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Automorphisms of soluble groups

Paul Flavell

Abstract

Let R be a group of prime order r that acts on the r′-group G, let RG be the semidirect product
of G with R, let F be a field and V a faithful completely reducible F[RG]-module. Trivially,
CG(R) acts on CV (R). Let K be the kernel of this action. What can be said about K? This
question is considered when G is soluble. It turns out that K is subnormal in G or r is a Fermat
or half-Fermat prime. In the latter cases, the subnormal closure of K in G is described. Several
applications to the theory of automorphisms of soluble groups are given.

Let R be a group of prime order r that acts on the finite r′-group G and suppose V is a faithful
completely reducible module for RG, the semidirect product of G with R, over some field.
Trivially CV (R) is a module for CG(R). Let

K = ker (CG(R) on CV (R)) .

A natural question to ask is:
What can be said about K?

If the underlying field has characteristic r then a simple argument, see Lemma 6.1, forces
K = 1. In the contrary case, it may be that K 6= 1 and it is not a priori clear what form the
answer should take. A special case resolves the issue:

If G is soluble of odd order then K is subnormal in G.

The question now becomes:
Describe the subnormal closure of K in G.

This is the smallest subnormal subgroup of G that contains K.
The main result, Theorem A, accomplishes this when G is soluble. Roughly speaking, it

shows that the subnormal closure of K is not much more complex than K – so K is almost
subnormal in G. As can be seen from the corollaries, Theorem A unifies and extends previous
results of Glauberman and Thompson.

Throughout this paper, all groups considered are finite.

Theorem A. Let R be a group of prime order r that acts on the r′-group G. Assume
[G,R] is soluble. Let V be an RG-module, possibly of mixed characteristic, with V[G,R] faithful
and completely reducible.

Suppose

K ≤ ker (CG(R) on CV (R)) with K E CG(R)

and let L be the subnormal closure of K in G. Then

L = K[L,R]

and [L,R] is nilpotent.
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The author is indebted to the Leverhulme Trust for its support.



Page 2 of 28 PAUL FLAVELL

Write [L,R] = S × P with S a 2-group and P a 2′-group. Then

V = CV ([L,R])⊕ [V, S]⊕ [V, P ]

and all three summands are RL-submodules.
(a) Assume S 6= 1. Then r = 2n + 1 for some n ∈ N; S is a special 2-group; S = [S,R] =

[S,K]; S′ = CS(R); CK(S′) = CK(S); K/O(K) is not a 2-group and hence K is not
nilpotent. Moreover, [V, S]RS is completely reducible. If U is an irreducible submodule
of [V, S]RS then CU (R) = 0 and S/CS(U) ∼= 21+2n.

(b) Assume P 6= 1. Then r = (1/2)(pm + 1) 6= 2 for some prime p and m ∈ N; P is a special
p-group; P = [P,R] = [P,K]; P ′ = CP (R) = CK(P ); and K/CP (K) is an elementary
abelian 2-group. Moreover, [V, P ]RP is completely reducible. If U is an irreducible
submodule of [V, P ]RP then CU (R) 6= 0; U is an RKP -submodule; P/CP (U) ∼= p1+2m

and RK induces a semiregular cyclic group of order 2r = pm + 1 on the Frattini quotient
of P/CP (U).

Finally,

O(K) EEG.

Remarks.
– The phrase Let V be an RG-module, possibly of mixed characteristic, means V = V1 ⊕
· · · ⊕ Vn where for each i there exists a field Fi such that Vi is an Fi[RG]-module.

– Since K is R-invariant, so is its subnormal closure.
– Since [G,R] E RG, if V is irreducible then V[G,R] is completely reducible by Clifford’s

Theorem.

Corollary B (Thompson [13]). Let R be a group of prime order r that acts on the soluble
r′-group G. Let q be a prime.

(a) Oq(CG(R)) ≤ Oq,q′,q(G).
(b) F (CG(R)) ≤ F4(G).
(c) At least one of the following holds:

– Oq(CG(R)) ≤ Oq,F,q(G).
– q = 2; 2r − 1 is a power of a prime p and Oq(CG(R)) ≤ Oq,F,p,q(G).

The next corollary concerns the action of a direct product R×K on a group G. The basic
question being:

Suppose K acts trivially on CG(R). What can be said about the action of K on G?

Thompson’s P ×Q-Lemma was the first such result. This considers the case where R and G
are p-groups for some prime p and K is a p′-group. The conclusion is that K acts trivially on
G. Glauberman used his Character Correspondence Theorem to prove an analogous result in
the case that G is soluble with order coprime to |RK|, [6, Theorem 6].

Corollary C. Suppose R×K acts on the soluble group G where R has prime order r
and K and G are r′-groups. Assume that [CG(R),K] = 1.

(a) K acts nilpotently on G/F2(G) and trivially on G/F3(G).
(b) K2 acts nilpotently on G/F (G) and trivially on G/F2(G).
(c) Assume that K does not act nilpotently on G/F (G). Set P = [G/F (G),K;∞]. Then

r 6= 2; 2r − 1 is a power of a prime p; P is a special p-group; P = [P,R] and [P ′, RK] = 1.
(d) Set K∗ = K/CK(G/F (G)). Then K∗/F (K∗) is an elementary abelian 2-group. In

particular, K∗ is soluble.
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Remarks. In §1 there is a discussion of nilpotent action. The connection with Glauber-
man’s Theorem is as follows:

– Glauberman has the restriction (|K|, |G|) = 1. We have removed this restriction but
weakened the conclusion to nilpotent action rather than trivial action. Note that if
(|K|, |G|) = 1 then nilpotent action implies trivial action.

– Glauberman’s restriction that K be cyclic of prime power order has been removed.

Corollary D. Suppose R×K acts on the soluble group G where R has prime order r, K
and G are r′-groups and (|K|, |G|) = 1. Assume that CG(R) = CG(K). Then [G,K] = [G,R] ≤
F (G).

Corollary E. Let R be a group of prime order r that acts on the soluble r′-group G. Let
p be a prime and P ≤ Op(CG(R)). Assume that [CG(P ), R] = 1. Then [G,R] ≤ Op′(F (G)).

Although this paper is concerned with automorphisms of soluble groups, the original
motivation came from the author’s work on automorphisms of insoluble groups and the
Signalizer Functor Theorem. Indeed, it was Corollaries C(d) and E which were discovered
first and have applications in these areas.

An obvious goal for further work is to remove the solubility assumption in Theorem A. There
is evidence that this is attainable. Indeed, an important special case of Theorem A is when
CV (R) = 0. This leads to the configuration described in Theorem A(a). The same conclusion
follows from [5] without any solubility assumption.

We close the introduction with a generic example. First recall the following construction.
Let R be a subgroup of the group X and suppose L is a group on which R acts. Then there
exists a group L̃ on which X acts and enjoys the following properties: L̃ contains subgroups
L1, . . . , L|X:R| with

L̃ = L1 × · · · × L|X:R|;

the subgroups Li are isomorphic to L and permuted transitively by X; NX(L1) = R and L1 is
R-isomorphic to L. The group L̃ is the base group of the twisted wreath product of X with L.

Let R be a group of prime order r and let K be an r′-group on which R acts trivially. Let H
be an r′-group on which R acts fixed point freely, let F be a field with charF 6= r that contains a
primitive rth-root of unity and let U be a F[K]-module. Then U is in fact an F[R×K]-module
with R acting as scalar multiplication.

Let L = UK, so R acts on L. Put X = RH, h = |H| and let L̃ and L1, . . . , Lh be as defined
previously. Then L1 = U1K1 with K1 = CL1(R) ∼= K and U1 = [L1, R] ∼= U . Let {K1, . . . ,Kh}
be the X-conjugates of K1. Put

G = H(K1 × · · · ×Kh) and V = U1 × · · · × Uh.

Note that R is semiregular on {K2, . . . ,Kh} and on {U2, . . . , Uh}. Hence CV (R) ≤ U2 ⊕ · · · ⊕
Ur. Since CH(R) = 1 we have CG(R) = K1 × CK2×···×Kn(R) and CV (R) = CU2⊕···⊕Un(R). It
follows that

K1 = ker (CG(R) on CV (R)) .

It will be clear from the proof, how to construct examples that realize the exceptional
configurations described in the conclusions (a) and (b) of Theorem A.

Acknowledgements. Most of this research was done during a sabbatical at the Christian-
Albrechts-Universität Kiel. The author is indebted to Professors H. Bender and B. Stellmacher
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and their colleagues for their hospitality and stimulating conversations. The author also thanks
the referee for their careful reading of this article and suggestions for improvement.

1. Preliminaries – groups

Let G be a group. Then F (G), the Fitting subgroup of G is the largest nilpotent normal
subgroup of G. The higher Fitting subgroups of G are defined by F1(G) = F (G) and Fn+1(G) =
F (G mod Fn(G)), the inverse image of F (G/Fn(G)) in G.

Let q be a prime. Then Oq(G) is the largest normal p-subgroup of G and Oq′(G) is the
largest normal q′-subgroup of G. Moreover, Oq,q′(G) = Oq′(G mod Oq(G)) and Oq,F (G) =
F (G mod Oq(G)).

Define G2 by

G2 = 〈g2 | g ∈ G〉.

Then G2 is the smallest normal subgroup of G whose quotient is an elementary abelian 2-group.
Thus G′ ≤ G2. Recall that every group of exponent 2 is abelian.

If X and Y are subgroups of some group then [X,Y ] E 〈X,Y 〉. The higher commutators are
defined by

[X,Y ; 1] = [X,Y ] and [X,Y ;n+ 1] = [[X,Y ;n], Y ].

Then

. . . . . .E [X,Y ; 2] E [X,Y ; 1] E 〈X,Y 〉

and we define

[X,Y ;∞] =

∞⋂
n=1

[X,Y ;n].

Suppose that the group A acts on the group G. We abuse notation and let AG denote the
semidirect product of G with A. In particular, the commutator subgroup [G,A] is defined and
[G,A] E AG. By definition, A acts nilpotently on G if

[G,A;∞] = 1,

equivalently, since G is finite, if [G,A;n] = 1 for some n ≥ 1.

Lemma 1.1. Suppose the group A acts on the group G. Then A[G,A;∞] is the subnormal
closure of A in AG.

Proof. Use the fact that 〈XY 〉 = Y [X,Y ].

Theorem 1.2 [10, 4.24, p. 135 and 4.27, p. 137]. Suppose the group A acts nilpotently on
the group G. Then A/CA(G) and [G,A] are nilpotent.

We say that A acts coprimely on G if A acts on G; the orders of A and G are coprime; and
A or G is soluble. We use ∗ to denote a central product.

Theorem 1.3 (Coprime Action). Suppose the group A acts coprimely on the group G.
(a) Let N be an A-invariant normal subgroup of G and set G = G/N . Then CG(A) =

CG(A).
(b) G = CG(A)[G,A] and [G,A] = [G,A,A].
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(c) If G is abelian then G = CG(A)× [G,A].
(d) If [G′, A] = 1 then G = CG(A) ∗ [G,A].
(e) Suppose G is an extraspecial p-group and [G′, A] = 1. Then G = CG(A) ∗ [G,A]. If

CG(A) 6= G′ then CG(A) is extraspecial with CG(A)′ = G′. If [G,A] 6= 1 then [G,A] is
extraspecial with [G,A]′ = G′.

(f) If A acts nilpotently on G then A acts trivially on G.
(g) C[G,A](A) ≤ [G,A]′.
(h) Suppose N is an A-invariant normal subgroup of G with CG(N) ≤ N and [N,A] = 1.

Then [G,A] = 1.

Proof. (a), (b) and (c) are [10, 3.28, 4.28 and 4.34].
(d). We have [CG(A), G,A] ≤ [G′, A] = 1. Trivially [A,CG(A), G] = 1. The Three Subgroups

Lemma forces [G,A,CG(A)] = 1. Apply (b).
(e). Since G is extraspecial we have G′ = Φ(G) = Z(G) ∼= Zp. By (d), G = CG(A) ∗ [G,A].

Let H = CG(A) or [G,A]. Then

H ′ ≤ Φ(H) ≤ Φ(G) ∩H = Z(G) ∩H ≤ Z(H) ≤ Z(G) = G′ ∼= Zp.

Thus if H ′ 6= 1 then H is extraspecial and H ′ = G′. Suppose H ′ = 1. Then H = Z(H) ≤ G′.
If H = CG(A) then CG(A) = G′. If H = [G,A] then [H,A] = 1 and (b) implies [G,A] = 1.

(f) follows from (b) and (g) follows from (a) and (c).
(h). We have A ≤ CAG(N) = ACG(N) = A× Z(N). Then A is a characteristic subgroup of

CAG(N) because (|A|, |G|) = 1. As CAG(N) E AG we obtain AE AG, so [G,A] ≤ G ∩A = 1.

Lemma 1.4. Suppose A×K acts on the p-group P with A a p′-group, P = [P,A] and
[P ′, A] = 1. Set P = P/P ′.

(a) CP (K) = CP (K).
(b) CK(P ) = CK(P ).

Proof. (a). Let Q be the inverse image of CP (K). Now [K,Q,A] ≤ [P ′, A] = 1. Trivially
[A,K,Q] = 1. The Three Subgroups Lemma forces [Q,A,K] = 1, so [Q,A] ≤ CP (K). Now Q
is A-invariant so Coprime Action implies Q = [Q,A]CQ(A). Moreover, as P = [P,A] we have
CP (A) ≤ P ′. Thus Q ≤ CP (K)P ′ and then CP (K) ≤ CP (K). The opposite inclusion is trivial.

(b). Let K0 = CK(P ). Now (a), with K0 in the role of K, implies P = CP (K0)P ′ =
CP (K0)Φ(P ), whence P = CP (K0) and CK(P ) ≤ CK(P ) ≤ CK(P ).

Suppose the group A acts on the set X. The action is semiregular if xa = x implies a = 1
whenever a ∈ A and x ∈ X. The following elementary result will be used without reference.

Lemma 1.5. Suppose the group A acts on the setX. Assume that A = BC whereB,C ≤ A;
(|B|, |C|) = 1; and B and C act semiregularly on X. Then A is semiregular on X.

Suppose the group A acts on the group G. We abuse notation and say that the action is
semiregular if A acts semiregularly on G#, the set of nonidentity elements of G. Equivalently,
CG(a) = 1 for all a ∈ A#. Equivalently, AG is a Frobenius group with complement A and
kernel G.

Lemma 1.6. Suppose the group A acts on the group G 6= 1.
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(a) A is semiregular on G if and only if G = {[g, a] | g ∈ G} for all a ∈ A#.
(b) If N is a proper A-invariant normal subgroup of G and A is semiregular on G then A

is semiregular on G/N .
(c) Suppose A is a cyclic q-group for some prime q, A is nontrivial on G and G is an abelian

q′-group. Then A is semiregular on [G,Ω1(A)].
(d) SupposeG is a p-group for some prime p and A is semiregular onG/G′. ThenG = [G,A].

Proof. (a). Let a ∈ A#. The map g 7→ [g, a] is a bijection G −→ G if and only if CG(a) = 1.
(b). The property G = {[g, a] | g ∈ G} is inherited by G/N .
(c). This follows from Coprime Action. Note that [G,Ω1(A)] is A-invariant and recall that

Ω1(A) is the subgroup of A generated by elements of prime order.
(d). By (a) we have G = [G,A]G′. Since G is a p-group we have G′ ≤ Φ(G), whence G =

[G,A].

2. Preliminaries – modules

The reader is assumed to be familiar with the rudiments of Representation Theory. Let F
be a field and G a group. Then F[G] denotes the group algebra of G over F. All F[G]-modules
will be finite dimensional right F[G]-modules. Let V be an F[G]-module and H ≤ G. Then

VH

denotes V considered as an F[H]-module. If K is an extension field of F then the K[G]-module
V K is defined by

V K = V ⊗F K.

The following is elementary and will frequently be used without reference.

Lemma 2.1. Let F be a field, G a group and V an F[G]-module. Assume that G = AB
where A,B ≤ G; (|A|, |B|) = 1; and VA and VB are faithful. Then V is faithful.

Lemma 2.2. Let F ⊆ K be a field extension, G a group and V an F[G]-module.
(a) CV K(G) = CV (G)⊗F K.
(b) CV K(G) = 0 if and only if CV (G) = 0.
(c) Suppose V is faithful and irreducible. Then every irreducible submodule of V K is faithful.

Proof. Let e1, . . . , en be a basis for V . Then e1 ⊗ 1, . . . , en ⊗ 1 is a basis for V K. Let v ∈
CV K(G). Then v = λ1(e1 ⊗ 1) + . . .+ λn(en ⊗ 1) for some λ1, . . . , λn ∈ K. Let k1, . . . , km be an
F-basis for the F-subspace of K spanned by λ1, . . . , λn. Set

W = V ⊗ k1 + . . .+ V ⊗ km.
Then v ∈W . The sum is direct because k1, . . . , km are F-linearly independent. Each V ⊗ ki is
an F[G]-module, whence

v ∈ CW (G) = CV⊗k1
(G)⊕ . . .⊕ CV⊗kn

(G)

≤ CV (G)⊗F K.

Then (a) holds and (b) follows trivially.
Assume the hypotheses of (c) and let U be an irreducible submodule of V K. Set N = CG(U)

and suppose that N 6= 1. Now N E G and V is faithful and irreducible so CV (N) = 0. By (b),
CV K(N) = 0, a contradiction. We conclude that U is faithful.
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Theorem 2.3 (Generalized Maschke Theorem) [2, (12.6),(12.8),p. 39]. Let F be a field,
G a group and V an F[G]-module. Suppose H ≤ G, charF does not divide |G : H| and VH is
completely reducible. Then V is completely reducible.

Corollary 2.4. Let F be a field, G a group and V an F[G]-module. Assume charF does
not divide |G|.

(a) V = CV (G)⊕ [V,G].
(b) Let U be a submodule of V and set V = V/U . Then CV (G) = CV (G).

The preceding corollary is not valid without the assumption on the characteristic of F.
However, the following is true:

Lemma 2.5. Let A be a cyclic group, F a field, V an F[A]-module and U a submodule of
V . Then

dimCV (A) ≥ dimCV/U (A) ≥ dimCV (A)− dimU.

Proof. Since CV/U (A) ≥ (CV (A) + U)/U , the second inequality is clear. Let W be the
inverse image of CV/U (A) in V . Then [W,A] ≤ U . The Rank-Nullity Formula implies
dimCW (A) = dimW − dim[W,A] ≥ dimW − dimU = dimCV/U (A).

Let F be a field, G a group and V an F[G]-module. A system of imprimitivity for V is
a collection {V1, . . . , Vn} of nonzero subspaces of V such that V = V1 ⊕ . . .⊕ Vn and Vig ∈
{V1, . . . , Vn} for all i and g ∈ G. This gives a permutation representation of G on {V1, . . . , Vn}.
We say V is primitive if {V } is the only system of imprimitivity for V .

Suppose that N E G and V is irreducible. Let {V1, . . . , Vn} be the set of homogeneous
components of VN . Clifford’s Theorem asserts that {V1, . . . , Vn} is a system of imprimitivity
for V . Moreover, the permutation action of G on {V1, . . . , Vn} is transitive.

Recall that F[G] is itself an F[G]-module. If n ∈ N then

n× F[G]

denotes the direct sum of n copies of F[G]. Let V 6= 0 be an F[G]-module. The following are
equivalent:

– V is free.
– V ∼= n× F[G] for some n ∈ N.
– V possesses a G-invariant basis on which G acts semiregularly.
– V possesses a system of imprimitivity on which G acts semiregularly.

Visibly, if V is free then

dimCV (H) =
1

|H|
dimV

for all H ≤ G. In particular, CV (G) 6= 0.
We require a detailed knowledge of modules for cyclic groups. The following lemma is useful.

Lemma 2.6. Suppose I and J are nonzero ideals of the principal ideal domain D. Then

HomD(D/I,D/J) ∼=D D/(I + J).

Proof. We remark that we are regarding D/I and D/J as D-modules. Let i and j be
generators for I and J respectively. Let h be a GCD of i and j, which exists since I, J 6= 0.
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For each a ∈ D define fa : D/I −→ D/J by

(I + d)fa = J + a
j

h
d.

Trivially the map a 7→ fa is a D-homomorphism D −→ HomD(D/I,D/J) with kernel (h).
Now suppose f ∈ HomD(D/I,D/J). Choose x ∈ D with (I + 1)f = J + x. We have 0 =

(I + i)f = (I + 1)fi = J + xi so xi ∈ J . Then j | xi and so (j/h) | x(i/h). Now j/h and i/h
are coprime so (j/h) | x. Choose a ∈ D with x = a(j/h). Then f = fa. We deduce that
HomD(D/I,D/J) ∼=D D/(h). Since D is a principal ideal domain we have I + J = (h) and
the proof is complete.

Theorem 2.7. Let F be a field, A = 〈a〉 a cyclic group and V an F[A]-module.
(a) There exists l ≥ 0 and uniquely determined proper ideals I1 ⊆ . . . ⊆ Il of F[A] such that

V ∼= F[A]/I1 ⊕ . . .⊕ F[A]/Il.

(b) V is free if and only if I1 = . . . = Il = 0.
(c) V has a free direct summand if and only if I1 = 0.
(d) V has a free direct summand if and only if the minimal polynomial for a is X |A| − 1.
(e) dim EndF[A](V ) =

∑l
i=1(2i− 1) dimF[A]/Ii.

Proof. Let X be an indeterminate. The map X 7→ a extends to an F-algebra epimorphism
F[X] −→ F[A] with kernel (X |A| − 1). This endows V with the structure of an F[X]-module.
The Structure Theorem for Modules over a Principal Ideal Domain [11, Theorem14, p. 299]
implies there exists l ≥ 0 and uniquely determined proper ideals J1 ⊆ . . . ⊆ Jl of F[X] such
that

V ∼= F[X]/J1 ⊕ . . .⊕ F[X]/Jl.

Now X |A| − 1 annihilates V so (X |A| − 1) ⊆ Ji for all i. Also, F[A] ∼= F[X]/(X |A| − 1) and then
(a) follows. Then (b),(c) and (d) are trivial consequences of the uniqueness assertion in (a). To
prove (e) we apply Lemma 2.6 to give

EndF[X](V ) ∼=
⊕
i,j

HomF[X](F[X]/Ji,F[X]/Jj)

∼=
⊕
i,j

F[X]/(Ji + Jj)

∼=
⊕
i,j

F[X]/Jmax(i,j).

For each i there are 2i− 1 pairs (s, t) with i = max(s, t). Hence

dim EndF[X](V ) =

l∑
i=1

(2i− 1) dimF[X]/Ji.

The definition of the F[X]-module structure of V implies that EndF[X](V ) = EndF[A](V ).
Moreover, F[X]/Ji ∼= F[A]/Ii for each i. The proof is complete.

Corollary 2.8. Let F ⊆ K be a field extension, A a cyclic group and V an F[A]-module.
(a) V is free if and only if V K is free.
(b) V has a free direct summand if and only if V K has a free direct summand.

The following well known result illustrates many of the preceding ideas.
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Theorem 2.9. Let A be a cyclic group that acts semiregularly on the abelian group N .
Let F be a field and V an F[AN ]-module. Assume charF does not divide |N | and CV (N) = 0.
Then VA is free.

Proof. By Lemma 2.2 and Corollary 2.8 we may suppose that F is algebraically closed. Let
Ω be the set of homogeneous components of VN . By Maschke’s Theorem, VN is completely
reducible so VN = ⊕Ω and Ω is a system of imprimitivity for V . It suffices to show that the
action of A on Ω is semiregular.

Let U ∈ Ω, a ∈ A and suppose Ua = U . Now N is abelian, F is algebraically closed and U
is a homogeneous F[N ]-module. It follows that N acts on U by scalar multiplication. More
precisely, the image of N in GL(U) is contained in Z(GL(U)). Thus [N, a] is trivial on U . If
a 6= 1 then N = [N, a] by Lemma 1.6 and then U ≤ CV (N) = 0, a contradiction. Thus a = 1
and the proof is complete.

3. Primitive modules

We develop some techniques that are useful in the study of primitive modules. No great
originality is claimed. Recall that a p-group P is special if

1 6= P ′ = Φ(P ) = Z(P ).

Note that special groups are nonabelian. If in addition P ′ is cyclic then P is extraspecial. We
write P ∼= p1+2n to indicate that P is extraspecial with order p1+2n.

The following elementary fact will be used frequently: suppose x is an element of the group G
and [x, g] ∈ Z(G) for all g ∈ G. Then the maps g 7→ [x, g] and g 7→ [g, x] are homomorphisms.

Lemma 3.1. Let P be a group with Φ(P ) ≤ Z(P ). Then P ′ is elementary abelian. In
particular, if P is extraspecial then |P ′| = p.

Proof. Note that P ′ ≤ Φ(P ) ≤ Z(P ) so P ′ is abelian. Let x, y ∈ P . Now P ′ ≤ Z(P ) and
yp ∈ Φ(P ) ≤ Z(P ) so [x, y]p = [x, yp] = 1. Hence P ′ is elementary abelian.

Lemma 3.2. Let P be a p-group and suppose that Z(Φ(P )) ≤ Z(P ). Then Φ(P ) ≤ Z(P ).

Proof. Let P = P/Z(P ) and let N be the inverse image of Ω1(Z(P )). Let n and g denote
elements of N and P respectively. Since [N,P ] ≤ Z(P ) the map n 7→ [n, g] is a homomorphism
N −→ Z(P ). Then

[n, g]p = [np, g] ∈ [Z(P ), g] = 1.

Also the map θ : g 7→ [n, g] is a homomorphism P −→ Z(P ). Then Im θ ≤ Ω1(Z(P )), whence
Φ(P ) ≤ ker θ and we obtain

[N,Φ(P )] = 1.

In particular, N ∩ Φ(P ) ≤ Z(Φ(P )), so by hypothesis, N ∩ Φ(P ) ≤ Z(P ). Then Ω1(Z(P )) ∩
Φ(P ) = 1. As Φ(P ) E P and P is a p-group, this implies Φ(P ) = 1 and completes the proof.

We obtain an improvement on the well known fact [2, (24.7), p. 114].



Page 10 of 28 PAUL FLAVELL

Corollary 3.3. Suppose A acts coprimely on the p-group P . Assume P = [P,A] 6= 1 and
[Z(P ), A] = [Z(Φ(P )), A] = 1. Then P is special and P ′ = CP (A).

Proof. Since A is trivial on Z(Φ(P )) so is [P,A] = P . Hence Z(Φ(P )) ≤ Z(P ). The lemma
implies Φ(P ) ≤ Z(P ). By Coprime Action, CP (A) ≤ P ′. Then

Z(P ) ≤ CP (A) ≤ P ′ ≤ Φ(P ) ≤ Z(P )

completing the proof.

Lemma 3.4. Let F be a field, G a group and V a faithful primitive F[G]-module. Assume

F contains an |F (G)|th-root of unity. Then every abelian normal subgroup of G is cyclic and
contained in Z(G).

Proof. Since V is primitive it is irreducible, so Z(G) is cyclic. Let N be an abelian normal
subgroup of G. Clifford’s Theorem implies VN is homogeneous. Now N ≤ F (G) so F contains

an |N |th-root of unity. Then N acts as scalar multiplication, whence N ≤ Z(G).

Lemma 3.5. Let G be a group, p a prime and P E G a nonabelian p-group. Assume that
every abelian subgroup of P that is normal in G is cyclic and contained in Z(G).

(a) P ′ ≤ Φ(P ) ≤ Z(P ) and Zp
∼= P ′ = Ω1(Z(P )) ≤ Ω1(Op(Z(G))).

(b) If T is a p′-subgroup of G with [P, T ] 6= 1 then

P = CP (T ) ∗ [P, T ]

and [P, T ] is extraspecial with

[P, T ]′ = C[P,T ](T ) = P ′ = Z(P ) ∩ [P, T ].

Proof. (a). We have Z(P ), Z(Φ(P )) E G so Z(P ), Z(Φ(P )) ≤ Z(G). Then Z(Φ(P )) ≤
Z(P ) and Lemma 3.2 implies Φ(P ) ≤ Z(P ). The first assertion holds. Lemma 3.1 implies
P ′ is elementary abelian, so as Z(P ) is cyclic, the second assertion follows.

(b). By (a), [P ′, T ] = 1 so Coprime Action implies P = CP (T ) ∗ [P, T ]. Then

Z([P, T ]) ≤ Z(P ) ∩ [P, T ] ≤ Z(G) ∩ [P, T ] ≤ C[P,T ](T ).

Note that this implies [P, T ] is nonabelian so as |P ′| = p we have P ′ ≤ Φ([P, T ]) By Coprime
Action,

C[P,T ](T ) ≤ [P, T ]′ ≤ P ′ ≤ Φ([P, T ])

≤ Φ(P ) ∩ [P, T ] ≤ Z(P ) ∩ [P, T ] ≤ Z([P, T ]).

Equality follows, forcing [P, T ] to be special with [P, T ]′ = C[P,T ](T ) = P ′ ≤ Z(P ). Now Z(P )
is cyclic, so [P, T ] is extraspecial.

Lemma 3.6. Let P be a p-group. Suppose that

1 6= P ′ ≤ Φ(P ) ≤ Z(P )

and that P ′ is cyclic. Set P = P/Z(P ), let z be a generator for P ′ and define ( , ) : P × P −→
GF(p) by

[x, y] = z(x,y).
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(a) P is a GF(p)-vectorspace, ( , ) is a symplectic form on P and particular, dimP is even.
(b) Any automorphism of P that centralizes P ′ induces a symplectic transformation on P .

Let Q ≤ P .

(c) Q
⊥

= CP (Q).
(d) Rad(Q) = Z(Q).
(e) Q is abelian if and only if Q is totally singular.
(f) |CP (Q)| = |P : Q||Q ∩ Z(P )|.
(g) The following are equivalent: Q is nondegenerate; P = Q

⊥ ⊕Q; P = CP (Q) ∗Q;
Z(Q) ≤ Z(P ).

Proof. Since Φ(P ) ≤ Z(P ) it follows that P is elementary abelian and hence a GF(p)-
vectorspace. Lemma 3.1 implies P ′ ∼= Zp so ( , ) is well defined. A commutator calculation
shows that ( , ) is an alternating bilinear form. Note that if x, y ∈ P then [x, y] = 1 if and only
if (x, y) = 0. Then (c), (d) and (e) hold. Moreover Rad(P ) = Z(P ) = 1 so ( , ) is nondegenerate.
Then (a) holds and (b) follows readily.

Let Q ≤ P . Now dimQ
⊥

= codimQ whence |CP (Q)| = |P : Q| and (f) follows. The
verification of (g) is elementary.

As a simple application we have the following:

Corollary 3.7. Assume the hypotheses of Lemma 3.5. Then P/Z(P ) is a completely
reducible GF(p)[G]-module. Each irreducible summand possesses a G-invariant symplectic
form.

Proof. Adopt the notation of Lemma 3.6. Let Q be an irreducible submodule of P and
let Q be the inverse image of Q in P . Then QE G. Moreover, Q is either totally singular or
nondegenerate. In the former case, Q is abelian so, by hypothesis, Q ≤ Z(G) ∩ P ≤ Z(P ) and

Q = 1, a contradiction. Thus Q is nondegenerate. Then P = Q
⊥ ⊕Q. Now Q

⊥
is G-invariant,

so Q has a complement. It follows that P is completely reducible.

Lemma 3.8. Let G be a group and N E G. Assume that every abelian subgroup of N that
is normal in G is cyclic and contained in Z(G).

(a) F (N)/Z(N) is a completely reducible G-module, possibly of mixed characteristic.
(b) Suppose CN (F (N)) ≤ F (N). Then CN (F (N)/Z(N)) = F (N).
(c) Suppose CN (F (N)) ≤ F (N) and N is not nilpotent. Then there exists a prime p and a

nonabelian p-subgroup P ≤ N with P E G,

Zp
∼= P ′ ≤ Φ(P ) ≤ Z(P ) ≤ Z(G),

G acts irreducibly on P/Z(P ) and N acts nontrivially on P/Z(P ).

Proof. (a). Note that F (N)/Z(N) is G-isomorphic to the direct product of the groups
Op(N)/Z(Op(N)) as p ranges over the primes for which Op(N) is nonabelian. Apply
Corollary 3.7.

(b). Let C = CN (F (N)/Z(N)) E N . By (a), F (N)/Z(N) is abelian, so F (N) ≤ C. Now
[F (N), C] ≤ Z(N) ≤ Z(G) whence [F (N), C, C] = 1. Similarly [C,F (N), C] = 1. The Three
Subgroups Lemma forces [C ′, F (N)] = 1. Then C ′ ≤ CN (F (N)) = Z(F (N)) ≤ Z(G). In par-
ticular, C ′ ≤ Z(C) and C is nilpotent. Hence C ≤ F (N).

(c). By (b), N is nontrivial on F (N)/Z(N). Apply (a) and Lemma 3.5.
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Lemma 3.9. Let P be an extraspecial p-group.

(a) Suppose 1 6= QE P is elementary abelian. There are precisely p−1|Q| hyperplanes of
Q that do not contain P ′. The conjugation action of P/CP (Q) on these hyperplanes is
regular.

(b) Let F be a field with charF 6= p and V an F[P ]-module with V = [V, P ′]. Let T ≤ P .
Then

dimCV (T ) =

{
0 if P ′ ≤ T

|T |−1 dimV if P ′ 6≤ T.

Proof. (a). Let H be the set of hyperplanes of Q that do not contain P ′. A counting
argument shows that |H| = p−1|Q|. LetH ∈ H, soQ = P ′ ×H. Now [H,NP (H)] ≤ H ∩ P ′ = 1
whence NP (H) = CP (H) = CP (Q). Using Lemma 3.7(f) we have |HP | = |P : CP (Q)| = |Q :
P ′| = |H| whence HP = H and P/CP (Q) is regular on H.

(b). Since V = [V, P ′] we have CV (P ′) = 0. Hence if P ′ ≤ T then dimCV (T ) = 0. Suppose
P ′ 6≤ T . Then P ′ ∩ T = 1 since P ′ ∼= Zp. Moreover Φ(T ) ≤ Φ(P ) ∩ T = P ′ ∩ T = 1, so T is
elementary abelian. Set Q = P ′T = P ′ × T and adopt the notation of (a).

Now charF 6= p so VQ is completely reducible. If U is an irreducible submodule of VQ then
Q/CQ(U) is cyclic. As CV (P ′) = 0 we have CQ(U) ∈ H. Consequently

V =
⊕
H∈H

CV (H).

Since CV (P ′) = 0, a simple argument shows that this sum is direct. Now P is transitive on
H whence dimCV (H) = dimCV (T ) for all H ∈ H. Since |H| = p−1|Q| = |T |, the conclusion
follows.

4. Hall-Higman theory

A fundamental configuration that arises in group theory is the following: A is a cyclic group
that acts on a p-group P ; F is a field; V is a faithful irreducible F[AP ]-module and one of the
following holds:

– P is abelian and A is semiregular on P .
– P is extraspecial, A is semiregular on P/P ′ and [P ′, A] = 1.

The main issue being:
Describe the structure of VA.

The abelian case has already been considered. Theorem 2.9 asserts that VA is free.
The extraspecial case is more difficult. Let q = charF. This problem was first encountered

by Hall and Higman [8]. They considered the modular case, that is when A is a q-group.
Subsequently Shult [12] and Dade [9, Satz V.17.13, p. 574] considered the nonmodular case
when A is a q′-group. Carlip [4], generalizing the Hall-Higman argument removes the distinction
between these cases and requires only that A be cyclic and act irreducibly on P/P ′.

The result soon to be stated is a slight extension of Carlip’s. The proof differs from those of
Carlip and Hall-Higman in two respects. Firstly, Theorem 2.7 is used in place of Jordan Normal
Form. Secondly, an argument involving Theorem 2.9 replaces an argument involving enveloping
algebras and detailed properties of representations of extraspecial groups. The remainder of
the argument is similar to that of Hall-Higman and avoids the technical difficulties encountered
by Carlip. As a bonus, the argument is matrix free.
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Theorem 4.1. Let A be a cyclic group that acts on the extraspecial p-group P ∼= p1+2n.
Assume that A is semiregular on P/P ′ and trivial on P ′. Let F be a field and V an irreducible
F[AP ]-module with VP ′ faithful. Assume at least one of the following holds:

(i) F is algebraically closed.
(ii) F is a splitting field for P and EndF[AP ](V ) = F · 1.

(iii) F is a splitting field for P and VP is irreducible.

Then V is faithful, VP is irreducible, dimV = pn and there exists a 1-dimensional F[A]-module
U such that at least one of the following holds:

(a) |A| divides pn + 1 and

VA ∼=
(
pn + 1

|A|
− 1

)
× F[A]⊕ F[A]/U.

(b) |A| divides pn − 1, A does not act irreducibly on P/P ′ and

VA ∼=
(
pn − 1

|A|

)
× F[A]⊕ U.

Before proving this result, we derive some straightforward consequences.

Corollary 4.2. Assume the hypotheses of Theorem 4.1 and that F[A] is not a direct
summand of VA. Then |A| = pn + 1 and there exists a 1-dimensional F[A]-module U such that

VA ∼= F[A]/U.

Proof. Now dimV = pn > 1 so Theorem 4.1(b) cannot hold. Then Theorem 4.1(a) holds
and (pn + 1)/|A| − 1 = 0.

Corollary 4.3. Let the group A×K act on the extraspecial group P ∼= p1+2n. Assume
that A is semiregular on P/P ′; [P ′, AK] = 1; and (|A|, |K|) = 1.

(a) |A| divides pn + 1 or pn − 1. In the latter case, A is not irreducible on P/P ′.
(b) Suppose |A| = pn + 1. Then A is irreducible on P/P ′ and [P,K] = 1.

Proof. (a). Since A is semiregular on P/P ′ and P ′ = Z(P ) ∼= Zp it follows that P ′ is the
unique minimal normal subgroup of AP . Let V be an irreducible submodule of C[AP ] on which
P ′ is nontrivial. Then VP ′ is faithful. Apply Theorem 4.1.

(b). Since A is semiregular on P/P ′ it follows that A is a p′-group and that if U 6= 0
is a GF(p)[A]-submodule of P/P ′ then |U | > pn + 1. In particular dimU > (1/2) dimP/P ′.
Maschke’s Theorem implies that A is irreducible on P/P ′.

Let K be a minimal counterexample to the assertion that [P,K] = 1. Then CK(P ) = 1 and
K has prime order q. Lemma 1.6(d) implies P = [P,A] and Lemma 1.4 implies CK(P/P ′) = 1.
Now [A,K] = 1 so [P/P ′,K] is A-invariant. Irreducibility forces P/P ′ = [P/P ′,K]. Since P/P ′

is a p-group, it follows that q 6= p. Then K is semiregular on P/P ′. Now (|A|, |K|) = 1 so A×K
is semiregular on P/P ′ Applying (a) with A×K in the role of A, we have |AK| ≤ pn + 1. But
|A| = pn + 1, whence K = 1, a contradiction.

In order to prove Theorem 4.1, a number of preliminary results are required. The first is
often proved using the cumbersome theory of Projective Representations. We prefer Yoshida’s
elegant and concise proof [15].
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Theorem 4.4. Let G be a group, N E G, F a field and V an F[G]-module. Assume that:

– VN is homogeneous and EndF[G](V ) = F · 1.
– G/N is cyclic.
– F is a splitting field for N .

Then VN is irreducible.

Theorem 4.5 [2, (34.0), p.180]. Let P be an extraspecial group of order p1+2n. Let F be a
field with charF 6= p that is a splitting field for P . The faithful irreducible F[P ]-modules have
dimension pn. If U and V are two such modules then

U ∼=P V if and only if U ∼=P ′ V .

Lemma 4.6 [8, Lemma 2.5.3]. Let D and A be positive integers. Suppose (λi) is a sequence
of integers that satisfies

A ≥ λ1 ≥ λ2 ≥ . . . ≥ 0 and D =
∑

λi. (4.1)

Write D = mA+ r with m, r ∈ Z and 0 ≤ r < A. Then∑
(2i− 1)λi ≥ m2A+ (2m+ 1)r (4.2)

with equality if and only if

λ1 = . . . = λm = A, λm+1 = r and λm+2 = . . . = 0. (4.3)

Proof. We expand the argument given by Hall and Higman. Define a sequence (λi) satisfying
(4.1) to be mutable if there exists a sequence (λ′i) also satisfying (4.1), with λ′i = λi for all except
two values j and k of i. These must satisfy j < k, λ′j = λj + 1 and λ′k = λk − 1. Observe that∑

(2i− 1)λi >
∑

(2i− 1)λ′i.

Trivially, if (λi) satisfies (4.3) then equality holds in (4.2). Thus it suffices to assume (λi) is
immutable and show that (4.3) holds.

If possible, choose M maximal such that

λ1 = . . . = λM = A,

otherwise set M = 0. Then (4.1) and the choice of M imply

A > λM+1.

Suppose λs > 0 for some s ≥M + 2. Choose s maximal with this property. Define (λi) by

λ′i = λi for all i 6∈ {M + 1, s}, λ′M+1 = λM+1 + 1 and λ′s = λs − 1.

then (λ′i) satisfies (4.1), contrary to (λi) being immutable. We deduce that

λi = 0 for all i ≥M + 2.

Then D =
∑
λi = MA+ λM+1. As 0 ≤ λM+1 < A it follows that M = m and λM+1 = r,

completing the proof.

Proof of Theorem 4.1. Suppose (i) holds. Schur’s Lemma implies (ii) holds. Suppose (ii)
holds. Let W be an irreducible submodule of VP . Note that CV (P ′) = 0 since V is irreducible
and Vp′ is faithful. As Zp

∼= P ′ = Z(P ) it follows that W is faithful. Let a ∈ A. Then Wa is
also a faithful irreducible submodule of VP . As [P ′, a] = 1, Theorem 4.5 implies W ∼=P Wa. By
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irreducibility, V = 〈Wa | a ∈ A〉 so VP is homogeneous. Theorem 4.4 implies VP is irreducible,
so (iii) holds. Hence it suffices to prove the theorem under the hypotheses of (iii).

Since Zp
∼= P ′ = Z(P ) and A is semiregular on P/P ′, it follows that P ′ is the unique minimal

normal subgroup of AP . Now VP ′ is faithful, hence V is faithful. As Op(AP ) 6= 1, irreducibility
implies charF 6= p and then Theorem 4.5 implies dimV = pn. Moreover, as [P ′, A] = 1 we have
Z(AP ) = P ′.

Let E = EndF(V ). Without loss, AP ⊆ E and then the conjugation action of AP on E endows
E with the structure of an F[AP ]-module. For each H ≤ AP we have

CE(H) = EndF[H](V ).

Since VP is irreducible and F is a splitting field for P we have

CE(P ) = F · 1 = Z(E). (4.4)

Then P ′ = Z(P ) ≤ CAP (E). Also CAP (E) ≤ Z(AP ) = P ′ whence P ′ = CAP (E) and AP/P ′

acts faithfully on E .
We calculate dimCE(A) in two different ways. Since charF 6= p, Maschke’s Theorem implies

E = CE(P )⊕ [E , P ]. Theorem 2.9 implies [E , P ] is a free F[A]-module. Using (4.4) we obtain

dimCE(A) = 1 +
1

|A|
dim[E , P ] = 1 +

1

|A|
(
(dimV )2 − 1

)
. (4.5)

Theorem 2.7 implies there exist ideals I1 ⊆ . . . ⊆ Il of F[A] such that

VA ∼= F[A]/I1 ⊕ . . .⊕ F[A]/Il. (4.6)

For 1 ≤ i ≤ l set λi = dimF[A]/Ii and for i > l set λi = 0. Then

|A| ≥ λ1 ≥ . . . ≥ 0 and dimV =
∑

λi (4.7)

Theorem 2.7 implies

dimCE(A) =
∑

(2i− 1)λi. (4.8)

Choose m, r ∈ Z with

dimV = m|A|+ r and 0 ≤ r < |A|. (4.9)

Lemma 4.6, (4.5) and (4.8) imply

1 +
1

|A|
(
(dimV )2 − 1

)
=
∑
i

(2i− 1)λi ≥ m2|A|+ (2m+ 1)r. (4.10)

Multiplying by |A| and using (4.9) yields

|A|+m2|A|2 + 2m|A|r + r2 − 1 ≥ m2|A|2 + (2m+ 1)r|A|

and then

0 ≥ (r − 1)(|A| − (r + 1)). (4.11)

Now A is semiregular on the p-group P/P ′ so p does not divide |A|. Since dimV = pn it follows
from (4.9) that r ≥ 1. Then (4.9) and (4.11) imply r = 1 or |A| = r + 1.

Suppose |A| = r + 1. Then equality holds in (4.11). This forces equality in (4.10) and
Lemma 4.6 implies λ1 = . . . = λm = |A|, λm+1 = |A| − 1 and λm+2 = . . . = 0. Put U = Im+1,
so dimU = 1. Then VA ∼= m× F[A]⊕ F[A]/U and, since dimV = pn, (a) holds.

Suppose r = 1. Again we have equality and Lemma 4.6 implies λ1 = . . . = λm = |A|, λm+1 =
1 and λm+2 = . . . = 0. Put U = F[A]/Im+1, so dimU = 1. Then VA ∼= m× F[A]⊕ U . Now
dimV = pn so |A| divides pn − 1. Then (b) will hold provided we can show that A is not
irreducible on P/P ′.
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Assume that |A| divides pn − 1 and A is irreducible on P/P ′. Set W = P/P ′. Then W is
a faithful irreducible GF(p)[A]-module and dimW = 2n. Let F be the subring of EndF(W )
generated by A. Then A ⊆ F . Irreducibility implies F is a field and dimF W = 1. Then F ∼=
GF(p2n). Let F0 be the subfield of F with F0

∼= GF(pn). The multiplicative group of F is
cyclic. It follows that every subgroup of F× with order dividing pn − 1 is contained in F0, so
A ⊆ F0. But A generates F , a contradiction. This completes the proof of Theorem 4.1.

5. Free direct summands

Let R be a group of prime order r that acts on the r′-group G, let F be a field and V a
faithful F[RG]-module. An important special case of Theorem A is when CV (R) = 0. Indeed,
we then have ker (CG(R) on CV (R)) = CG(R). Trivially, if CV (R) = 0 then F[R] is not a direct
summand of VR. It turns out that determining the consequences of this latter condition present
no further difficulty. The goal of this section is to prove:

Theorem 5.1. Let R be a group of prime order r that acts on the r′-group G, let F be a
field and V an F[RG]-module. Assume the following:

– F[R] is not a direct summand of VR.
– V[G,R] is faithful and completely reducible.
– [G,R] is soluble.

Set P = [G,R] and C = CG(R). Then either:
(a) P = 1; or
(b) r = 2n + 1 for some n ∈ N; P is a special 2-group; CV (P ′) = CV (P ); P ′ = CP (R) and

CC(P ′) = CC(P ). Moreover if U is an irreducible submodule of VRP with P nontrivial
on U then P/CP (U) ∼= 21+2n.

We remark that in [5], the condition CV (R) = 0 is investigated without assuming [G,R] to be
soluble. It is possible to extend that work to remove the solubility hypothesis in Theorem 5.1.
The work of Berger [3], Güloǧlu and Ercan [7] and Turull [14] must also be mentioned in this
context.

Before proceeding with the proof of Theorem 5.1 we state a corollary which is a very slight
variation of known results, see for example [1, §36].

Corollary 5.2. Let R be a group of prime order r that acts on the soluble r′-group G.
Suppose that H is an RCG(R)-invariant subgroup of G with H = [H,R].

(a) Let p be a prime. If p = 2 and r is a Fermat prime assume that the Sylow 2-subgroups
of G are abelian. Then

Op(H) ≤ Op(G).

(b) If H = O2(H) then

O2(H) ≤ O2(G).

Lemma 5.3. Let A be a cyclic group, F a field and V an F[A]-module. The following are
equivalent.

(a) F[A] is a direct summand of V .
(b) The minimal polynomial of a generator of A is X |A| − 1.
(c) There exist submodules U ≤W ≤ V such that F[A] is a direct summand of W/U .
(d) For any extension K ⊇ F, K[A] is a direct summand of V K.
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(e) There exists an extension K ⊇ F such that K[A] is a direct summand of V K.
(f) There exists a system of imprimitivity for V on which A has a regular orbit.

Proof. The nontrivial implications follow from Theorem 2.7 and Corollary 2.8.

Throughout the remainder of this section we assume the hypotheses of Theorem 5.1.

Lemma 5.4. Assume P 6= 1.
(a) VRP is faithful.
(b) Every abelian normal subgroup of RP is contained in Z(RP ) ∩ P .

Proof. (a). By Coprime Action, P = [P,R] 6= 1. By hypothesis, VP is faithful so R is
nontrivial on V . Now R has prime order so VR is faithful. Since (|R|, |P |) = 1 we deduce
that VRP is faithful.

(b). Suppose 1 6= N E RP is abelian. We may assume N is a p-group for some prime p. If
p = r then as P is an r′-group and |R| = r, we have R = N E RP and so P = [P,R] ≤ P ∩R =
1, a contradiction. Thus p 6= r and N ≤ P . Now VP is faithful and completely reducible so it
follows that charF 6= p.

Assume [N,R] 6= 1. Corollary 2.4 implies V = CV ([N,R])⊕ [V, [N,R]]. Lemma 1.6(c) implies
R is semiregular on [N,R]. Theorem 2.9 implies [V, [N,R]]R is free, contrary to hypothesis. Thus
[N,R] = 1. Since P = [P,R] it follows that [N,P ] = 1, whence N ≤ Z(RP ) ∩ P .

Lemma 5.5. Assume P is a nontrivial p-group for some prime p.
(a) P is special and P ′ = CP (R).
(b) CV (P ′) = CV (P ).
(c) r = 2n + 1 for some n ∈ N and p = 2.
(d) If P is extraspecial then P ∼= 21+2n and [P,C] = 1.
(e) CC(P ′) = CC(P ).

Proof. Since VP is completely reducible it follows that p 6= charF. By Lemma 5.3 we may
assume that F is algebraically closed. By Coprime Action, P = [P,R] so Lemmas 5.4(b) and
Corollary 3.3 imply (a).

Let H be the set of homogeneous components of VP ′ . Now P ′ = Z(P ) ≤ Z(RCC(P ′)P ) so
each element of H is in fact an F[RCC(P ′)P ]-module. Moreover, V = ⊕H.

Let W ∈ H and set P ∗ = P/CP (W ). Then P ∗ = [P ∗, R] and F[R] is not a direct summand of
WR. The hypotheses of Theorem 5.1 are satisfied with P ∗ in the role of G. Trivially, P ∗′ = P ′∗

and R× CC(P ′) acts on P ∗.
Suppose P ′ is trivial on W . Then W = CV (P ′) and P ∗ is abelian and so not special. Hence

P ∗ = 1 by (a). Consequently CV (P ′) = CV (P ) and (b) holds. Trivially, [P,CC(P ′)] ≤ CP (W ).
Suppose P ′ is nontrivial on W . Then 1 6= P ′∗ = P ∗′. Since WP ′ is homogeneous and P ′

is elementary abelian we have P ′∗ ∼= Zp. By (a), P ∗ is special, so P ∗ is extraspecial. As
P ∗ = [P ∗, R] it follows that P ∗′ is the unique minimal normal subgroup of RP ∗. Let W0

be an irreducible submodule of WRP∗ . Then P ∗′ is nontrivial on W0 and so W0RP∗ is faithful.
Lemma 5.3 implies F[R] is not a direct summand of W0R. Using Corollary 4.2 and the fact
that R has prime order r, we obtain

r = 2n + 1 for some n, p = 2 and P ∗ ∼= 21+2n.

Corollary 4.3(b) implies [P ∗, CC(P ′)] = 1, whence [P,CC(P ′)] ≤ CP (W ).
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We have shown that

[P,CC(P ′)] ≤
⋂

W∈H
CP (W ).

Since V = ⊕H and VP is faithful we have [P,CC(P ′)] = 1 and (e) holds.
By (a), P is special so P ′ 6= 1 and there exists W ∈ H with P ′ nontrivial on W . Then (c)

holds. Suppose P is extraspecial. Then P ′ is the unique minimal normal subgroup of RP so
CP (W ) = 1 and P ∼= P ∗ ∼= 21+2n. Also, P ′ ∼= Z2 so CC(P ′) = C. Then (d) holds.

Corollary 5.6.

(a) [F (G), R] is a 2-group.
(b) If [G,R] is nilpotent then the conclusion of Theorem 5.1 holds.

Proof. (a). Let p be a prime and suppose [Op(G), R] 6= 1. Then Op([G,R]) 6= 1 so complete
reducibility implies p 6= charF. The hypotheses of Theorem 5.1 hold with Op(G) in place of G.
Apply Lemma 5.5

(b). Note that P = [G,R] E RG so by Coprime Action, [G,R] = [G,R,R] ≤ [F (G), R] so (a)
implies that P is a 2-group. Apply Lemma 5.5. Note that if U is an irreducible constituent of
VRP with P nontrivial on U then as P ′ ≤ Z(RP ) it follows that P/CP (U) is extraspecial.

Proof of Theorem 5.1. Assume false and consider a counterexample with |G|+ dimV
minimal. By Corollary 5.6, [G,R] is not nilpotent. Coprime Action and minimality imply
G = [G,R], so G = P and VG is completely reducible.

Let Z = Z(RG) ∩G. Clifford’s Theorem implies VZ is completely reducible. Each homo-
geneous component of VZ is RG-invariant. Minimality implies V is indecomposable since
otherwise, [G,R] would be nilpotent. Hence VZ is homogeneous. Now Z is abelian, so Z is
cyclic. Lemma 5.4 implies every abelian normal subgroup of RG is contained in Z.

Lemma 3.8(c), with RG and G in the roles of G and N respectively, implies there exists a
prime p and a nonabelian p-subgroup Q ≤ G with QE RG and Q/Z(Q) irreducible for RG
and nontrivial for G. Moreover Zp

∼= Q′ ≤ Z(Q) ≤ Z(RG).
Let Q0 = [Q,R]. Now G is nontrivial on Q and G = [G,R] so Q0 6= 1. Lemma 3.5(b) implies

Q0 is extraspecial. Note that Q0 is CG(R)-invariant. Set G0 = CG(R)Q0, so [G0, R] = Q0.
Now Q0 EEG and VG is completely reducible so Clifford’s Theorem implies VQ0

is completely
reducible. Lemma 5.5, with G0 in the role of G, implies r = 2n + 1 for some n, p = 2, Q0

∼=
21+2n and [Q0, CG(R)] = 1.

Let Q = Q/Z(Q) so Q is an irreducible GF(2)[RG]-module. Note that dimQ is even by
Lemma 3.6. Set G∗ = G/CG(Q) 6= 1. Irreducibility implies O2(G∗) = 1. Let G1 be the inverse
image of G∗′ in G. Then G1 6= G since G is soluble. Moreover [G1, R] E G1 E G so as VG is
completely reducible, so is V[G1,R] by Clifford’s Theorem. The minimality of G implies [G1, R]
is a 2-group. Consequently [G1, R]∗ ≤ O2(G∗) = 1, whence [G∗′, R] = 1. By Coprime Action,
CG∗(R) = CG(R)∗ so the previous paragraph implies

1 6= Q0 ≤ CQ(CG∗(R)) ≤ CQ(G∗′).

Since G∗′ E G∗, irreducibility forces CQ(G∗′) = Q, whence G∗′ = 1 and G∗ is abelian.

Theorem 2.9 implies QR is free. Then

r | dimQ and dim[Q,R] =

(
1− 1

r

)
dimQ.
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Recall that Q = Q/Z(Q). Lemma 3.5(b) implies Q0 ∩ Z(P ) = Q′0 so as [Q,R] = Q0
∼= 21+2n

we have dim[Q,R] = 2n. Also, dimQ is even and r = 2n + 1 is odd. Then 2r | dimQ and so

2n = dim[Q,R] ≥
(

1− 1

r

)
2r,

whence n ≥ r − 1 = 2n. This contradiction completes the proof of Theorem 5.1.

Proof of Corollary 5.2. Assume the result to be false and letG be a minimal counterexample.
If proving (b) then set p = 2. Let V be a minimal R-invariant normal subgroup of G, so V
is an elementary abelian q-group for some prime q. Let N be the inverse image of Op(G/V )
in G. The minimality of G implies that Op(H) ≤ N . Then q 6= p. In particular, Op(G) = 1
since otherwise we could have chosen V ≤ Op(G). Choose S ∈ Sylp(N), so N = V S. Then
CS(V ) ≤ Op(N) ≤ Op(G) = 1. Consequently V = CN (V ).

Note that Op(HV ) ≤ CG(V ) so the minimality G forces G = HV . Then CV (Op(H)) E G
so the choice of V implies that CV (Op(H)) = 1 or V . The latter is impossible as CN (V ) = V ,
whence CV (Op(H)) = 1. Note that V ∩H ≤ CV (Op(H)) so V ∩H = 1. This implies that H
acts faithfully on V since otherwise we could replace V with a minimal R-invariant normal
subgroup of G contained in CH(V ).

Since H is CG(R)-invariant, so is Op(H). Then [CV (R), Op(H)] ≤ V ∩Op(H) = 1 so
CV (R) ≤ CV (Op(H)) = 1. Regard V as an irreducible GF(q)[H]-module. Since G is a coun-
terexample, we have H 6= 1. Also H = [H,R] by hypothesis. Theorem 5.1 implies that r is a
Fermat prime and H is a nonabelian special 2-group. This is contrary to the assumptions of
(a). Also, O2(H) = 1, contrary to the assumption of (b).

6. The proof of Theorem A

Lemma 6.1. Let r be a prime, F a field of characteristic r, R an r-group, K an r′-group
and V an F[R×K]-module. Assume that [CV (R),K] = 0. Then [V,K] = 0.

Proof. Corollary 2.4 implies

V = CV (K)⊕ [V,K].

Note that [V,K] is a submodule. By hypothesis CV (R) ≤ CV (K) so C[V,K](R) = 0. This forces
[V,K] = 0 because R is an r-group and charF = r.

The next two lemmas are used when analyzing the imprimitive case of Theorem A.

Lemma 6.2. Let G be a group, F a field, V an F[G]-module and Ω a system of
imprimitivity for V . Suppose R,K ≤ G with R ∼= Zr for some prime r, K an r′-group and
K ≤ ker (CG(R) on CV (R)). Then

[⊕MovΩ(R),K] = 0.

Proof. Let x be a generator for R and suppose V0 ∈ MovΩ(R). For each i ≥ 0 set Vi = V0x
i.

Set W = V0 + . . .+ Vr−1 = V0 ⊕ . . .⊕ Vr−1. Choose 0 6= v0 = V0 and set

v = v0 + v0x+ . . .+ v0x
r−1 ∈ CV (R).

Note that v0x
i ∈ Vi for each i, so v 6= 0. Now [v,K] = 0 so K permutes the members of Ω into

which v projects nontrivially. Hence K permutes {V0, . . . , Vr−1}. An r-cycle in Sym(r) is self
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centralizing, so as K is an r′-group it follows that K normalizes each Vi. Then for each k ∈ K,

0 = [v, k] = [v0, k] + . . .+ [v0x
r−1, k]

and [v0x
i, k] ≤ Vi. Consequently [v0, k] = 0.

Lemma 6.3. Let G be a group that acts faithfully and primitively on the set Ω. Assume
F (G) 6= 1.

(a) Suppose 1 6= K ≤ G. Then |FixΩ(K)| ≤ (1/2)|Ω|. If equality holds then K is a 2-group.
(b) Suppose 1 6= K,R ≤ G and that MovΩ(R) ⊆ FixΩ(K). Then K and R are 2-groups.

Proof. (a). If FixΩ(K) = 0 there is nothing to prove, so assume FixΩ(K) 6= 0. Let N be a
minimal normal subgroup of G that is contained in F (G). Then N is elementary abelian and
acts regularly on Ω. In particular, |N | = |Ω| and |Ω| is a prime power.

Trivially CN (K) acts on FixΩ(K). We claim this action is regular. Let α, β ∈ FixΩ(K).
Choose n ∈ N with αn = β. Then K,Kn ≤ StabG(β) whence [K,n] ≤ StabG(β) ∩N = 1. The
claim follows. In particular

|FixΩ(K)| = |CN (K)|.

Now CN (K) 6= N since K 6= 1 whence |CN (K)| ≤ (1/2)|N |. This proves the inequality.
Suppose |FixΩ(K)| = (1/2)|Ω|. Then 2 divides |Ω| so |Ω| is a power of 2. Consider the

action of K on MovΩ(K). Since |FixΩ(K)| = (1/2)|Ω|, the inequality implies that this action
is semiregular. Consequently |K| divides |MovΩ(K)| = (1/2)|Ω|, so K is a 2-group.

(b). We have |MovΩ(R)| ≤ |FixΩ(K)| ≤ (1/2)|Ω| whence |FixΩ(R)| ≥ (1/2)|Ω|. Then (a),
with R in the role of K, forces equality. Another application of (a) implies R and K are
2-groups.

The next four lemmas relate to the primitive case of Theorem A.

Hypothesis 6.4.
– R×K acts on the extraspecial p-group P ∼= p1+2n.
– R has prime order r and K 6= 1 is an r′-group.
– [P ′, RK] = 1, P = [P,R] and [P,K] 6= 1.
– V is a faithful F[RKP ]-module with F an algebraically closed field whose characteristic is

not p or r.
– V = [V, P ′].
– [CV (R),K] = 0.

Lemma 6.5. Assume Hypothesis 6.4 and that K is cyclic and semiregular on P/P ′. Then
|K| = 2 6= p, r = (1/2)(pn + 1) and R×K is irreducible on P/P ′.

Proof. Replacing V by an irreducible submodule of V , we may assume that V is irreducible.
Note that R is semiregular on P/P ′ because R has prime order r 6= p and P/P ′ = [P/P ′, R].
Since K is an r′-group it follows that R×K is cyclic and semiregular on P/P ′.

Since [CV (R),K] = 0 we have

CV (RK) = CV (R).

On the other hand, for each A ≤ RK we have

dimCF[RK](A) = |RK : A|.
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Consequently, F[RK] is not a direct summand of VRK . Corollary 4.2, with RK in the role of
A, implies there exists a 1-dimensional submodule U ≤ F[RK] such that

VRK
∼= F[RK]/U , r|K| = pn + 1 and RK is irreducible on P/P ′.

Lemma 2.6, with F[RK] in the role of V , implies

|RK : A| ≥ dimCV (A) ≥ |RK : A| − 1

for each A ≤ RK. Then

1 ≥ dimCV (RK) = dimCV (R) ≥ |K| − 1.

whence |K| = 2, 2r = pn + 1 and p 6= 2.

Lemma 6.6. Assume Hypothesis 6.4.
(a) CK(P ) = 1.
(b) Assume further that K is a p′-group. Then K is semiregular on P/P ′.

Proof. (a). Let K0 = CK(P ) and suppose K0 6= 1. Now K0 E RKP and V is faithful
so CV (K0) is a proper submodule. Let W = V/CV (K0) so W is an F[RKP ]-module. By
hypothesis, CV (R) ≤ CV (K) ≤ CV (K0) so as charF 6= r, we have CW (R) = 0. Now V = [V, P ′]
so Zp

∼= Z(P ) = P ′ is nontrivial on W . Thus WP is faithful. By hypothesis, [P ′,K] = 1.
Theorem 5.1 implies [P,K] = 1, contrary to hypothesis. We deduce that CK(P ) = 1.

(b). We may assume that K has prime order q 6= p. Since K is faithful on P , Coprime Action
implies

P = CP (K) ∗ [P,K]

and [P,K] is extraspecial with [P,K]′ = P ′. Set P0 = [P,K] and note that P0 is R×
K-invariant. Now P = [P,R] so CP (R) = P ′, whence P0 = CP0

(R)[P0, R] = P ′0[P0, R] =
Φ(P0)[P0, R], so P0 = [P0, R]. Lemma 6.5, with P0 in the role of P , implies p 6= 2.

Note that CV (K) is RCP (K)-invariant. Set W = V/CV (K), so W is an F[RCP (K)]-module.
By hypothesis, CV (R) ≤ CV (K) so as charF 6= r we have CW (R) = 0. In particular, F[R] is
not a direct summand of WR.

Suppose CP (K) 6≤ P ′. Coprime Action implies CP (K) is extraspecial with CP (K)′ = P ′. As
V = [V, P ′] we have W = [W,P ′] so CP (K) is faithful on W . The same argument that proved
P0 = [P0, R] also proves that CP (K) = [CP (K), R]. Theorem 5.1, or a direct application of
Corollary 4.2, implies that CP (K) is a 2-group. But p 6= 2, a contradiction. We deduce that
CP (K) ≤ P ′. Coprime Action implies CP/P ′(K) = 1, completing the proof.

Lemma 6.7. Assume Hypothesis 6.4 and that K is a p-group. Then either:
(a) r = 2, p = 3 and [Z(CP (K)), R] ∼= Z3; or
(b) r = 3, p = 2 and [Z(CP (K)), R] ∼= Z2 × Z2.

Proof. Set P = P/P ′ and recall that the commutator map on P induces a symplectic form
on P , see Lemma 3.6. Set Q = CP (K) 6= P . Lemma 1.4 implies Q = CP (K). Since K is a

p-group we have 1 < Q < P . Now dimQ
⊥

= codimQ so Q
⊥ 6= 0. As Q

⊥
is K-invariant and K

is a p-group we have C
Q
⊥(K) 6= 0, whence Q ∩Q⊥ 6= 0 and Q is degenerate. Since Z(Q) is the

inverse image of Rad(Q) we have Z(Q) 6≤ P ′. Set T = [Z(Q), R]. Since CP (R) = P ′ we have
Z(Q) = P ′ × T and so T 6= 1.

Set W = V/CV (K). Then W is an F[RQ]-module. As CV (R) ≤ CV (K) and charF 6= r we
have CW (R) = 0. By Coprime Action, T = [T,R]. Note that T is abelian. Theorem 2.9, or
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Theorem 5.1, implies that T is trivial on W . Then [T, V ] ≤ CV (K) so [T, V,K] = 0. Trivially
[K,T, V ] = 0 so the Three Subgroups Lemma forces [V,K, T ] = 0. Lemma 3.9 implies

dim[V,K] ≤ 1

|T |
dimV. (6.1)

Choose x ∈ P \Q. Since Q = CP (K) we have [K,x] 6≤ P ′. Recall that P ′ = Z(P ) ∼= Zp.
Hence there exists y ∈ P with P ′ = [K,x, y]. Consequently P ′ ≤ 〈K,Kx,Ky,Kxy〉 and

V = [V, P ′] ≤ [V,K] + [V,Kx] + [V,Ky] + [V,Kxy],

so dimV ≤ 4 dim[V,K]. Then (6.1) implies |T | ≤ 4. Now 1 6= T = [T,R] and the conclusion
follows.

Lemma 6.8. Assume Hypothesis 6.4. One of the following holds:
(a) |K| = 2 6= p, r = (1/2)(pn + 1) and RK is semiregular and irreducible on P/P ′.
(b) K is a p-group, r = 2, p = 3 and [Z(CP (K)), R] ∼= Z3.
(c) K is a p-group, r = 3, p = 2 and [Z(CP (K)), R] ∼= Z2 × Z2.

Proof. If K is a p-group then (b) or (c) hold by Lemma 6.7, so assume K is not a p-group.
Let K0 6= 1 be a cyclic p′-subgroup of K. Lemmas 6.6 and 6.5 imply that |K0| = 2 6= p. Then
π(K) ⊆ {2, p}. Choose S ∈ Syl2(K). Then S has exponent 2 so S is elementary abelian.

Lemma 1.4 implies RK is faithful on P/P ′. Lemma 6.5 also implies that RK0 is irreducible on
P/P ′, hence so is RS. Now RS is abelian so it follows that RS is cyclic. Then |S| = 2. Burnside’s
Normal Complement Theorem implies K = SOp(K). As RK is faithful and irreducible on the
p-group P/P ′ we have Op(RK) = 1. Then K = S and (a) holds.

Next we analyze the minimal configuration that arises in the proof of Theorem A.

Lemma 6.9. Assume the following:
– R is a group of prime order r that acts on the r′-group G and [G,R] is soluble.
– F is a field and V is a faithful irreducible F[RG]-module.
– 1 6= K ≤ ker (CG(R) on CV (R)) and K E CG(R).
– G = 〈KG〉.

Then G = K[G,R] and one of the following holds:
(a) G = K and CV (R) = 0.
(b) CV (R) = 0, r = 2n + 1 for some n ∈ N, [G,R] is a special 2-group andK is not nilpotent.
(c) CV (R) 6= 0, r = (1/2)(pn + 1) for some prime p and n ∈ N, [G,R] ∼= p1+2n, [G,R]′ ≤

Z(RG) and |K| = 2.

Proof. Using Lemma 2.2 we may assume that F is algebraically closed. Since K 6= 1,
Lemma 6.1 implies charF 6= r. By Coprime Action, G = CG(R)[G,R]. Now G = 〈KG〉 and
K E CG(R) so G/[G,R] is equal to the image of K. Hence G = K[G,R].

Claim 1. Suppose CV (R) = 0 or [G,R] = 1. Then (a) or (b) holds.

Proof. Let S = [G,R]. If S = 1 then G = K ≤ CG(R), irreducibility forces CV (R) = 0 and
(a) holds. Hence we may assume that S 6= 1. Then CV (R) = 0. Theorem 5.1 implies r = 2n + 1
for some n ∈ N, S is a special 2-group CK(S′) = CK(S) and S′ = CS(R). Now S E RG so
S′ ≤ O2(CG(R)). As K E CG(R) we have [S′, O(K)] = 1. Then [S,O(K)] = 1.
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Suppose that K is nilpotent. It follows from G = KS and [S,O(K)] = 1 that G is nilpotent.
But G = 〈KG〉 so G = K ≤ CG(R) and S = 1, a contradiction. Thus K is not nilpotent and
(b) holds.

For the remainder of the proof, we assume

CV (R) 6= 0 and [G,R] 6= 1.

As CV (R) ≤ CV (K), irreducibility implies

K ∩ Z(RG) = 1.

Claim 2. V is primitive.

Proof. Assume false and let Ω be a minimal nontrivial system of imprimitivity for V . Let
RG be the image of RG in Sym(Ω). Then |Ω| ≥ 2 and RG is primitive on Ω. Lemma 6.2 implies

[⊕MovΩ(R),K] = 0.

In particular, MovΩ(R) ⊆ FixΩ(K).

If K = 1 then RG = R〈KG〉 = R whence V = ⊕MovΩ(R) and then [V,K] = 0, a contradic-
tion. Thus K 6= 1. Since (|R|, |K|) = 1, Lemma 6.3 forces R = 1. Then RG = K[G,R] = K, so
K is transitive on Ω. Moreover, R normalizes each element of Ω. As V = ⊕Ω and CV (R) 6= 0,
there exists U ∈ Ω with CU (R) 6= 0. But [CU (R),K] = 0 so K normalizes U , contradicting the
transitivity of K on Ω.

Claim 3. Suppose p is a prime and P E RG is a nonabelian p-group.
(a) P = CP (R) ∗ [P,R], [P,R] is an extraspecial p-group and [P,R]′ ≤ Z(RG).
(b) [CP (R),K] = P ∩K = 1.
(c) Hypothesis 6.4 is satisfied with [P,R] in the role of P .

Proof. Lemma 3.4 implies that every abelian normal subgroup of RG is cyclic and contained
in Z(RG). Then Z(P ) ≤ Z(RG). Now P is nonabelian so p 6= r and P ≤ G. Lemma 3.5 implies

P = CP (R) ∗ [P,R]

whence Z(CP (R)) ≤ Z(P ) ≤ Z(RG) and K ∩ Z(CP (R)) ≤ K ∩ Z(RG) = 1. Now K E CG(R)
so K ∩ P = K ∩ CP (R) E CP (R). As K ∩ P ∩ Z(CP (R)) = 1 and CP (R) is a p-group, it
follows that K ∩ P = 1. Moreover [K,CP (R)] ≤ K ∩ P = 1 so (b) holds.

Since P is a nonabelian normal subgroup of G and G = 〈KG〉 we have [P,K] 6= 1. Then
(b) implies [[P,R],K] 6= 1 and Lemma 3.5 implies [P,R] is extraspecial with [P,R]′ ≤ Z(RG).
Then (a) holds. Irreducibility implies V = [V, [P,R]′] so (c) holds.

Claim 4. Suppose [G,R] is nilpotent. Then conclusion (c) holds.

Proof. Choose p ∈ π([G,R]) and set P = Op([G,R]) E RG. Since [G,R] is nilpotent,
Coprime Action implies P = [P,R] 6= 1. Lemma 3.4 implies P is nonabelian. Suppose K is

a p-group. Set G = G/Op′([G,R]), so [P ,R] 6= 1. Now G = K[G,R] = 〈KG〉 so G is a p-group
and then G = K ≤ CG(R), a contradiction. Thus K is not a p-group.
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We apply Claim 3(c) and Lemma 6.8. Recall that P = [P,R]. Choose n with P ∼= p1+2n.
Then P ′ ≤ Z(RG), |K| = 2 6= p and r = (1/2)(pn + 1). In particular, p is uniquely determined
so [G,R] is a p-group, [G,R] = P and conclusion (c) holds.

In order to complete the proof, it suffices to assume that [G,R] is not nilpotent and derive a
contradiction. Lemma 3.8(c), with RG and [G,R] in the roles of G and N respectively, implies
there exists a prime p and a nonabelian p-subgroup P ≤ [G,R] with P E RG and P/Z(P )
irreducible for RG and nontrivial for [G,R]. Moreover Z(P ) ≤ Z(RG).

Claim 3 and Lemma 6.8 imply that one of the following holds:

|K| = 2 6= p and 2r − 1 is a power of p. (6.2)

K is a p-group, r = 2, p = 3 and [Z(C[P,R](K)), R] ∼= Z3. (6.3)

K is a p-group, r = 3, p = 2 and [Z(C[P,R](K)), R] ∼= Z2 × Z2. (6.4)

In particular, K is nilpotent.
Set P = P/Z(P ) and G∗ = G/CG(P ). By Claim 3, [P ,R] 6= 1 so P is a faithful irreducible

GF(p)[RG∗]-module. Claim3, Lemma 1.4 and Lemma 6.6 imply that K∗ ∼= K. By Coprime
Action, CG∗(R) = CG(R)∗ so K∗ E CG∗(R). Also by Claim 3, [CP (R),K∗] = 0. As Z(P ) ≤
CG(P ) we have |G∗| < |G| so we may apply induction, with P in the role of V . Note that
G∗ 6= K∗ since [G,R] is nontrivial on P . As K∗ is nilpotent, we deduce that

2r − 1 is a power of a prime q,

[G∗, R] is a special q-group,

[[G∗, R]′, RG∗] = 1 and |K∗| = 2.

Now RG∗ is faithful and irreducible on P so Op(RG∗) = 1 and then q 6= p. We deduce that
(6.4) holds. Let T = [Z(C[P,R](K)), R] so

T ∼= Z2 × Z2.

Note that CT (R) = 1 so as Z(P ) ≤ Z(RG) we have T ∼= Z2 × Z2 and CT (R) = 0. Note that
T is CG(R)-invariant since K E CG(R). Then T is CG∗(R)-invariant. Since (|R|, |CG∗(R)|) =
1, the structure of Aut(T ) implies CG∗(R) is trivial on T . But 1 6= [G∗, R]′ ≤ Z(RG∗) and
CP ([G∗, R]′) = 0 by irreducibility. This contradiction completes the proof of Lemma 6.9.

It is now straightforward to complete the proof of Theorem A. Before doing so, we prove a
simple lemma.

Lemma 6.10. Suppose the group R acts coprimely on the p-group P 6= 1 and that V
is a faithful completely reducible RP -module, possibly of mixed characteristic. Assume that
P = [P,R] and that P/CP (U) is special with (P/CP (U))′ = CP/CP (U)(R) whenever U is an
irreducible submodule of V . Then P is special and P ′ = CP (R).

Proof. Let U be an irreducible submodule of V . Now Φ(P ) maps into Φ(P/CP (U)) =
Z(P/CP (U)) whence [Φ(P ), P ] ≤ CP (U). Moreover Z(P ) maps into Z(P/CP (U)) =
CP/CP (U)(R) so [Z(P ), R] ≤ CP (U). Since V is faithful and completely reducible we obtain

P ′ ≤ Φ(P ) ≤ Z(P ) ≤ CP (R).

Now P = [P,R] so Coprime Action implies CP (R) ≤ P ′, completing the proof.

Proof of Theorem A. Since L is the smallest subnormal subgroup of G that contains K
it follows that L is R-invariant and that L = 〈KL〉. Set D = [L,R]. By Coprime Action, L =
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CL(R)D so as K E CG(R) we obtain L = 〈KD〉 = K[D,K]. Then D = [L,R] ≤ [D,K]. To
summarize:

D = [D,K] = [D,R] and L = KD.

Now V = Vr ⊕ Vr′ where Vr and Vr′ are the sums of RG-modules whose fields of definition
have characteristics r and not r respectively. Lemma 6.1 implies K is trivial on Vr. Then so is
L because L = 〈KL〉. The theorem describes the structure of L, so we may assume V = Vr′ .

Since D = [L,R] E LEEG we have D EE [G,R]. Clifford’s Theorem implies VD is com-
pletely reducible. As V = Vr′ , Maschke’s Theorem implies VRD is completely reducible. Let V
be the set of irreducible submodules of VRD on which D is nontrivial. Set

V0 = {U ∈ V | CU (R) = 0},
V1 = {U ∈ V | CU (R) 6= 0},

V0 =
∑
V0 and V1 =

∑
V1.

Then D is faithful on V0 ⊕ V1. Now [K,R] = 1 so K normalizes RD and hence permutes V0

and V1. As L = KD we see that V0 and V1 are RL-modules. Moreover

V = CV (D)⊕ V0 ⊕ V1.

Suppose U ∈ V1. Now 0 6= CU (R) ≤ CU (K) and K permutes V1. It follows that K normalizes
U . Then, as L = KD, that U is an RL-module. Lemma 6.9 implies D/CD(U) is nilpotent of odd
order. Complete reducibility implies that D/CD(V1) is nilpotent of odd order. Now CV0

(R) = 0
so Theorem 5.1 implies D/CD(V0) is a 2-group. It follows that D = CD(V1)× CD(V0), that
CD(V1) is a 2-group and that CD(V0) has odd order.

Recall the definitions of S and P in the statement of Theorem A. Then S = CD(V1), P =
CP (V0), V0 = [V0, S] = [V, S], V1 = [V1, P ] = [V, P ] and

V = CV (D)⊕ [V, S]⊕ [V, P ].

Suppose that S 6= 1. Since D = [D,K] = [D,R] we have S = [S,K] = [S,R]. Note that S is
faithful on V0. Now CV0(R) = 0 so conclusion (a) is a restatement of Theorem 5.1 except for
the assertion that K/O(K) is not a 2-group. Recall that K E CG(R) so O(K) E O(CG(R)).
Also D E L so CS(R) = S′ ≤ O2(CL(R)). Then O(K) ≤ CK(S′) = CK(S). As S = [S,K] 6= 1
and S is a 2-group it follows that K/CK(S) is not a 2-group. The proof of (a) is complete.

Suppose that P 6= 1. Again, P = [P,K] = [P,R] and P is faithful on V1. Then V1 6= ∅. We
have already seen that every member of V1 is an RL-module and hence an RKP -module.

Let U ∈ V1. Lemma 6.9 implies there is a prime p and m ∈ N such that r = (1/2)(pm + 1),
P/CP (U) ∼= p1+2m, [(P/CP (U))′, RK] = 1 and K/CK(P/CP (U)) ∼= Z2. Note that p and m are
uniquely determined. Complete reducibility and Lemma 6.10 imply that P is a special p-group
and P ′ = CP (R).

Let K0 be the smallest normal subgroup of K such that K/K0 is an elementary
abelian 2-group. Then K0 ≤ CK(P/CP (U)), so [P,K0] ≤ CP (U). Complete reducibility forces
[P,K0] = 1, whence K/CK(P ) is an elementary abelian 2-group. Now P = [P,K] so applying
Lemma 6.10, with a Sylow 2-subgroup of K in the role of R, we obtain P ′ = CP (K). Then (b)
holds.

Finally, we have seen that [O(K), S] = 1. Now O(K) ≤ K0 so [O(K), P ] = 1. Since L =
K(S × P ) EEG we have O(K) EEG. This concludes the proof of Theorem A.

7. The corollaries

The following is useful when translating results about modules into results about groups. It
is a variation of a well known result of Gaschütz.
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Lemma 7.1. Let X be a group and Y E X. Set

V = F (Y )/Y ∩ Φ(X).

(a) V is a completely reducible X-module, possibly of mixed characteristic.
(b) V = F (Y/Y ∩ Φ(X)).
(c) If Y is soluble then CY (V ) = F (Y ).

Proof. Recall that Φ(X) is nilpotent and that Φ(F (X)) ≤ Φ(X). Then Y ∩ Φ(X) ≤ F (Y ).
Set

X = X/Y ∩ Φ(X).

so V = F (Y ).
(a). Now F (Y ) ≤ F (X) so Φ(F (Y )) ≤ Φ(F (X)) ≤ Φ(X), hence V is a direct product of

elementary abelian groups. Suppose U is an irreducible submodule of V . Let U be the inverse
image of U and let M be a maximal subgroup of X with U 6≤M . Then X = UM and M is a
complement to U in V .

(b). Let p be a prime. Clearly Op(Y ) ≤ Op(Y ). Let K be the inverse image of Op(Y ) in
X and choose P ∈ Sylp(K). Then (Y ∩ Φ(X))P = K E X so (Y ∩ Φ(X))NX(P ) = X, whence

NX(P ) = X and P ≤ Op(Y ). We deduce that Op(Y ) = Op(Y ) and the result follows.
(c). Since V = F (Y ) is abelian we have F (Y ) ≤ CY (V ). Now Y is soluble so CY (F (Y )) ≤

F (Y ). Apply (b).

Proof of Corollary B. Note that (a) and (b) follow from (c). We may assume thatOq(G) = 1.
Set

X = RG,V = F (G)/G ∩ Φ(X), G = G/F (G) and K = Oq(CG(R)).

Lemma 7.1 implies that V is a completely reducible RG-module and that VG is faithful. As
[G,R] E RG, Clifford’s Theorem implies V[G,R] is completely reducible. Now [CF (G)(R),K] ≤
F (G) ∩K = 1 because Oq(G) = 1. Coprime Action implies [CV (R),K] = 0, whence K ≤
ker (CG(R) on CV (R)).

Let L be the subnormal closure of K in G. Let S and P have the meanings as defined in the
conclusion of Theorem A, so L = K(S × P ). Since K is a q-group, Theorem A implies S = 1,
so L = KP .

Suppose P = 1. Then K = LEEG whence K ≤ Oq(G). Since G = G/F (G), this gives K ≤
OF,q(G) and (c) holds. Suppose P 6= 1. Theorem A implies q = 2, 2r − 1 is a power of a prime
p and P is a p-group. As PK = LEEG, this implies L ≤ Op,q(G). Then K ≤ OF,p,q(G) and
once again (c) holds.

Proof of Corollary C. We work in the semidirect product X = RKG, so K ∩G = 1. Set
V = F (G)/G ∩ Φ(X). Lemma 7.1 implies V is a completely reducible X-module and CG(V ) =
F (G). Set KG = KG/CG(V ). Then V is an RKG-module. Using Clifford’s Theorem, V[G,R] is

faithful and completely reducible. Coprime Action implies [CV (R),K] = 0 and [CG(R),K] = 1.
Hence

K ≤ ker (CKG(R) on CV (R)) and K E CKG(R).

Let L be the subnormal closure of K in KG, so L = K[G,K;∞].
Theorem A, with KG in the role of G, implies L = K[L,R] and [L,R] = S × P with S a 2-

group and P a 2′-group. Now [CG(R),K] = 1 so [CS(R),K] = 1. Suppose S 6= 1. Theorem A(a)

implies S = [S,K], CS(R) = S
′

and CK(S
′
) = CK(S). Then [S,K] = 1, a contradiction. Thus
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S = 1. By Theorem A, P = [P ,K]. As K ∩G = 1 we obtain

[G,K;∞] = P .

(a). Theorem A(b) implies P ≤ F (G). Now G = G/F (G) whence [G,K;∞] ≤ F2(G) and K
acts nilpotently on G/F2(G). Theorem 1.2 implies that [G,K] is a nilpotent normal subgroup
of G modulo F2(G). Consequently [G,K] ≤ F3(G) and K is trivial on G/F3(G).

(b). Theorem A(b) implies [P ,K 2] = 1. Then [G,K 2;∞] = 1 and K2 acts nilpotently on
G/F (G). As previously it follows that K2 is trivial on G/F2(G).

(c). Then P 6= 1. Apply Theorem A(b).
(d). By (b), K∗2 acts nilpotently on G/F (G). Theorem 1.2 implies K∗2 is nilpotent and the

conclusions follow.

Lemma 7.2. Let X be a group and Y E X. Assume Y is soluble but not nilpotent and
that Y/N is nilpotent whenever 1 6= N ≤ Y with N E X. Then there exists a prime p such
that F (Y ) is an elementary abelian p-group, F (Y ) is irreducible as an X-module and Y/F (Y )
is a nilpotent p′-group.

Proof. Set V = F (Y )/Y ∩ Φ(X). Lemma 7.1 implies V is a completely reducible X-module,
V = F (Y/Y ∩ Φ(X)) and CY (V ) = F (Y ). If Y ∩ Φ(X) 6= 1 then Y/Y ∩ Φ(X) is nilpotent and
then Y = F (Y ), a contradiction. Thus Y ∩ Φ(X) = 1 and V = F (Y ).

Suppose V1 and V2 are distinct irreducible submodules of V . Then Y embeds into the
nilpotent group Y/V1 × Y/V2, a contradiction. We deduce that V is an irreducible X-
module and hence an elementary abelian p-group for some prime p. Then V = Op(Y ) and
Op(Y/F (Y )) = 1. Since Y/F (Y ) is nilpotent, it follows that it is a p′-group.

Proof of Corollary D. We may assume CK(G) = 1. Coprime Action implies [G,K] = [G,R].
Since [G,K] E G, the conclusion is equivalent to the assertion that [G,K] is nilpotent.

Assume the corollary to be false and let G be a minimal counterexample. By Coprime Action
[G,K,K] = [G,K], whence G = [G,K]. If 1 6= N ≤ RKG with N E G then Coprime Action
implies CG/N (R) = CG/N (K) and then the minimality of G implies that G/N is nilpotent. Set
V = F (G). Lemma 7.2, with RKG in the role of X, implies that V is elementary abelian and
irreducible as an X-module. Since G is soluble we have CG(V ) = V . Set G = G/V .

We apply Theorem A with KG in the role of G. Now CV (R) = CV (K) so K ≤
ker (CKG(R) on CV (R)). By Coprime Action, CG(R) = CG(K) so K E CKG(R). Since G =
[G,K] it follows that KG is the subnormal closure of K in KG. Also [KG,R] = [G,R] = G 6= 1.

Suppose CV (R) = 0. Theorem A implies G is a special 2-group, G ′ = CG(R) and CK(G ′) =
CK(G). But CG(R) = CG(K) so K = CK(G ′) and then [G,K] = 1, a contradiction. Thus
CV (R) 6= 0. In the notation of Theorem A, S = 1 and G = [RG,R] = P . Then Theorem A(b)
is applicable.

Let K0 = CK(G). Now K0 E RKG so CV (K0) is an RKG-submodule of V . As

0 6= CV (R) ≤ CV (K) ≤ CV (K0)

we have CV (K0) = V . Then [G,K0,K0] ≤ [CG(V ),K0] = [V,K0] = 1 and Coprime Action
forces [G,K0] = 1. Since CK(G) = 1, we deduce that

CK(G) = 1.

Now V is irreducible so Theorem A(b) implies RK induces a cyclic group of order 2r on G/G ′.
Then |K| = 2. In particular, K has prime order. The preceding arguments, with the roles of
R and K interchanged, imply that |R| = 2. This contradicts the hypothesis that (|R|, |K|) = 1
and completes the proof.
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Lemma 7.3. Suppose R acts coprimely on the soluble group G. Let p be a prime and
suppose R centralizes a Sylow p-subgroup of G. Then [G,R] ≤ Op′(G).

Proof. SetG = G/Op′(G). Then F (G) = Op(G) so CG(Op(G)) ≤ Op(G). Now [Op(G), R] =
1 so Coprime Action implies [G,R] = 1.

Proof of Corollary E. Let Q ∈ Sylp(CG(R)). Then P ≤ Op(CG(R)) ≤ Q whence CG(Q) ≤
CG(P ) ≤ CG(R). Set N = NG(Q). Now R ≤ CRG(Q) E NRG(Q) whence [N,R] ≤ CG(Q) ≤
CG(R). By Coprime Action, N = CN (R)[N,R] ≤ CG(R). Since Q ∈ Sylp(CG(R)) it follows
that Q ∈ Sylp(G). Lemma 7.3 implies [G,R] ≤ Op′(G).

Let H = Op′(G). Now [CH(R), P ] ≤ Op′(G) ∩Op(CG(R)) = 1 so CH(R) ≤ CH(P ). By
hypothesis [CH(P ), R] = 1, whence CH(R) = CH(P ). Corollary D implies [H,R] ≤ F (H) ≤
F (G). By Coprime Action, [G,R] = [H,R], completing the proof.
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