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Surprise disrupts cognition via a fronto-basal
ganglia suppressive mechanism
Jan R. Wessel1,2,3, Ned Jenkinson4,5, John-Stuart Brittain4, Sarah H.E.M. Voets4, Tipu Z. Aziz6 & Adam R. Aron3

Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is

unclear. Surprise recruits a brain mechanism that globally suppresses motor activity,

ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether

this suppressive mechanism extends beyond skeletomotor suppression and also affects

cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology)

in healthy participants and STN local field potentials in Parkinson’s patients during a task in

which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent

neural signal component that indexes action stopping in a stop-signal task. Importantly, the

degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN

activity is also increased post surprise, especially when WM is interrupted. These results

suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that

interrupts action. This motivates a new neural theory of how cognition is interrupted, and how

distraction arises after surprising events.
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S
urprising events often interrupt our ongoing train of
thought and lead to forgetting. By what mechanism does
this happen? Here, we test the hypothesis that surprising

events recruit a brain system for widespread suppression of both
ongoing motor and cognitive representations. We suppose this
brain system is the same one that is recruited by rapid motor
stopping, which implicates a fronto-basal ganglia network
including the pre-supplementary motor area1,2, the right
inferior frontal cortex3–6 and the subthalamic nucleus (STN) of
the basal ganglia7–9. The hypothesis that surprising events recruit
this same system to interrupt cognition (in this case, working
memory (WM)) is motivated by several observations.

First, a recent study10 showed that when surprising events
occur during a reaction time task, they induce motor slowing by
recruiting the same neural suppressive neural mechanism that is
recruited by outright motor stopping in a stop-signal task
(SST11). Second, the neural suppressive mechanism for outright
motor stopping in the SST has a broad effect on the skeletomotor
system: stopping one motor effector in the SST leads to
reductions of corticomotor excitability in other, task-unrelated
effectors, even those that are at rest12–15. Moreover, such broad
skeletomotor effects also occur after surprising events, consistent
with the fact that surprising events recruit the same suppressive
system as outright motor stopping10. Third, recent behavioural
studies have shown that motor stopping has effects even beyond
the motor system, as it affects stimulus value16 and WM
encoding17. On this basis, we surmise that the impact of
surprising events on cognition could relate, at least partially, to
the same broad neural suppressive mechanism that is actively
recruited to interrupt motor activity (e.g., in the SST).

To test this hypothesis, we developed a task in which WM
maintenance was occasionally interrupted by surprising events
(Fig. 1a). On each trial, participants encoded a string of
consonants into WM, maintained it across a delay, and were
then tested with a probe. Importantly, the WM probe was

preceded by a sound. On 80% of trials, a standard sine-wave tone
was played, with which the participants were familiar from
practicing the task before the main experiment. However, in
20% of trials of the main experiment, a surprising birdsong
segment was played instead of the standard tone. Behaviourally,
we predicted that WM accuracy would be reduced following
surprising tones. We further predicted that tones leading to WM
failures would be more surprising than tones that were followed
by correct WM probes.

We then tested whether the recruitment of the neural
suppressive mechanism underlying motor stopping could explain
WM failures following surprising events. Activity of this
neural suppressive mechanism can be assayed using scalp
electrophysiology (EEG) and local field potential (LFP)
recordings from structures deeper in the brain.

On the scalp, motor stopping is indexed by a fronto-central slow-
wave EEG signal component, whose timing correlates strongly with
the speed and success of stopping18, and whose neural generators
are independent of attentional or signal detection processes19. We
aimed to isolate this fronto-central component by comparing
successful to failed stop trials in an SST (which was performed by
each participant after completion of the WM task). We predicted
that surprising events in the WM task would recruit this same
fronto-central EEG signal component, and moreover, that the
recruitment of this component would be in proportion with the
degree of WM suppression (i.e., greater surprise-related activity in
the brain system indexing successful motor suppression would
coincide with greater WM suppression).

Intracranially, motor stopping is indexed by depth electrode
recordings from the STN in Parkinson’s disease patients: STN
activity is increased on successful versus failed stop trials9,20,21.
The STN specifically is thought to be a key node in the wider
stopping system22, and is perhaps responsible for the broad
motor suppression that has been observed in both the SST and
following surprise. This influence of the STN may putatively
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Figure 1 | Behavioural task details and results. (a) WM task diagram. (b) Stop-signal task diagram. (c) WM task, behavioural data from the behavioural

experiment. Left panel: WM accuracy by trial type. WM accuracy is reduced following surprising compared with standard tones (paired samples

t-test, N¼ 20, t(19)¼ 3.5, P¼0.0026 , d¼0.78). Right panel: Bayesian surprise values of surprising trials split by WM accuracy. Surprise is increased

for tones that interrupted WM (paired samples t-test, N¼ 20, t(19)¼ 2.14, P¼0.045, d¼0.77). Error bars denote s.e.m. (d) WM task, behavioural

data from the scalp-EEG experiment, description as in c (WM accuracy: paired samples t-test, N¼ 20, t(19)¼ 2.3, P¼0.033 , d¼0.49; increased

surprise for failed WM: paired samples t-test, N¼ 20, t(19)¼ 2.6, P¼0.019, d¼0.91).
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extend to the cognitive domain, thereby interrupting WM. Hence,
we predicted that surprising events in the WM task would lead to
increased STN activity. Furthermore, we predicted that increases
in surprise-related STN activity would correspond with more
WM failures.

Our results show that surprising events disrupt ongoing WM,
leading to lower accuracy on subsequent probes compared with
non-surprising events. Furthermore, very surprising events lead
to greater accuracy deficits than less surprising events. Our
scalp-EEG data show that surprise recruits the same independent
neural signal component that indexes action stopping in the
stop-signal task. Crucially, single-trial analyses show that
low-frequency activity of this brain mechanism mediates the
decremental effect of surprise on WM accuracy. Finally, the
STN-LFP data show that the STN is also recruited following
surprising events, and that its activity is greater the stronger the
negative impact of surprising events on WM. Together, these
results suggest that surprise interrupts cognition via the same
fronto-basal ganglia mechanism that interrupts action.

Results
Behavioural experiment. Twenty healthy volunteers performed
the WM task. On each trial, they encoded a letter string and held
it across a variable delay period, the end of which was announced
by either a standard or novel tone. Three-hundred millisecond
after the tone, participants were probed for WM accuracy.
As predicted, WM accuracy was reduced followed surprising
compared with standard tones, with medium-to-large effect size
(paired samples t-test, N¼ 20, t(19)¼ 3.5, P¼ 0.0026, d¼ 0.78,
Fig. 1c). WM accuracy for the 2,200 ms interval was 77.9% for
standard tones and 71.4% for novel tones; the significance test
was based on that interval (WM accuracy for the three other
intervals, which had standard tones only, was 75.1% for 1,700 ms,
76.5% for 2,700 ms and 75.3% for 3,200 ms). Furthermore, this
reduction was related to the degree of surprise. The fact that the
level of surprise wore off as the task progressed (even though all
birdsong segments were unique) allowed us to model the effect of

highly surprising compared with less surprising events. The level
of surprise was quantified trial-to-trial using a Bayesian algorithm
that compared the posterior probability of a surprising tone
(i.e., the probability of a surprising tone on all trials up onto
and including the current trial) with the prior expectation of a
surprising tone (i.e., the probability of a surprising tone on all
trials up onto – but excluding – the current trial) using the
Kullback–Leibler divergence (see Methods section). Based on the
model’s surprise values, we found that surprising tones that were
followed by erroneous probes were more surprising than those
preceding correct WM, also with medium-to-large effect size
(paired samples t-test, N¼ 20, t(19)¼ 2.14, P¼ 0.045, d¼ 0.77,
Fig. 1c), which shows that WM failures in this task were directly
related to the degree of surprise.

Source-level EEG experiment. We then tested whether a neural
suppressive process recruited by surprising events could explain
the WM failures. In 20 new healthy volunteers, we recorded EEG
for the WM task. We first replicated the behavioural pattern that
WM accuracy was reduced followed surprising compared with
standard tones (paired samples t-test, N¼ 20, t(19)¼ 2.3,
P¼ 0.033 , d¼ 0.49). WM accuracy for the 2,200 interval was
80% for standard tones and 75.4% for novel tones; the sig-
nificance test was based on that interval (WM accuracy for the
three other intervals, which had standard tones only, was 80.6%
for 1,700 ms, 81.3% for 2,700 ms and 81.7% for 3,200 ms). Again,
surprising tones that were followed by WM failures were more
surprising (paired samples t-test, N¼ 20, t(19)¼ 2.6, P¼ 0.019,
d¼ 0.91). After the WM task, in the same session, we also
recorded EEG during a version of the SST. In the SST (Fig. 1b),
on each trial, participants initiated a response, which they had to
try to rapidly stop if a visual stop signal occurred (this happened
on 33% of trials). The stop-signal delay was adjusted online
to ensure that stopping was sufficiently difficult23 and that
successful and failed stop trials were of equal frequency. The
behavioural pattern was typical for healthy young volunteers: The
probability of successful stopping was 0.5, owing to the online
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adjustment of the stop-signal delay. Correct-go reaction time
(RT) was 485 ms, and failed stop RT was significantly faster at
403 ms, as required by the race model of stopping11 (paired
samples t-test, N¼ 20, t(19)¼ 12.81, P¼ 8.5� 10� 11 , d¼ 2;
correct-go RT was greater than failed-stop RT in all participants).
Stop-signal reaction time (SSRT), which indexes the speed of the
stopping process, was 237 ms.

In this experiment, we specifically used independent compo-
nent analysis (ICA) to identify the brain source signal component
that indexes successful motor stopping in the SST. For present
purposes, we call this the ‘motor suppression-independent
component’ (MS-IC). We then aimed to investigate the activity
of this MS-IC in the WM task. To achieve this, we computed an
ICA on each participant’s combined EEG from both tasks (Fig. 2).
ICA decomposes the scalp-EEG mixture into its underlying
independent source signal components (ICs), each of which
represents an independent neural process that contributes to the
scalp-EEG mixture24.

Crucially, the ICA logic allows us to test whether motor
suppression in the SST and surprise-related activity in the WM
task are independent processes or not: if motor suppression in the
SST and surprise-related activity in the WM task are separable
brain processes generated by independent sources, ICA on the
combined data of both tasks will disentangle them into two
separate ICs. In this scenario, any IC that is exclusively related to
either motor suppression or surprise will show activity related to
only one of the two events (i.e., successful stopping in the SST or
surprising tones in the WM task). Conversely, any IC that is
selected based on its activity related to one task event (e.g.,
successful stopping) but also shows significant activity following a
different task event (e.g., surprising tones) must reflect activity of a
common, non-separable brain mechanism represented by the same
neural source (for other studies that use this inferential logic see
refs 10,25–29; for a review of the technique, see ref 29). It is
important to note that this is not a null hypothesis test: this logic
tests the alternative hypothesis that an independent component
selected based on one type of experimental event also shows
significantly increased activity following another, independent type
of experimental event. Furthermore, it involves a purely data-
driven procedure, in which an independent component is
identified based on one part of the data (SST), and then
investigated with respect to its activity on a separate part of the
data that was not part of the selection process (WM task). Lastly, it
allows us to test a specific hypothesis about the involvement of a
clearly circumscribed neural process, in the absence of any variance
related to processes that are unrelated to our a priori hypothesis.

To apply this logic to our data set, we identified one source-
level IC for each participant that represented the fronto-central
P3-ERP (event-related potential) induced by the stop signal in the
SST (see Supplementary Fig. 1 for complete ERP plots). Prior
research has shown that this ERP specifically indexes the motor
suppression process in the SST: its onset occurs in the precise
time window when motor suppression is implemented30,
correlates strongly with the speed of stopping (a large sample
of N¼ 62 revealed correlations between P3 onset and SSRT in
excess of r 40.618), and occurs earlier on trials on which stopping
is successful18,31. Furthermore, the neural generators of this
fronto-central component have been shown to be independent of
other neural processes that are involved in the stop-signal task,
such as those that reflect the attentional detection of the stop
signal19. We selected one IC per subject that reflected this ERP
(see Methods section), which we denote the MS-IC. To validate
our MS-IC selection, we ensured that the onset of these selected
source-level MS-ICs in our current data set showed the same tight
relation to the success of stopping as prior studies (Fig. 3). Indeed,
in line with prior studies18,31, the onset of the MS-IC P3-ERP

occurred significantly earlier on successful stop trials compared
with failed stop trials (paired samples t-test, N¼ 16, t(15)¼ 3.62,
P¼ 0.003, d¼ 0.77, Fig. 3b), and was positively correlated with
SSRT across participants (r¼ 0.36, P¼ 0.06, one-sided, Fig. 3c;
outliers were diagnosed based on Cook’s d41, no outliers were
present in the sample).

Following the MS-IC selection in each participant, we
investigated its activity in the WM task. Hence, all the following
analyses were performed on EEG source space, i.e., on
independent component activity instead of scalp channel activity.
We hypothesized, based on our prior study10 that the MS-ICs
would be engaged following surprising events, indicated by
increased 1–13 Hz activity within MS-ICs on surprising versus
standard tones. This was indeed the case here (Fig. 4a). Hence, in
line with our prior study10, we argue that the motor suppression
process indexed by the MS-IC is active following surprising
events (note that the MS-IC cannot reflect a process that is solely
related to the surprise or infrequency of the tones, as it was
identified based on its differential activity on successful versus
failed stop trials in the SST. Stop-signals are not surprising, and
successful and failed stop trials occur with equal frequency).

We then tested our main hypothesis of whether surprise-
related MS-IC activity was related to WM failure using a single
subject, single-trial general linear model (GLM). For each
surprising tone, we quantified (a) the degree of SURPRISE of
the tone derived from the Bayesian model (see Methods section),
(b) the WM accuracy on the subsequent probe (1¼ failure,
0¼ no failure) and (c) the SURPRISE�WM interaction (this
term has greater positive values if highly surprising tones are
followed by WM failure). This GLM was applied to every single-
trial sample point within the MS-ICs time–frequency source-level
EEG response in the interval between surprising tones and the
probe. This was done for all frequencies ranging from 1 to 24 Hz
and all sample points from 1 to 300 ms following the tone
individually. Standardized regression weights from these analyses
were tested against zero on the group level to identify sections of
the MS-ICs EEG that were significantly related to SURPRISE,
WM or the SURPRISE�WM interaction. This analysis showed
that delta-band (4 Hz) activity within the MS-ICs was positively
related to the SURPRISE�WM interaction (Fig. 4b): on trials in
which strong surprise was followed by subsequent WM failure,
delta-band activity within MS-ICs was increased followed
the surprising event. Supplementary Figure 2 shows that this
correlation was largely driven by activity on incorrect novel trials,
further supporting this association. No significant association
with SURPRISE or WM was observed.

These results suggest a chain of events, in which surprise elicits
delta-band activity in the MS-ICs, which in turn produces the
WM failure. We tested this possible chain of events using
a group-level mediation model (see Methods section; 6/20
participants did not have a sufficient number of trials for this
analysis, leaving N¼ 14). This analysis revealed that the influence
of surprise on WM was indeed positively mediated by delta-band
MS-IC activity (Fig. 4c). Put differently, the greater the amount of
surprise on a trial, the greater was the WM disruption, which was
mediated by EEG activity in the same brain system that is
recruited to stop motor processes. These results confirm our
earlier finding that a brain signature for outright motor stopping
is also recruited by surprising events10, but strikingly, go much
further by showing that the recruitment of this system leads to
disruption of WM. We next focused on the STN of the basal
ganglia.

Intracranial STN-LFP experiment. Several studies have shown
that outright motor stopping engages the STN9,20,21. As stated in
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the Introduction section, rapid motor stopping12–15, as well as
surprising events10, have a broad suppressive effect on motor
activity. We speculate that this broad suppressive effect could
relate to the putative broad impact of the STN on the
globus pallidus internus (GPi, also referred to as medial globus
pallidus)32,33. We conjectured that since surprising tones engage

the stopping system to interrupt WM (see above), surprise-related
WM failure could relate to recruitment of the STN. In particular,
we predicted that surprising tones evoke increased activity in
STN, and that surprising tones that recruit the STN more heavily
are more likely to be followed by WM failures, resulting in the
same trial-to-trial SURPRISE�WM interaction we observed for
the MS-IC in the scalp-EEG experiment.

To test this, we recorded LFPs from the STN during the WM
task from seven Parkinson’s disease patients who had depth
electrodes implanted in the right STN. In each patient, we
identified the contact that had the highest signal-to-noise ratio
across all frequency bands (1–100 Hz) by comparing the analytic
signal amplitude in the 300 ms following tone onset to a 100 ms
pre-tone baseline, independent of trial type (i.e., for all trials,
standards and surprising trials alike, see Methods section for
more details).

We then analysed the LFP response in STN in the same way as
the event-related spectral perturbation (ERSP) response of the
MS-ICs in the scalp-EEG experiment, but with a broader
frequency range (1–100 Hz), which included gamma activity. In
line with our scalp-EEG results and our hypothesis, STN activity
was increased following surprising events, notably in the delta
(1–4 Hz), beta (13–30 Hz) and gamma (430 Hz) frequency bands
(Fig. 4a). The same single-subject GLM analysis as in the
scalp-EEG experiment further showed that gamma-band activity
was significantly related to the SURPRISE�WM interaction, just
like the scalp MS-IC activity in the scalp-EEG experiment.
Furthermore, single-subject plots (Fig. 5) show that each
participant had significantly increased gamma-band activity in
the STN following surprising tones (middle column of Fig. 5),
and a significantly positive correlation with the SURPRISE�WM
interaction (right column of Fig. 5). These results show that, just
like the MS-IC scalp-EEG activity, LFP activity in the STN was
significantly increased following surprising events. Furthermore
and more importantly, just like the MS-IC scalp-EEG activity,
LFP activity in the STN was significantly increased when stronger
amounts of surprise lead to WM failure.

Discussion
We tested whether a putative fronto-basal ganglia suppressive
mechanism involved in motor stopping is recruited to interrupt
cognitive activity (here, specifically, verbal WM) following
surprising events. In a first experiment, we developed a
behavioural paradigm in which surprising events led to WM
failures. In a second experiment, we used source-level EEG to
isolate a brain component that (we argue) reflects motor
suppression in the SST. The results show that this same brain
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component was engaged when surprising events occurred during
WM maintenance, and they furthermore suggest that its activity
mediated the negative influence of surprise on WM. This was
further corroborated by the third experiment, where we recorded
LFPs through intracranial depth electrodes from the STN of the
basal ganglia. We showed that activity in this key subcortical node
of the motor suppression network was increased following
surprising tones across several frequency bands, including the
beta band, which has previously been proposed to be especially
important for motor suppression8,9,32. Furthermore, STN gamma
activity was increased when highly surprising tones were followed
by WM failure. This modulatory gamma-band activity occurred
within B150 ms following the tone, consistent with the timing of
the broad corticomotor suppression that also occurs at 150 ms
after surprising events10. We interpret these results as showing
that a fronto-basal ganglia neural suppressive mechanism that
broadly affects motor representations also affects cognition (here,
verbal working memory). These findings widen the scope of a
well-characterized neural system for motor suppression, provide
new links between the literatures on response inhibition, working
memory, surprise and attention, and also provide a mechanistic
account of one type of distraction.

A key question is whether the ‘motor stopping’ independent
component (MS-IC) we identified in the SST truly reflects
motor suppression, or rather low-level perceptual processing or
attentional detection. While all of these three candidate processes
are necessary for successful stopping in the stop-signal task, we
argue that the MS-IC specifically reflects the suppressive process,
i.e., the last process in this chain. This is based on the following
reasoning. First, the neural mechanism reflected in the MS-IC
cannot be low-level stimulus perception, since the MS-IC was
active following both visual stop-signals and unexpected tones,
which occurred in different sensory modalities. This leaves
higher-level attentional detection and response suppression as
candidate processes indexed by the MS-IC. The MS-IC was
selected from our stop-signal data to reflect a fronto-central slow-
wave (P3) potential, which has two key properties, as shown in
previous studies and the current study (see refs 18,31, and Fig. 3):
its onset occurs earlier for successful compared with failed stop
trials and it correlates with SSRT across subjects (SSRT marks the
end of the stopping process). Previous studies have also shown
that the onset of this fronto-central slow-wave component occurs
in the time period immediately preceding SSRT (i.e., 10–20 ms
before SSRT18). According to an influential model of the SST, this
very late timing is a key characteristic of the motor suppression
process30. Moreover, the late onset of this neural process in
relation to SSRT makes it difficult to conceive that an additional
process could realistically occur between this neural process and
SSRT. Yet this would be necessary if the fronto-central slow-wave
potential indexed attentional detection instead of motor
suppression, since in that case, the actual motor suppression

has yet to happen. Thus, these considerations strongly support
our assertion that the MS-IC represents motor suppression.
Further corroborating evidence comes from another study19,
which showed that the fronto-central slow-wave potential
explained gradual motor suppression in a complex visual stop-
signal task, while attentional detection of a stop-signal, on the
other hand, was indexed by a different independent signal
component (a posterior component with a spectral peak in the
alpha band). This shows that attentional detection maps onto
an independent process that is markedly different from the
fronto-central low-frequency potential we investigate in our
current study, and is likely explained by a more posterior process
with a different frequency characteristic (most likely in the
alpha-band33).

The foregoing argues that the MS-IC component reflects motor
suppression, and wider aspects of the data suggest the motor
suppression process is responsible for the cognitive interruption
observed here. Where does this leave stimulus-driven attention
and attentional re-orienting, which also surely occur after
unexpected tones in the WM task?34–37. To address this, we
consider the relative timing of the individual processes. It has
been shown that surprising tones can be perceptually detected in
sensory areas as early as 50 ms after tone onset38. Studies with
single-pulse transcranial magnetic stimulation (which has a time
resolution at the millisecond level) have shown that the
suppressive mechanism is active chronologically after this initial
stage of low-level perceptual detection, namely, around 150 ms
after the onset of the surprising tone10. Importantly, that study
also showed the suppressive effect was transient, i.e., suppression
was not observed at 175 or 200 ms post-tone. Therefore,
the timing of the suppressive mechanism occurs well-before
signatures of top-down attentional re-orienting, which usually
emerge around 250–300 ms after a surprising event39–41. Hence,
we propose the following model of how surprising events
influence behaviour and cognition: After the initial perceptual
detection of surprise (stimulus-driven attention, reflected in
activity of early sensory areas), suppression is broadly exerted on
both ongoing action and cognition (at least the verbal WM
form of cognition studied here). This momentary suspension
of ongoing cognitive and motor activity is then followed by
attentional re-orienting. We suppose the suppressive mechanism
has a useful function here, namely aiding the cognitive system to
initiate an interrupt. This could enable a disengagement from
ongoing motor and cognitive processes, in favour of enabling
the rapid processing and evaluation of the surprising event
(following an attentional shift). This model implies a quite
different perspective from usual on attentional re-orienting. Here,
re-orienting is only done after an interruption induced by a
suppressive mechanism. This fits a recent proposal that attention
is more of an effect than a cause42. More generally, this model
also has implications for understanding disorders of distraction,
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such as attention-deficit hyperactivity disorder (in which perhaps
the interruption is recruited too readily), and disorders of
cognitive inflexibility, such as Parkinson’s disease (in which
perhaps the interruption does not occur readily enough).

By what neurobiological mechanism did the putative-STN-
mediated response suppression system influence cognition in this
study? Much research suggests that motor suppression is
implemented via a hyperdirect pathway from frontal areas to
the STN of the basal ganglia, which then activates GPi and
suppresses thalamocortical drive43–46. The broad skeletomotor
suppression that occurs for outright stopping12–15 could reflect
the putative divergent innervation of the GPi by the STN, for
which there is some evidence from neuronal tracing studies47–49.
The engagement of this mechanism may also explain the broad
skeletomotor suppression that occurs after surprising events10.
Here, we show that surprising events also interrupt cognition
via the same brain mechanism. One possibility is that the

STN-mediated impact on GPi is so divergent as to also interrupt
WM information that is putatively maintained in the ‘associative’
cortico-basal ganglia loop50–52. We note however, that while this
theory fits speculation that the STN has a massive impact, being
at the ‘nexus of motor, limbic and associative processing’53–55,
there is no direct evidence to our knowledge that one part of the
STN can have such a divergent projection as to affect truly
different sectors of the GPi (i.e., motor and associative). Instead,
perhaps there is a divergent influence from STN to the motor
GPi, enough to interrupt all motor-related processing, including,
in this study, verbal WM, which is a form of cognition that is also
motor based, being dependent on the language system56. Another
possibility is that surprising events recruit several cortical areas
that then project to different sectors of the STN (motor and
associative), thus resulting in a broad suppressive effect (each one
of the projections to the STN could then result in a relatively
broad impact of that part of the STN on motor or associative
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sectors of GPi). Either way, our study provides evidence for a
functional recruitment of the STN by surprising events, and it
argues that this activity mediates the influence of surprise on
cognition, although we warrant that exactly how this is done
awaits further research. We also warrant that our hypothesis-
driven ICA approach was non-exhaustive, i.e., it does not provide
a complete picture of all commonalities and differences between
surprise processing and action stopping. Instead, we focused from
the outset on an IC that putatively reflects motor suppression,
and tested whether its activity mediates the influence of surprise
on WM. We acknowledge that there could be other surprise-
related processes that we did not investigate here, which could
further mediate or moderate this relationship. Still, our results
suggest that the same suppressive mechanism recruited to stop
action is recruited by surprise to disrupt WM. Future research is
necessary to provide a more complete picture of the neural
processes, and also to provide causal evidence that the putative-
STN-mediated effect is responsible for the WM decrement.

In summary, surprising events manifest the same brain
signature as outright stopping, and this mediates the effect of
surprise on WM. This suppressive mechanism could interrupt
thalamocortical processes in the same way it interrupts action,
and allow the cognitive system to disengage from both behaviour
and cognition. Such an interruption of ongoing cognition could
facilitate (or even be necessary for) attentional re-orienting. This
motivates a new neural systems theory of distraction, which is
grounded in a cortico-basal ganglia network that underlies motor
suppression, and can also affect cognition. These results broaden
the scope of a well-characterized neural system for suppression,
and they provide a critical link between response inhibition,
working memory, surprise, and attention.

Methods
Participants. Behavioural experiment. Twenty-one people (mean age 20.5 years,
s.e.m.: .37; two left handed; 14 female) participated in the behavioural experiment
for course credit. Written informed consent was collected from all participants, and
the study was approved by the UCSD Institutional Review Board.

Scalp-EEG experiment. Twenty-two people (mean age 23.2 years, s.e.m.: 1.73;
one left handed; 12 female) participated in the EEG experiment for $15 per hour.
Three participants (one behavioural, two EEG) were excluded because of
sub-chance performance on the WM task.

Intracranial STN-LFP experiment. Seven people with Parkinson’s disease (mean
age 63.3 years, s.e.m.: 2.03; one left handed; four female) participated in the STN
recording. It should be noted that participants were necessarily people with
Parkinson’s disease who had undergone neurosurgery. However, our aim was to
record LFPs in as near as normal state as possible. To this end, patients were tested
on their usual therapeutic medications (including dopamine replacement therapy)
to best normalize their motor (and cognitive) capabilities.

Working memory task. Each trial began with a string of consonants displayed in
lowercase Times New Roman font (2,000 ms). Then, a fixation cross appeared for a
maintenance interval (1,700, 2,200, 2,700 or 3,300 ms). Three-hundred millisecond
before the end of the interval, a sound was played (200 ms). The sound was either a
600 Hz sine-wave tone (standard), or a unique birdsong segment; taken from
ref. 10 (matched to the sine-wave in duration and volume). After the maintenance
interval, a second string of letters (probe) was presented (uppercase Helvetica font).
The probe was either the same as the first string (match), or one of the letters was
exchanged for another consonant (no-match; probability: 0.5). The position of the
exchanged letter was randomly drawn from a uniform distribution (however, the
first letter was always the same as in the initial string). Participants had 2,000 ms to
indicate whether the trial was a match or a no-match by pressing one of two keys.
If no response was made, the trial was counted as a miss and a ‘Too slow!’ message
was displayed for 800 ms. Trials ended with an inter-trial interval (400 ms).
Participants performed 180 trials in three blocks. Each block consisted of 12
standard trials (six match, six no-match) for each of the four delay interval
durations, as well as 12 surprising trials (six match, six no-match; overall
p(surprise)¼ 0.2). Surprising trials always occurred after a 2,200 ms interval.
Presenting all the surprising signals at the same time interval allowed us to employ
a time-interval condition (2,200 ms) with an equal probability of standard versus
novel trials, resulting in balanced trial numbers for all analyses presented in the
manuscript, while still maintaining a low relative overall probability of surprising
versus standard tones (0.2 versus 0.8), aided by the fact that participants could not
anticipate the length of the maintenance interval on every trial. All analyses were

conducted only on the surprising trials and the standard trials with the 2,200 ms
delay period (i.e., 36 surprising and standard trials per participant), so as to not bias
the behavioural analysis in case the task was is easier or harder at the 2,200 ms
compared with the other time intervals. The tones were played at a normal
conversational volume level, i.e., not loud enough to trigger a startle response.
Trials were randomized in each block, except that the first three trials were always
standard trials, and no two surprising trials could occur in immediate succession.

Before the experiment, the length of the string was determined in a training
period (4 blocks of 12 standard trials in the behavioural experiment, 8 blocks in
EEG); it was initially set to four (two for EEG). After each block of training, the
length was reduced by one in case WM accuracy (proportion of hits on matches,
proportion of correct rejections on no-matches) was below 60% for matches, no-
matches or both. If accuracy exceeded 80% for both matches and no-matches, the
length was increased. This was done in order to make the task sufficiently difficult,
but to avoid sub-chance performance.

Behavioural analysis. Paired samples t-tests were used to assess the influence of
trial type on WM accuracy. Surprise was quantified as follows:

Si ¼ log2
pnovel 1 . . . ið Þ

pnovel 1 . . . i� 1ð Þ

� �

This equation uses the Kullback–Leibler divergence between the posterior
probability of a surprising tone (pnovel 1 . . . ið Þ, i.e., the probability of a surprising
tone on all trials up onto and including the current trial) and the prior expectation
of a surprising tone (pnovel 1 . . . i� 1ð Þ, i.e., the probability of a surprising tone on
all trials up onto - but excluding - the current trial). This results in values between 0
and 1, except for the first surprising trials (value not defined), for which we set the
value to 1. (We assume here that individual birdsong segments were equally
surprising. This is certainly only approximately correct. What is important is that
the birdsong segments were of equal volume envelope and duration, and their
order was randomized across subjects.) We then compared these values for correct
and incorrect surprising trials using paired samples t-tests. Note that this variable is
calculated truly independently of behaviour and brain activity. Effect sizes were
expressed in units of Cohen’s d.

Stop-signal task. Trials began with a fixation cross (500 ms), followed by a left- or
right-ward arrow (go-stimulus). Participants had to respond as fast and accurately
as possible to the arrow using their right index or middle finger. On 33% of trials, a
stop signal occurred (the arrow turned from white to red) at a delay after the go-
stimulus (stop-signal delay, SSD). The SSD (initially 200 ms) was dynamically
adjusted (in 50 ms increments) to achieve a p(stop) of 0.5: after successful stops,
SSD was prolonged; after failed stops, it was shortened (independently for left- and
rightward go-stimuli). Trial duration was fixed (3,000 ms). Six blocks of 50 trials
were performed.

Scalp-EEG recording. EEG was recorded using a 64-channel system (BioSemi
Instrumentation, 512 Hz sampling rate), plus eight electrodes placed on the
bilateral mastoids and around the eyes, in a copper-shielded, sound attenuated
chamber. Stimuli were presented on a CRT-monitor (NEC FB2141SB). The data
were on-line referenced to the CMS-DRL reference, all reference-offsets were
kept below 25mV. Participants performed the WM task first and the SST second
(to not bias them towards using the stopping-network in the WM task).

EEG preprocessing. Data were preprocessed using custom routines in
MATLAB 2012a (MathWorks). ICA was performed using functions from the
EEGLAB toolbox57. Preprocessing was identical to our previous studies, see ref. 10
for details.

Selection of motor suppression-independent component. We recently showed
that the fronto-central source-level P3-ERP component time locked to the stop
signal is an index of the motor suppression process in the SST18. Hence, we selected
one component per participant that represented the neural source process
underlying this ERP. To do so, we first selected each component whose weight
matrix had its maximal rectified weight at one of the fronto-central electrodes
(Fz, FCz, Cz, FC1 and FC2). We then averaged those components’ back-projected
channel-space activity at these fronto-central electrodes within the 500 ms time
period following the stop signal, and correlated this event-related average activity
to the event-related average activity of the overall EEG data (i.e., the EEG data
based on the back projection of all non-artifact ICs for that participant) in that time
range. The component that showed the highest correlation with the overall ERP
was selected as the MS-IC.

Event-related spectral perturbation. We calculated the ERSP (i.e., the time–
frequency response) of the MS-IC following both surprising and standard trials
(1 to 50±0.5 Hz, linearly spaced) using the absolute of the Hilbert transform as an
analytic signal for each frequency (converted into %-change compared with a
500 ms pre-tone baseline). We tested this ERSP for significance on the group-level

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11195

8 NATURE COMMUNICATIONS | 7:11195 | DOI: 10.1038/ncomms11195 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


using individual t-tests of surprising versus standard trial activity at each time�
frequency sample point, resulting in 153� 50¼ 7650 individual tests. The
significance level of Po0.05, was corrected using the FDR method58 to a critical
P value of 0.0159.

EEG single-trial GLM analysis. To investigate the relation between the MS-IC
ERSP and SURPRISE, WM accuracy (and the SURPRISE�WM interaction) after
surprising tones, we constructed individual GLMs for each participant. WM
accuracy on each surprising trial was coded with 1 for misses or false alarms, and 0
for hits or correct rejections. Surprise was computed as above.

Both variables were de-meaned, and then their interaction was calculated by
multiplication. De-meaning controls for the fact that surprise and WM failure are
correlated, and results in a valid regression model (the variance inflation factor,
VIF, for each condition was below 10 in all participants except 3 [mean
VIF¼ 1.76]; excluding these three participants did not significantly alter the
results).

These three variables were used as regressors to model each individual
time� frequency sample point of the tone-related MS-IC ERSP on each surprising
trial. The standardized beta weights of these regression models were then tested for
significance on the group-level using individual Wilcoxon signed-rank tests from 0
for each time� frequency sample point. Again, this resulted in 7,650 tests; the
significance level of Po0.05 was FDR-adjusted to 0.0004.

EEG single-trial mediation analysis. To test whether the tone-related delta-band
MS-IC ERSP mediated between SURPRISE and WM, we performed a mediation
analysis for dichotomous outcome variables59,60. For this, we constructed two
logistic regression models for each participant. In one model, SURPRISE was
modelled onto each individual sample point of the tone-related MS-IC ERSP
at each delta-band (1–4 Hz) frequency (value ‘a’ in Baron & Kenny’s model).
In a second model, the single-trial MS-IC ERSP was modelled onto WM failure
(outcome variable) using a logistic regression. Crucially, this was done while
controlling for the effect of surprise on WM failure by including both the MS-IC
ERSP, as well as the surprise regressor into this model. The resulting regression
weights for the ERSP regressor denote value ‘b’ in Baron & Kenny’s model
(all parametric terms that went into these analyses were standardized to z-scores).

The mediating influence of the ERSP response of the MS-IC at each individual
time–frequency point is then expressed as the product of a� b (i.e., the mediation
effect or ‘indirect path’ in Baron & Kenny’s model). This product was generated
for each individual time–frequency point within 300 ms of the onset of the
surprising tone for all delta-frequencies in each individual participant. The
resultant values for the product of a� b were then tested against zero on the
group-level using Wilcoxon signed-rank tests (P¼ 0.05, one-sided to test for
significant positive mediation). This analysis was restricted to the previous
frequency range of interest (delta-band), on account of our very strong a priori
hypothesis based on the GLM and ERSP analyses. With regards to the time range,
we show the entire 300 ms post-tone time range in our plot (Fig. 4c) to avoid
complicating the display.

Six out of the 20 participants did not have a sufficient number of trials for a
valid logistic regression analysis (inclusion: minimum of five failed WM trials),
leaving a remaining sample of N¼ 14 for this analysis.

Intracranial data preprocessing. Individual electrode contacts were re-referenced
according to a dipolar nearest neighbour reference. Data were downsampled to
500 Hz, filtered between 0.5 and 100 Hz using zero-phase finite impulse response
filters, and visually checked for stretches of data with artifact contamination,
which were removed from further analysis. Based on visual inspection, we removed
between 22 and 53 s of data (out of B20 min) for each participant (mean: 35.4 s).

STN electrode contact selection. Six patients had four contacts in right STN,
while one had eight. For each participant, we selected the bipolar contact with the
highest signal-to-noise ratio across the entire ERSP frequency spectrum in the first
300 ms following the tone, regardless of trial type. To this end, the root mean
square of the absolute of the Hilbert transformed signal was quantified in the first
300 ms following tone onset, and was divided by the root mean square of the
absolute of the Hilbert transformed signal in the 100 ms before tone onset. The
contact with the highest ratio across all trials was selected for further analysis.

LFP data analysis. ERSPs were computed as for scalp-EEG above (with a broader
frequency spectrum of 1–100 Hz), thresholded for significance at Po0.05 on the
group level. For the individual subjects data figure (Fig. 6), significance at Po0.01
is displayed. The GLM analysis was also performed as it was for the scalp-EEG
(with a broader frequency spectrum of 1–100 Hz), thresholded for significance at
Po0.05.
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