooling water is 0.22 kg s
-1

. The minimum COPexp is 3.49 when 

the flow rate of the chilled water is 0.069 kg s
-1

 and the flow rate of the cooling water is 0.14 kg s
-1

. The COPexp 

increases by 17% on average. In Fig. 7(c), the maximum COPexp is 4.17 when the flow rate of the chilled water is 

0.11 kg s
-1

 and the flow rate of the cooling water is 0.22 kg s
-1

. The minimum COPexp is 3.73 when the flow rate of 

the chilled water flow rate is 0.069 kg s
-1

 and the flow rate of the cooling water is 0.167 kg s
-1

. The COPexp increases 

by an average of 12%.  

5. Conclusions 

In this paper, a novel double temperature chiller is proposed, with the zeotropic refrigerant R32/R236fa.This 

chiller can produce high temperature chilled water (around 16 °C) and low temperature chilled water (around 7 °C) 

simultaneously, which can be applied in the temperature and humidity independent control system. Changes in the 

system’s theoretical performance (COPth), experimental performance (COPexp) and the second law efficiency (η) are 

studied as functions of the mass fraction of R32 in refrigerant mixture R32/R236fa (W(R32)), temperature of the 

chilled water, and flow rates of heat transfer media (chilled water and cooling water). The main results are shown as 
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follows: 

(1) COPexp, COPth, and the second law efficiency η increase with the increase of W(R32). When W(R32) 

increases from 0.3 to 0.6, COPth increases from 4.35 to 4.73, COPexp rises from 3.08 to 3.97, and η increases to 31%. 

(2) The chilled water temperature has a significant effect on COPexp and COPth. When W(R32) is 0.5, an 

increase in the chilled water temperature causes COPexp to increase from 3.58 to 3.89 while COPth rises from 4.28 to 

4.7. The chilled water temperature has little effect on the second law efficiency η. When W(R32) is 0.3, 0.4, 0.5 and 

0.6, η is 0.24, 0.285, 0.3, and 0.31, respectively. 

(3) COPexp increases significantly with the increased flow rates of chilled water and cooling water. When 

W(R32) is 0.4, COPexp increases by 22%. When W(R32) is 0.5 and 0.6, COPexp increases by 17% and 12%, 

respectively. 
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Fig. 1 Schematic of the theoretical cycle. 
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Fig. 2 T-S chart of the theoretical cycle. 
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Fig. 3 The ideal Lorenz cycle with temperature glide based on the proposed chiller. 
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Fig. 4 Schematic of the experimental setup. 

 

 

 

(a) TL,out=6 °C, TH,out=16 °C 

 

(b) TL,out=7 °C, TH,out=16 °C 
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(c) TL,out=7 °C, TH,out=17 °C 

 

 (d) TL,out=8 °C, TH,out=17 °C 

Fig. 5 Changes in COP due to varying the mass fraction of R32. 
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Fig. 6 Changes in the second law efficiency due to varying the mass fraction of R32. 
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(a) W(R32)=0.4 
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(b) W(R32)=0.5 
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(c) W(R32)=0.6 

Fig. 7 Changes in COP due to varying the flow rates of chilled water and cooling water. 
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Table 1 Basic properties of R32 and R236fa. 

Refrigerant 

 

Molecular formula 

 

Molar mass 

(kg kmol
-1

) 

NBP 

(°C) 

Tc 

(°C) 

Pc 

(MPa) 

ODP 

 

GWP 

 

R32 CH2F2 152.04 -50.7 78.1 5.8 0 675 

R236fa CF3CH2CF3 52.2 -1.44 124.9 3.2 0 6300 

 

Table2 Thermodynamic properties of R32/R236fa at different mass fractions of R32. 

W(R32) 0.3 0.4 0.5 0.6 

Evaporating pressure(MPa) 0.45 0.52 0.6 0.64 

Tb(
o
C) -1.9 -1.7 -1.6 -1.1 

Td (
o
C) 19.5 17.9 15.7 13.4 

Temperature glide (
o
C) 21.4 19.6 17.3 14.5 

Pc (MPa) 4.7 5.0 5.2 5.4 

Tc (
o
C) 104.1 99.2 94.7 90.8 

Molar mass(kg kmol
-1

) 96.4 85.9 77.5 70.6 

Latent heat capacity(kJkg
-1

) 219.29 233.92 248.37 262.26 

ODP 0 0 0 0 

GWP 4612 4050 3850 2925 

 

 

 

Table 3 Uncertainty of calculated values. 
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Calculated variable Uncertainty (%) 

Coefficient of performance 10.56 

Refrigerating capacity  9.56 

Second law efficiency  10.56 

Table 4 Changes in COP and second law efficiency with varying chilled water temperature and W(R32). 

W(R32) TH,out TL,out TH,in TL,in COPexp η COPth 

0.3 

14.0 6.0 19.2 10.6 2.81 0.236 4.09 

15.1 6.2 20.8 10.7 2.91 0.239 4.19 

16.1 7.1 21.8 11.8 2.98 0.239 4.28 

17.0 7.3 23.1 11.8 3.08 0.242 4.35 

17.2 8.1 23.1 13.0 3.14 0.240 4.45 

17.9 8.2 24.2 12.9 3.18 0.237 4.54 

0.4 

14.9 6.0 19.7 10.5 3.41 0.287 4.11 

16.0 6.1 21.2 10.5 3.51 0.288 4.31 

17.1 6.1 22.7 10.2 3.60 0.289 4.35 

15.9 7.0 20.6 11.8 3.52 0.283 4.35 

17.0 7.1 22.2 11.7 3.63 0.285 4.40 

18.0 7.1 23.8 11.3 3.71 0.284 4.49 

15.9 8.0 20.3 13.2 3.56 0.279 4.40 

17.0 8.0 21.8 12.9 3.62 0.277 4.49 

18.0 8.0 23.2 12.9 3.73 0.279 4.58 

0.5 15.0 6.0 19.6 11.4 3.58 0.301 4.28 

Page 21 of 22



22 
 

16.2 6.2 21.4 11.4 3.68 0.302 4.40 

17.0 5.9 22.8 10.7 3.76 0.302 4.49 

16.0 7.1 20.7 12.8 3.71 0.298 4.49 

17.0 7.1 22.2 12.5 3.78 0.296 4.56 

18.1 7.0 23.8 12.2 3.87 0.297 4.64 

16.1 7.9 20.3 14.2 3.77 0.295 4.56 

17.1 8.0 21.8 14.0 3.82 0.292 4.64 

18.2 8.1 23.3 13.9 3.89 0.291 4.70 

0.6 

14.9 5.8 19.7 11.1 3.82 0.321 4.46 

15.9 6.1 21.1 11.3 3.87 0.318 4.54 

16.9 5.9 22.5 10.8 3.93 0.316 4.61 

16.1 6.9 20.8 12.5 3.92 0.315 4.61 

16.9 6.9 22.1 12.1 3.97 0.311 4.73 

17.1 7.9 21.8 13.9 4.04 0.309 4.80 

18.0 8.1 23.0 13.9 4.11 0.307 4.89 
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