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Abstract 

Spatial clustering is a powerful tool in mass spectrometry imaging (MSI), and has been demonstrated 

to be capable of differentiating tumour types, visualising intra-tumour heterogeneity, and segmenting 

anatomical structures. Several clustering methods have been applied to mass spectrometry imaging 

data but a principled comparison and evaluation of different clustering techniques presents a 

significant challenge. We propose that testing whether the data has a multivariate normal distribution 

within clusters can be used to evaluate the performance when using algorithms that assume normality 

in the data such as k-means clustering. In cases where clustering has been performed using the cosine 

distance, conversion of the data to polar coordinates prior to normality testing should be performed to 

ensure normality is tested in the correct coordinate system. In addition to these evaluations of internal 

consistency, we demonstrate that the multivariate normal distribution can then be used as a basis for 

statistical modelling of MSI data. This allows the generation of synthetic MSI datasets with known 

ground truth, providing a means of external clustering evaluation.  To demonstrate this, reference data 

from seven anatomical regions of an MSI image of a coronal section of mouse brain were modelled. 

From this a set of synthetic data based on this model was generated. Results of r
2
 fitting of the chi-

squared quantile-quantile plots on the seven anatomical regions confirmed that the data acquired from 

each spatial region was found to be closer to normally distributed in polar space than in Euclidean. 

Finally, principal component analysis was applied to a single dataset which included synthetic and 

real data. No significant differences were found between the two data types indicating the suitability 

of these methods for generating realistic synthetic data. 

  



Introduction 

 Data mining is a valuable tool in mass spectrometry imaging (MSI), where even a single 

image can contain more information than can be feasibly interpreted by a single person in a realistic 

timeframe. Often, a few m/z values or pixels of interest are selected for analysis based on known 

information about the sample. It is becoming increasingly clear however that simple univariate 

analysis is both impractical and does not take full advantage of the rich content of the data, and that 

multivariate analysis methods are increasingly important to effectively mine this data.
1-3

 One of the 

main tasks for which multivariate analysis is used in MSI is to segment different regions of an image 

for the purpose of diagnosis of diseases or to improve disease understanding, and to segment 

anatomical regions for comparison to histology in order to more fully understand the molecular 

composition of different anatomical regions.
4,5

  

Clustering techniques divide the dataset into classes and assign a single class label to each pixel and 

as such provide a clear categorisation of the data. However, the idea of a cluster of data is arbitrary, 

relying on the notion of “similarity” which can be formulated in many ways. There are many 

clustering techniques, each of which makes specific assumptions about the data, and will therefore 

categorise a given dataset very differently depending on the validity of the assumption.
6-11

 There is no 

a priori method for determining which method is appropriate for a given dataset. A further and very 

significant challenge to clustering in MSI is the size of the data itself, both in terms of the number of 

data points and the dimensionality. A number of different clustering algorithms have been applied to 

MSI data
1-3,5,12

, each of which makes specific assumptions about the properties of the data, and has 

inherent advantages and disadvantages.
1-3,5,12

 Due to its simplicity, relatively low computational 

requirements
7
, and wide availability in many different languages

2
, k-means clustering is one of the 

most popular algorithms for clustering in MSI.
2,13,14

 This can distinguish between anatomies within 

mouse brain tissue
13

, distinguish tumour margins
15

 and even intra tumour heterogeneity
4
. Given a set 

of spectra, k-means clustering aims to partition the n spectra into k sets so as to minimize the intra-

cluster sum of distances of each point in the cluster to its cluster centre. An illustration of the iterative 

process of k-means clustering is provided in Figure S1 in the Supporting Information. 



 

The distance metric used by the clustering algorithms to compare one spectrum to another 

(Figure 1), and any normalisation strategies applied to the data prior to analysis have a significant 

effect on the results. In MSI, there can be significant variations in the data that are derived from a 

number of different experimental sources. For example, variability in sample preparation
16

, and laser 

instability
17 

both introduce a source of non-biological variance within the data. Minimising these 

effects by normalisation is common but does not and cannot remove all non-biological variations.
18

 

Nevertheless, normalisation of the data, or pseudo normalisation achieved by the use of the cosine 

distance, reduce the effects of these variations, and thereby improve the clustering results. In the 

commonly applied TIC normalisation, each spectrum is normalised to have unit sum intensity (also 

referred to as l1 norm). The cosine similarity is also intensity-independent  and therefore  also has 

potential to reduce the impact of some of these variations on clustering performance (Figure 1b). 

Most applications of k-means clustering in MSI have used the Euclidean distance metric
2,13,14

, 

and where normalisation has been used, total ion count (TIC) normalisation is most common.
4,19

 Most 

attempts to evaluate clustering results in MSI have used manual examination or comparison to 

complimentary modalities such as histological analysis.
5
 Recently Oetjen et al. published a series of 

benchmark 3D datasets with histological information
20

; however the limited chemical information 

provided by histology means that segmentations do not always match chemical information provided 

by MSI.
4
  

There are many different methods for quantitatively evaluating the success of clustering, 

which can be divided into two types; internal and external. Internal evaluation uses the intrinsic 

properties of the clustering result, usually by comparing the data within each cluster to the data 

outside of the cluster.
21

 Previous attempts to evaluate clustering in MSI have used internal evaluation 

measures but these have proven inconclusive at best.
22,23

 External evaluation on the other hand 

compares the clustering results to known ground truths such that true and false positives and negative 

can be computed. Using this information, values such as sensitivity and specificity can be calculated 



alongside validation measures such as the Rand and Jaccard indices.
24

 Since the comparison is to 

known information there is no concern of bias towards a given algorithm or distance metric and so 

can be used as a method for accurately and reliably comparing and evaluating clustering algorithms or 

workflows. The main limitation of external evaluation is the need for a ground truth to compare 

against. Since MSI is generally used as an exploratory tool, usually on biological samples, most 

datasets will not have a ground truth and thus these external evaluations are usually not possible.
25 

One of the primary assumptions of the k-means clustering and other algorithms is that the data 

within clusters is normally distributed. Previously, in other fields, methods have been used to evaluate 

whether the data within clusters is normally distributed to evaluate the clustering performance
26

, or to 

determine whether to continue to divide clusters further
27,28

. By evaluating the degree of normality 

within the clusters, when clustering with an algorithm that assumes normality, it is possible to 

evaluate how well the data fits this assumption and thus how appropriate it is. For univariate data, 

normality testing is relatively straightforward, and there are a number of tests for normality such as 

Shapiro-Wilks
29

, Kolmogorov-Smirnov
30

, and Cramer-Von Mises
31

 tests. This is more challenging in 

multivariate data since there will be many dimensions each with different variance and means.
32

 It is 

possible to test for multivariate normality however using quantile-quantile plots.
33

 If the data is 

multivariate normal then the Mahalanobis distance will have a χp
2
 distribution.

34
 Therefore plotting 

the Mahalanobis distance from each pixel to its relevant distribution versus a χp
2
 distribution where p 

is the dimensions of the data will give a straight line if the data is multivariate normal. 

In this work we show how multivariate normality testing can be used to evaluate the 

appropriateness of difference distance metrics in k-means clustering. We also show how the 

multivariate normal model can be used as a basis for generating synthetic mass spectrometry imaging 

datasets, thereby providing samples with a ground truth against which to quantitatively evaluate 

multivariate analysis methods in MSI, as well as other computational analysis methods.  

Materials and methods 



Image acquisition; Coronal mouse brain was sectioned to 12 μm thickness and thaw mounted 

onto glass slides (Superfrost, Thermo Fisher Scientific, Waltham, MA USA), before being coated 

with α-cyano-4-hydroxycinnamic acid (CHCA) matrix (5 mg/mL, 80% MeOH 0.1% TFA ) using an 

automated pneumatic sprayer (TM-sprayer, HTX imaging, Chapel Hill, NC, USA). Matrix-assisted 

laser desorption/ionisation (MALDI) images were acquired using a Synapt G2Si (Waters, Manchester, 

UK), using a pixel size of 45 μm in both x and y, and an m/z range of 100-1200 Da. 

Data processing and analysis; Data processing was performed on an Intel Xeon quad core 

CPU E5-2637 v2 (3.50 GHz) with 64 GB of RAM. All data were converted from proprietary format 

to the mzML format using msconvert as part of ProteoWizard
35

 software then into imzML using 

imzMLConverter
36

. This was then imported into MATLAB (version R2014a and statistics toolbox, 

The Math-Works, Inc., Natick, MA, USA) using Spectral Analysis, an in-house mass spectrometry 

imaging software. k-means clustering was performed using the function kmeans from the Matlab 

Statistics toolbox using the parameters specified in the upcoming experiments and three replicates and 

random starting clusters. Normality testing was performed on the data within each cluster by plotting 

the squared Mahalanobis distance from each pixel to the distribution within its cluster against a chi-

square distribution with a number of degrees of freedom equal to the dimensions of the data.
33

 The 

Mahalanobis distance for the data within each cluster was calculated by first performing PCA, 

removing components with zero variance, and scaling such that each component has a standard 

deviation of 1; then calculating the squared Euclidean distance of each pixel to the mean of its 

assigned cluster.
37

 For data clustered using the cosine distance metric, data were first converted into a 

polar coordinate system, comprising of a distance from the origin r, and a series of angles from the 

origin θn-1 relative to each of the coordinate axes where n is the dimensionality of the data.
38

 The 

angles from the co-ordinate axes were then used to determine normality of the angular distribution. 

For creating the plots the Mahalanobis distance and chi-squared values were all rescaled to between 0 

and 1 in order to plot them all on a common axis. 

Synthetic data were generated using the following workflow; 



1. Convert the reference data to polar coordinates 

2. Test for normality of the reference data in polar coordinates using chi-squared quantile-

quantile plotting/ 

3. If the reference data is multivariate normal then calculate the means and covariances of 

the reference data in polar coordinates. 

4. Generate a set of synthetic multivariate normally distributed data with the mean and 

covariance of the reference data using the mvnrnd function in MATLAB 

5. Convert the synthetic multivariate normal data back to Cartesian coordinates 

6. Populate a spatial mask with the synthetic data 

Results and Discussion 

Two synthetic datasets were generated to simulate data that is normally distributed in 

Euclidean and polar coordinates respectively. Clustering was performed using k-means with both the 

Euclidean and cosine distances. Normality testing via quantile-quantile plots revealed that both 

synthetic datasets clustered well under the cosine distance, whereas the data distributed normally in 

polar coordinates did not cluster well when the Euclidean distance was used (Figure 2).  

k-means clustering was then performed on an MSI image from coronal mouse brain with k = 

2-10 , 7 clusters were then chosen based on visual assessment of the resulting images, along with 

comparison to the Allen brain atlas. When applied to an MSI image of a biological system (coronal 

mouse brain), the Chi squared quantile plots show that the data within clusters obtained using the 

cosine distance have a higher r
2
 value than the data within the clusters using the Euclidean distance 

(average r
2
 0.99 compared to 0.87 Figure 3 A and B). This means that the data in the clusters formed 

using the cosine distance are closer to normally distributed than the Euclidean distance. This indicates 

that the cosine distance is the more appropriate distance metric for cluster with on this dataset based 

on the multivariate normal assumption of the k-means algorithm. The inappropriateness of k-means 

with the Euclidean distance in this case mirrors the visually poor results obtained with respect to the 

anatomical features expected from coronal mouse brain as seen in the Allen brain atlas (Figure 3).
39

 In 



comparison the cosine distance gives visually clearer results, and the distribution of points within 

clusters are more normally distributed in the appropriate space. We note that use of the common TIC 

normalisation decreases the normality of the data, and does not produce visually clearer segmentation 

images (Figure 3c). The reason for this is that TIC normalisation rescales all data points such that 

they lie on the surface of a hyperdiamond  (lines of constant L1 norm). Thus, they are certainly not 

normally distributed as one dimension is condensed. They might be normally distributed if you 

consider only positions on the hypersurface. Results obtained from additional datasets (sagittal rat 

brain and mouse lung tissue) produce similar results with respect to comparison of normality to visual 

appearance of clustering results and are provided in the supplementary material (Figures S2 and S3). 

It is worth noting that the values produced from the r
2 
fitting cannot easily be directly interpreted, as it 

will be dependent on the number of data points, and the dimensionality of the data. Therefore it is 

recommended as a means to compare results, and caution should be taken when inferring additional 

information from them. 

It is also worth noting that the shape of the q-q plots are not completely linear, a feature that 

can arise form a number of different sources. For example, the presence of a few outliers will skew 

the distribution towards a sigmoidal shape as is observed when the cosine distance is used (Figures S4 

and S5). This is caused by the outliers skewing the mean of the data, and thus altering the 

Mahalanobis distance for every point. While this effect is minimised through the variance scaling 

process, some effect can still be observed. Alternately, a circular distribution of data with a core of 

normal data within produces a similar shaped, apparent bilinear plot to those observed when using the 

Euclidean distance (Figure S6). This is not indicative of two normally distributed sets of data however 

which produces a different shaped plot (Figure S8). For further examples of how other distributions of 

data will affect these plots see figures S4 to S12. However, we note that caution is required when 

generalising from these plots  from two dimensional data into the higher dimensional space in which 

MSI data sits. 

While distance metric determination is a crucial factor in any clustering algorithm, there are 

still many other parameters which must also be selected such as the number of clusters, and the 



method for centroid initiation. In addition to this, there are many other clustering approaches such as 

density based clustering which do not assume multivariate normality in the data. Therefore, a method 

to generate datasets with a ground truth is required to assess the suitability of these approaches and to 

permit a comparison of different clustering approaches. Data simulated from first principles is one 

approach that is used to achieve this in other fields. However, while some aspects of image formation 

and noise in MSI are well understood there are still a large number of unknowns in aspects such as 

sample preparation and ionisation.
40,41

 One approach is to take existing peak lists and to then simulate 

the known variables and apply these to this peak list.
42

 A robust method is needed however to 

generate peak lists that are well controlled, but still representative of the variance expected from 

biological samples. A new biological sample could be analysed each time a new set of spectra are 

required, but using new animal or human tissue each time a different number of regions or pixels is 

required is neither practical or ethical. In other areas such as financial prediction, and geological 

analysis, statistical modelling is used to convert discrete data into a continuous function, thereby 

allowing resampling to generate the desired number of data points. Statistical modelling assumes that 

data from a population are derived from a known probability distribution function. Provided that the 

model adequately describes the data, the underlying distribution can then be resampled to give a new 

synthetic dataset with any desired number of data points. This new synthetic dataset will have the 

same distribution as the original reference dataset that the model was derived from. For large and high 

dimensional data, model generation and parameter estimation can be challenging, however, the 

multivariate normal model parameters can be easily estimated even for very large data.
43

 As 

previously demonstrated, clustered MSI data closely approximates to a multivariate normal 

distribution when the data is converted to polar coordinates. This means that the multivariate normal 

distribution can be used as the basis for statistical modelling for MSI data. The small deviations from 

normal are most probably due to a few outlier pixels within the data, rather than a deviation from 

normal within the majority of the data itself. This is demonstrated by the similarity of the sigmoidal 

nature of the plot (Figure 3B) to that generated using simulated outliers  (Figures S4 and S5). This 

suggests that synthetic spectra generated in this way are representative of those observed in the real 



data, and thereby serve as a basis to introduce and explore additional experimental or instrumental 

variabilities in a controlled way. 

In order to perform statistical modelling of MSI data, a series of seven anatomical features 

from an MSI image of the previously shown mouse brain were used as a reference dataset (Figure 4). 

These regions were generated based on the analysis of selected ion images and PCA scores, in 

comparison to a high resolution optical image (Figure S13), and the Allen brain atlas.
39

 These datasets 

were then tested for normality in polar and Euclidean space using the chi-squared quantile plots 

shown previously and showed a high degree of normality throughout polar space but not Euclidean 

(Table 1). This suggests that the multivariate normal model can be used to summarise the properties 

of this data. From this model, a new synthetic dataset was generated by resampling from the 

distribution with the same number of pixels as the original reference data. The synthetic spectra from 

a number of the different anatomical regions were then visually compared to the original reference 

spectra (Figure 5). The synthetic and real spectra show a high degree of spectral similarity, and 

expected features such as isotope ratios and fragments are preserved, thus ensuring the realism of the 

synthetic data. Some differences in the spectra are observed, since the synthetic spectra are sampled 

from a distribution and will therefore contain the same underlying variance as the reference data. This 

is important since biological samples vary, and so in order to be realistic, the synthetic data must 

incorporate this variance. 

Visual comparison of the spectra is insufficient to evaluate datasets that will be analysed by 

multivariate methods. Therefore, in order to evaluate how closely the synthetic data matches real data, 

a new dataset, comprising of both synthetic and real spectra was generated. Principal component 

analysis was then performed on this combined dataset to determine if the statistical modelling process 

introduced any additional observable variance. No principal component scores were found to separate 

the synthetic from real data (Figure 6 and S14). This means that even when all mass channels are 

considered, the difference between the synthetic and real data is smaller than that between different 

anatomies or the spectral noise within the data and supports the suggestion that the differences from 

normal are likely to be outlier pixels. As such the statistical modelling of appropriately segmented 



MSI data using a multivariate normal distribution can generate realistic spectra in order to create new 

datasets with known ground truth for external evaluation of clustering in mass spectrometry imaging. 

 Large synthetic datasets can also be generated rapidly using this approach, by simply taking 

more samples from the multivariate normal distribution. To demonstrate this, a dataset containing 

nine times the number of pixels of the original reference data was generated (187,452 pixels from 

20,825 in the original). ). This represents this size of data from an area three times the size in each 

dimension, or if the image had been acquired with 15 μm rather than 45 μm pixels. These new data 

were generated in approximately 5 minutes, but it would have required around 36 hours to acquire the 

same number of pixels experimentally. PCA performed on a combined dataset containing the new 

larger dataset and the original reference data still shows no separation between the synthetic and real 

data, demonstrating that this approach scales to large datasets without any statistically detectable 

changes occurring in the data (Figure S15). While in both these cases the full seven regions were used 

to generate synthetic data, an image containing any desired number of regions can be generated using 

this approach, provided there is a suitable set of reference data. This means that the performance of 

different clustering algorithms or multivariate analysis methods can be evaluated with respect to the 

size and complexity of the data in terms of expected features. In addition, no new tissue sections are 

required, allowing the potential to minimise animal usage in computational studies in MSI. We note 

that the synthetic images appear more speckled than the reference data. This is because when 

populating the spatial masks with spectra, no spatial smoothing is applied and neighbouring pixels are 

statistically independent.  This could potentially be overcome by also maximising the similarity of 

neighbouring pixel, but for clustering evaluation this is unnecessary.   

Conclusions 

 Robust evaluation of clustering in MSI allows us to understand its limitations and what can be 

deduced from its results. In the case of k-means clustering and other algorithms that assume normality 

of the data (such as agglomerative hierarchical clustering with Ward’s linkage), we have shown that 

in the absence of ground-truth data, evaluation of multivariate normality in the intra cluster 



distributions is an internal test that can be used on MSI data to determine, post-analysis, whether 

clustering should be performed using the cosine or Euclidean distance. Where possible, external 

evaluation methods should be used when comparing novel algorithms or parameters, using a ground 

truth that is representative of samples of interest. We have demonstrated that synthetic data generated 

by statistical modelling is a suitable means to achieve this. In addition this approach allows large 

datasets to be generated rapidly allowing evaluation and comparison of both existing and new 

methods as the data increases in size.  
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5230-5236. 
(6) Estivill-Castro, V. SIGKDD Explor. 2002, 4, 65-75. 
(7) Hartigan, J. A.; Wong, M. A.  Appl. Stat. 1979, 100-108. 
(8) Jain, A. K. Pattern Recogn. Lett. 2010, 31, 651-666. 
(9) Birant, D.; Kut, A. Data Knowl. Eng.  2007, 60, 208-221. 
(10) Fu, L.; Medico, E. BMC Bioinf. 2007, 8, 3. 
(11) Choong, M. Y.; Kow, W. Y.; Chin, Y. K.; Angeline, L.; Teo, K. T. K. Control System, Computing and 
Engineering, Proceedings of the IEEE International Conference on, 2012, p 430-435. 
(12) Trede, D.; Schiffler, S.; Becker, M.; Wirtz, S.; Steinhorst, K.; Strehlow, J.; Aichler, M.; Kobarg, J. 
H.; Oetjen, J.; Dyatlov, A. Anal.Chem. 2012, 84, 6079-6087. 
(13) Race, A. M.; Steven, R. T.; Palmer, A. D.; Styles, I. B.; Bunch, J. Anal. Chem. 2013, 85, 3071-3078. 
(14) Alexandrov, T.; Becker, M.; Deininger, S. O.; Ernst, G.; Wehder, L.; Grasmair, M.; von Eggeling, F.; 
Thiele, H.; Maass, P. J. Proteome Res.2010, 9, 6535-6546. 
(15) Alexandrov, T.; Becker, M.; Guntinas-Lichius, O.; Ernst, G.; von Eggeling, F. J. Cancer Res. Clin. 
Oncol. 2013, 139, 85-95. 
(16) Goodwin, R. J.Proteomics 2012, 75, 4893-4911. 
(17) Steven, R. T.; Dexter, A.; Bunch, J. Methods 2016. 
(18) Deininger, S.-O.; Cornett, D. S.; Paape, R.; Becker, M.; Pineau, C.; Rauser, S.; Walch, A.; Wolski, E. 
Anal. Bioanal. Chem. 2011, 401, 167-181. 
(19) Abdelmoula, W. M.; Carreira, R. J.; Shyti, R.; Balluff, B.; van Zeijl, R. J.; Tolner, E. A.; Lelieveldt, B. 
F.; van den Maagdenberg, A. M.; McDonnell, L. A.; Dijkstra, J. Anal.Chem. 2014, 86, 3947-3954. 
(20) Oetjen, J.; Veselkov, K.; Watrous, J.; McKenzie, J. S.; Becker, M.; Hauberg-Lotte, L.; Kobarg, J. H.; 
Strittmatter, N.; Mróz, A. K.; Hoffmann, F. GigaScience 2015, 4, 1-8. 
(21) Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. In Data Mining, Proceedings of the IEEE 10th International 
Conference on; IEEE, 2010, pp 911-916. 
(22) Van de Plasa, R.; Ojedaa, F.; Dewile, M.; Van, L.; Den Bosche, B. D. M.; Waelkensbcd, E. 
Bioinformatics 2006. 
(23) Sarkari, S.; Kaddi, C. D.; Bennett, R. V.; Fernandez, F. M.; Wang, M. D. In Engineering in Medicine 
and Biology Society, Proceedings of the 36th Annual International Conference of the IEEE 2014, pp 
4771-4774. 
(24) Rand, W. M. J. Am. Stat. Assoc. 1971, 66, 846-850. 
(25) Garden, R. W.; Sweedler, J. V. Anal. Chem. 2000, 72, 30-36. 
(26) Mao, J.; Jain, A. K. Neural Networks, IEEE Transactions on 1996, 7, 16-29. 
(27) Hamerly, G.; Elkan, C. Adv. Neural Inf. Process. Syst. 2004, 16, 281. 
(28) Steinley, D. Br. J. Math. Stat. Psychol. 2006, 59, 1-34. 
(29) Shapiro, S. S.; Wilk, M. B. Biometrika 1965, 591-611. 
(30) Lilliefors, H. W. J. Am. Stat. Assoc. 1967, 62, 399-402. 
(31) Darling, D. A. Ann. Math. Stat. 1957, 823-838. 
(32) Goeman, J. J.; Van De Geer, S. A.; Van Houwelingen, H. C. J. R. Stat. Soc. Series B Stat. Methodol.  
2006, 68, 477-493. 



(33) Burdenski Jr, T. K. , Multiple Linear Regression Viewpoints, 2000., 2, 15-28 
(34) Healy, M. Appl. Stat. 1968, 157-161. 
(35) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. Bioinformatics 2008, 24, 2534-2536. 
(36) Race, A. M.; Styles, I. B.; Bunch, J. J. Proteomics 2012, 75, 5111-5112. 
(37) Mahalanobis, P. C. Proc. Natl. Inst. Sci. (Calcutta) 1936, 2, 49-55. 
(38) Kendall, M. G. A Course in the Geometry of n Dimensions; Courier Corporation, 2004. 
(39) Lein, E. S.; Hawrylycz, M. J.; Ao, N.; Ayres, M.; Bensinger, A.; Bernard, A.; Boe, A. F.; Boguski, M. 
S.; Brockway, K. S.; Byrnes, E. J. Nature 2007, 445, 168-176. 
(40) Ipsen, A. Anal. Chem. 2015, 87, 1726-1734. 
(41) Du, P.; Stolovitzky, G.; Horvatovich, P.; Bischoff, R.; Lim, J.; Suits, F. Bioinformatics 2008, 24, 
1070-1077. 
(42) Palmer, A. D. Information processing for mass spectrometry imaging. Ph.D Thesis, University of 
Birmingham 2014. 
(43) Xu, J. J. Retrospective Theses and Dissertations 1996, 3120.  



 

 

Figure 1. Visual representations of three of the distance metrics, a) Euclidean distance, b) cosine distance, and c) correlation. 

 

Figure 2. Simulated data of five clusters with normally distributed data (A, B), and angular normally distributed data (C, D), 

clustered using the Euclidean distance (A,D) and the cosine distance(B, C), with corresponding Chi squared quantile-

quantile normality plots below (E-H). 

  



 

Figure 3. Quantile-Quantile plot in a) Euclidean space b) ) angular space , and c) TIC normalised Euclidean space for the 

data within each of the 7 clusters of the coronal rat brain image segmented using a) Euclidean distance, b) cosine distance 

and c) Euclidean distance with TIC normalisation. 
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Figure 4. Seven anatomical regions used as reference data for statistical modelling, segmented based on a combination of 

comparison of a high resolution optical image (Figure S13) with selected ion images and PCA scores images along with 

comparison to the Allen brain atlas. 
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ID Region 

Polar 

Normality (r2) 

Euclidean 

normality (r2) 

1 Corpus callosum 0.983 0.822 

2 Outer boundary 0.983 0.904 

3 Olfactory areas 0.993 0.889 

4 Brain stem 0.988 0.854 

5 Caudoputamen 0.994 0.948 

6 Lateral septal complex 0.984 0.916 

7 Isocortex 0.990 0.680 
 

Table 1. Results of r2 fitting of the chi-squared quantile-quantile plots on the seven anatomical regions in Figure 4 showing 

that the data is closer to normal in polar space than in Euclidean.  

       

  



 

Figure 5. Top, real spectrum from the corpus callosum region of the reference data; bottom, synthetic data sampled from the 

multivariate normal distribution of the corpus callosum region, a high degree of spectral similarity is observed between the 

spectra 

  

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

1

2

3

4

5
x 10

4
In

te
ns

ity
 / 

co
un

ts

m/z

Real spectrum from Corpus callosum

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

1

2

3

4

5
x 10

4

In
te

ns
ity

 / 
co

un
ts

m/z

Synthetic spectrum from Corpus callosum



Figure 6.  Results of PCA on the combined dataset containing both real and synthetic data, with scores images on top and 

projection loadings plots on the bottom. No principal component was found to separate the real from the synthetic data, 

indicating that any variance in the data is from the inherent biological and experimental variance in the reference data rather 

than introduced by the statistical modelling. 
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