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Abstract 11 

Providing sufficient food for a growing global population is one of the fundamental global 12 

challenges today. Crop production needs not only to be increased, but also remain stable over 13 

the years, in order to limit the vulnerability of producers and consumers to inter-annual 14 

weather variability, especially in areas of the world where the food consumed is mainly 15 

produced locally (e.g. Sub Saharan Africa (SSA)). 16 

For subsistence agriculture, stable yields form a crucial contribution to food security. At a 17 

regional to global scale dynamical crop models can be used to study the impact of future 18 

changes in climate on food production. However, simulations of future crop production, for 19 

instance in response to climate change, often do not take into account either changes in the 20 

sown areas of crops or yield interannual variability. Here, we explore the response of 21 

simulated crop production to assumptions of crop selection, also taking into account 22 

mailto:per.e.bodin@gmail.com
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interannual variability in yields and considering the response of agricultural productivity to 23 

climate change. We apply the dynamic global vegetation model LPJ-GUESS, which is 24 

designed to simulate yield over large regions under a changing environment. Model output 25 

provides the basis for selecting the relative fractions of sown areas of a range of crops, either 26 

by selecting the highest yielding crop, or by using an optimization approach in which crop 27 

production is maximized while the standard deviation in crop production is kept at below 28 

current levels. 29 

Maximizing simulated crop production for current climate while keeping interannual variability 30 

in crop production constant at today’s level generates rather similar simulated geographical 31 

distributions of crops compared to observations. Even so, the optimization results suggest that 32 

it is possible to increase crop production regionally by adjusting crop selection, both for current 33 

and future climate, compared to assuming the same cropland cover as today. For future climates 34 

modelled production increase is >25% in more than 15% of the grid cells. For a small number 35 

of grid cells it is possible to both increase crop production while at the same time decreasing its 36 

interannual variability. Selecting the highest yielding crop for any location will lead to a large 37 

potential increase in mean food production, but at the cost of a very large increase in variability.  38 

 39 

1 Introduction 40 

Global food security is a fundamental challenge for Earth’s current and future population. 41 

Currently around 840 million people in the world are under-nourished (Food and Agricultural 42 

Organisation, 2013). Due to an increasing global population and changes in food consumption 43 

patterns, it is expected that crop production needs to double by 2050, for which several 44 

options exist in principle. On the production side this entails either increasing the extent of 45 

agricultural land or increasing production on existing cropland. In this context, reducing the 46 
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difference between actual and potential yield (closing the so-called yield gap) through 47 

improved management (including irrigation and fertilizer use) and by selection of appropriate 48 

cultivars (Foley et al., 2011; Licker et al., 2010; Mueller et al., 2012) is fundamental.  49 

A second option, somewhat less discussed, would be to select different crop species (as 50 

opposed to different cultivars of the same crop) that give a higher yield locally (Franck et al., 51 

2011; Koh et al., 2013). For example, Koh et al. (2013) found that global cereal crop 52 

production could increase by 46% when selecting the highest yielding cereal (in terms of 53 

mass) for each location. But selecting the highest yielding crop in all locations is not rational 54 

if one wishes to ensure stability in the global crop production. Already the risk of an 55 

increasing volatility, as a consequence of agricultural systems becoming more homogenous, is 56 

being debated, since a few dominating crops can be vulnerable to episodic events such as 57 

extreme weather or disease (Khoury et al., 2014). Moreover, in many parts of the developing 58 

world, such as in Sub-Saharan Africa (SSA), people are largely dependent on local crop 59 

production for their sustenance and lack the means to compensate for years of poor 60 

production by buying food on global markets (Devereux and Maxwell, 2001; Funk and 61 

Brown, 2009). This means that local crop production is a critical aspect for establishing local 62 

food supply (Garrity et al., 2010) but making local population highly vulnerable to the effects 63 

of extreme weather events and crop failure. In addition, SSA is also a region where the effects 64 

of climate change on agriculture are expected to be most adverse (Barrios et al., 2008; Kotir, 65 

2011), including an increased vulnerability in the majority of the region’s rain-fed cropland 66 

area, which constitutes 97% of the total cropland area (Rockström et al., 2004).  67 

In regions where food security is closely linked to local food production, the inter-annual 68 

variability in yields also needs to be taken into account. In a changing future climate, one key 69 

question is whether farmers in a more variable future climate will still aim to “optimise 70 
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productivity under increased climate variability or adopt strategies and management practices 71 

that are more risk averse, and aim to achieve consistent, but potentially lower, productivity” 72 

(Matthews et al., 2013). In theory, crops could thus be selected in order to maximize crop 73 

production while keeping interannual variability in production at an acceptable level. 74 

Although it must be considered that in reality, other factors also affect the selection of the 75 

crops sown, such as food preferences and market drivers.  76 

To study potential future changes in regional to continental and global crop production, large-77 

scale agricultural models have become useful tools for predicting future changes in crop yield 78 

over large regions (Berg et al., 2011; Bondeau et al., 2007; Deryng et al., 2011; Di Vittorio et 79 

al., 2010; Drewniak et al., 2013; Gervois et al., 2004; Lindeskog et al., 2013; Lokupitiya et 80 

al., 2009; Sus et al., 2010; Tao et al., 2009). For example, many of these models have been 81 

applied within the Agricultural Model Intercomparison and Improvement Project (AgMIP) 82 

(Rosenzweig et al., 2013b) including a model intercomparison study where the effect of 83 

global change on future crop yield globally was simulated using a large number of crop 84 

models (Rosenzweig et al., 2013a). However, to date most analyses have concentrated on the 85 

impact of climate on mean yields, while studies that have also investigated the effect of 86 

climate change on changes in yield variability are rare. Despite often being described as tools 87 

to support adaptation strategies, relatively few examples of studies in which crop models have 88 

been applied to these types of questions can be found in the literature (Webber et al., 2014).  89 

The Modern Portfolio Theory (MPT) (Markowitz, 1959) is a theory within economics for 90 

selecting a portfolio of stocks taking into account not only the monetary return of the portfolio 91 

of these stocks, but also risk aversion. This has been extended into the realm of agriculture, 92 

looking at the return of a portfolio of different crop varieties of wheat and rice (Nalley et al., 93 

2009; Nalley and Barkley, 2010). We broaden this approach here further by combining MPT 94 
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with simulated yields for SSA from an agrological global dynamic vegetation model (LPJ-95 

GUESS; Smith et al., 2001, Lindeskog et al. 2013). Rather than looking at maximizing 96 

financial return we here instead maximize the number of calories produced. In this study we 97 

explore the potential to increase crop production through crop selection for SSA while also 98 

taking into account interannual variability in production. This study is a stylised experiment, 99 

and not intended to represent the decision making of individual farmers, which is determined 100 

by many economic aspects beyond climate effect on yields such as food preference, market 101 

value, or access to markets.  102 

The focus of the study is the potential increases in crop production that could be attained 103 

through crop selection whilst constraining to an acceptable level of variance in production. 104 

The increase in production in this study is thus assessed without extending agricultural land or 105 

through increased irrigation or fertilizer use. 106 

Using the same acceptable level of crop production for future yield means that this study also 107 

takes into account limited climate adaptation. While performing the analysis we generate 108 

optimized relative cropland cover for each crop and grid cell.  109 

The main purpose of the study is to: 110 

1) Explore the potential to increase crop production through crop selection for SSA while 111 

also taking into account interannual variability in production using simulated yield and 112 

an optimization approach.  113 

2) Explore changes in the optimized cropland fractions over time for a range of crops. 114 

3) Compare the optimized geographical distributions of crops to observed distributions 115 

for current climate. 116 

 117 
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2 Methods 118 

Here we use a state-of-the art agrological global dynamical vegetation model LPJ-GUESS 119 

(Lindeskog et al., 2013; Smith et al., 2001) to simulate current and future potential crop 120 

production in SSA. Simulated yields are then used as the basis for two different optimizations. 121 

The first one is to select the single highest yielding crop. The second option is based on MPT 122 

and here the relative sown areas for a range of crops are adjusted in order to maximize the 123 

number of calories produced while at the same time keeping the variance at a minimum level.  124 

2.1 Model description 125 

LPJ-GUESS is a deterministic, process-based dynamic global vegetation model designed to 126 

simulate patterns and dynamics of natural vegetation and corresponding fluxes of carbon and 127 

water (Lindeskog et al., 2013; Smith et al., 2001). It is driven by daily temperature, 128 

precipitation and short wave radiation and runs at a daily time scale, typically with a spatial 129 

resolution of 0.5ο. Model processes include photosynthesis, respiration, water uptake, 130 

evapotranspiration, and carbon allocation and growth.  The model has been evaluated against 131 

a broad range of observations, including for carbon fluxes in European forest ecosystems 132 

(Morales et al., 2005), seasonality of vegetation greenness in cropland regions in Africa 133 

(Lindeskog et al., 2013), interannual variability of terrestrial carbon uptake (Ahlström et al., 134 

2012), CO2 fertilisation response (Hickler et al., 2008), and yields and soil carbon response 135 

after land-use change (Pugh et al., 2015). Cropland processes have been recently introduced 136 

into LPJ-GUESS, with crops represented through 11 typologies of crops named Crop 137 

Functional Types (CFTs; Bondeau et al., 2007).  Carbon allocation to various yield organs 138 

depends on summed heat units (degree-days above a crop-specific base temperature), also 139 

calculated at a daily time step. A dynamic Potential Heat Unit (PHU) sum needed to reach full 140 

maturity is calculated for each grid cell and each CFT based on the mean temperature of the 141 
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last 10 years (Lindeskog et al., 2013). This approach means that the model assumes that 142 

varieties with growing periods adapted to the prevailing climate are always available and 143 

selected. As such, it represents the opposite approach to that commonly employed in global 144 

crop models of no cultivar adaptation to climate whatsoever (e.g. Rosenzweig et al., 2013). A 145 

new sowing algorithm based on Waha et al., (2012) was also introduced where the timing of 146 

sowing depends on the variability in temperature or precipitation, rather than being specified 147 

from external datasets. Disturbance and mortality through extreme weather, pests and 148 

deceases are presently not yet accounted for in crops. Yields of CFTs are simulated separately 149 

for irrigated and rain-fed crops. Except for sowing and irrigation, crops are assumed to be 150 

grown under similar conditions regarding management, nutrients and pests across all grid 151 

cells in the model. 152 

2.2 Modelling crop yield using LPJ-GUESS 153 

Here we used the simulated rain-fed yield from the LPJ-GUESS model runs from the model 154 

intercomparison study performed as a part of AgMIP (Rosenzweig et al., 2013b). The model 155 

was driven by bias corrected climate forcing data from 5 General Circulation Models (GCMs) 156 

(GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) 157 

obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive (Taylor 158 

et al., 2012). Seven of the LPJ-GUESS CFTs (Table 1) were applied in this analysis for SSA 159 

(<15.5 οN). In this paper we focused on the results using climate data from one Representative 160 

Concentration Pathway (RCP 6.0) (Meinshausen et al., 2011) analysing the results for current 161 

(1996-2005) and two future climates (2056-2065 and 2081-2090). The RCP 6.0 was selected 162 

as this represents one of the “middle of the road” scenarios. 163 

 164 
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Table 1 List of group of crops, or Crop Functional Types (CFT), included in the study. Listed 165 

are also which crops belong to each CFT. 166 

CFT name Crops included in CFT 

Temperate Cereals Winter wheat, Spring wheat, Rye, Barley, Oats 

Temperate Maize Corn/Maize 

Temperate Pulses Beans and other pulses 

Temperate Tubers Potatoes, Sugar beet 

Tropical Cereals Millet, Sorghum 

Tropical Rice  Rice 

Tropical Tubers Maniok/Cassava, Sweet potatoes 

 167 

2.3 Scaling simulated yield to observed values 168 

Since the simulated output from LPJ-GUESS does not account for regional differences in 169 

management actions such as fertilisation and pest control, but rather the potential response 170 

due to weather/climate and atmospheric CO2 concentration, simulated yields were first scaled 171 

against observed values to correct for this spatial variability. To do this a conversion 172 

coefficient (k) representing the difference in simulated and reported yield was first calculated 173 

for each CFT (c) and grid cell (i): 174 

 𝑘𝑖,𝑐 = 1 −
𝑌𝑜,𝑖,𝑐

𝑌𝑝,𝑖,𝑐
         (1) 175 

where pY  is mean simulated yield (Yp) (kg m-2 dry weight) for the current time period (1996-176 

2005) and Yo, is actual yield (kg m-2 dry weight) foe the same time period. Observed yields 177 

(Yo) were taken from the Spatial Production Allocation Model (SPAM) dataset (You et al., 178 
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2013). The SPAM dataset is a gridded product of crop yield and area compiled from a range 179 

of datasets centred at the year 2000 and disaggregated to a 5 arc-minute spatial. As the spatial 180 

resolution of LPJ-GUESS is 0.5○ we aggregated the SPAM dataset to that same spatial 181 

resolution. Also, as SPAM reports wet weight, the yields were converted into dry weight 182 

using crop specific values for grain/tuber water content (Wirsenius, 2000). SPAM reports 183 

yield separately for high and low input of nutrients as well as subsistence farming.  As 184 

subsistence farming can be said to be dominating for most parts of SSA and as this type of 185 

farming is also the focus of this study, subsistence yields were selected to represent observed 186 

yield in this study. For CFTs representing more than one crop, we selected the crop giving the 187 

highest dry yield from the database. This represents a form of optimization in itself where 188 

yield is maximized within each CFT containing more than one crop. In order to avoid getting 189 

unrealistically large or small values of k we excluded CFTs (c), in a grid cell (i) from this 190 

analysis if either observed (Yo) or mean simulated yield ( pY ) were zero or close to zero 191 

(<0.01 kg dry weight m-2). For these CFTs we instead assigned k a “gap-filled” value (kgap ) 192 

based on a distance weighted interpolation using yield data from grid cells that were within 193 

the same agro-ecological zone (AEZ) (Fischer et al., 2012):  194 

𝑘𝑔𝑎𝑝,𝑖,𝑐 =
∑

𝑘𝑗,𝑐

𝑑𝑖,𝑗

𝑛
𝑗=1

∑
1

𝑑𝑖,𝑗

𝑛
𝑗=1

          (2) 195 

where di,j is the distance (in degrees) between cell i (the grid cell for which kgap is calculated) 196 

and any cell j which has existing values of k for CFT (c), belonging to the same AEZ as grid 197 

cell (i), and is within a 2.5○ distance from i. In the case no k values could be found within 2.5○ 198 

from grid cell i kgap was set to 1.0. 199 
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Simulated scaled annual yield (Ys) in kg m-2 dry weight for each year was calculated using 200 

simulated yield (Yp) and the conversion coefficient (k) for each CFT (c), grid cell (i) and year 201 

(t): 202 

  𝑌𝑠,𝑐,𝑖,𝑡 = 𝑌𝑝,𝑖,𝑐,𝑡(1 − 𝑘𝑖,𝑐)      (3) 203 

Ys was converted from kg m-2 to kcal m-2  (Ycal) (1 kcal = 4184 J) by using values for calorie 204 

content for each crop from the Food and Agricultural Organization (FAO) (2001) as 205 

suggested by Franck et al. (2011).  206 

2.4 Observed CFT fractions 207 

Total observed areas for each crop were also taken from the SPAM dataset. (You et al., 208 

2013). In contrast to yields, this dataset contains only the total cropland area for each crop 209 

rather than separating areas into different types of management and including both rain-fed 210 

and irrigated crops. Observed CFT fractions (ωo) were calculated as the summed area of each 211 

CFT, divided by the total area of the 7 CFTs within each grid cell for all cells with at least one 212 

CFT present. For example, if three CFTs were present the fraction for one of these was 213 

calculated as the area of that CFT divided by the summed area of all three CFTs. 214 

2.5 Modern Portfolio Theory 215 

The approach in this study using Modern Portfolio Theory (MPT) (Markowitz, 1959) was 216 

based on Nalley et al. (2009); and Nalley and Barkley (2010) but instead of optimizing 217 

variance in yield or profit from selecting different varieties of wheat or maize the focus was 218 

on optimizing crop production by selecting different crop species.  219 

The two variables used in MPT are the mean return of the portfolio, or in the case for crops in 220 

this study, the area weighted mean yield for the total cropland area in each grid cell over the 221 

selected time period (Ypf in kcal m-2), and the variance (σ2
pf in kcal2 m-4) in the same yield 222 
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over the same time period. Ypf was calculated as the area-weighted decadal mean yield of all 223 

CFTs in each grid cell (i), for each optimization period:  224 

   𝑌𝑝𝑓,𝑖,𝑡 =
∑ ∑ 𝜔𝑒

𝑏
𝑒=1 𝑌𝑐𝑎𝑙,𝑒,𝑡

𝑎
𝑡=1

𝑎
      (4) 225 

where t is year number in the optimization period, e is the CFT index (a number between 1-7 226 

where each number represents one CFT), a is number of years of the optimization time 227 

period, b is number of CFTs, and ωe is the cropland fraction of CFT e.  228 

The portfolio mean variance ( pf
2 ) is the area-weighted sum of the variance in crop yield 229 

calculated as: 230 

    𝜎2𝑝𝑓,𝑖,𝑡 = ∑ ∑ 𝜔𝑒𝜔𝑓𝜌𝑒,𝑓
𝑏
𝑓=1

𝑏
𝑒=1      (5) 231 

where e and f are CFT indices used in the equation to represent all combinations of CFTs. The 232 

variable ρ is the covariance in crop yield of the two corresponding CFTs over the optimization 233 

period when e≠f and the variance of CFT e (or f) when e=f. 234 

Modern Portfolio identifies two optimization options based on the variables described in Eq. 4 235 

and 5. The first option (A) is to find an optimum portfolio of crops to maximize crop 236 

production (Ypf) while keeping standard deviation ( pf ) below a maximum value. The 237 

second option (B) is to find the optimum portfolio of crops to minimize standard deviation (238 

pf ) while keeping crop production (Ypf) above a minimum value. This type of optimization 239 

problem needs to be solved numerically. In this study we used the optimization tool 240 

implemented in the Financial Toolbox in Matlab (release 2013b) (MathWorks Inc., 2013). 241 

The Matlab script uses standard deviation (σ) rather than variance (σ2) in the optimization, 242 

and as this measure is easier to relate to for most readers we use this in both the analysis and 243 
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the presentation of the results. In addition to the thresholds for Ypf or pf the optimization 244 

algorithm requires an initial state of cropland fractions.  245 

As Ypf is the area weighted yield of all crops and since the total cultivated area of crops does 246 

not change over time for any grid cell, maximizing Ypf for any grid cell also means 247 

maximizing the number of calories produced for that grid cell and we therefore use Ypf as a 248 

measure of crop production for any grid cell i. 249 

2.6 Maximizing crop production through crop selection  250 

In order to study the impact of crop selection for maximizing crop production we performed 251 

two optimizations per time period (current climate: 1996-2005 and the two future time 252 

periods: 2056-2065 and 2081-2090), GCM and grid cell where the first is based on MPT: 253 

Low risk (LR) 254 

Here the first MPT optimization option (A) was used, that is to maximize Ypf , while 255 

keeping pf
2 below a maximum threshold. This optimization represents a low risk 256 

scenario where the interannual variability in crop production is not allowed to be 257 

higher than simulated crop production using current cropland cover. The value of this 258 

threshold is calculated using Eq. 5, based on simulated Ycal values for the current time 259 

period (1996-2005) and assuming current observed cropland fractions (as described 260 

above). The optimization was made for all CFTs that are currently grown in a given 261 

grid cell according to the SPAM dataset. The initial state for the cropland fractions (ω) 262 

for all CFTs in the optimization was assumed to be equal to the observed fractions 263 

(ωo). Although the optimization is made at a grid cell level this optimization could be 264 

seen as a risk aversion strategy for a farmer in a region with local markets and high 265 

level of local sustenance. 266 
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 High risk (HR) 267 

As a comparison to the LR scenario we also selected the highest yielding CFT (in 268 

calories) of the ones that are currently growing in each grid cell. Crop production for 269 

that grid cell is thus equal to the yield of the highest yielding CFT. This optimization 270 

represents a high risk scenario where the crop production is maximized without taking 271 

into account climate-related interannual variability in productivity. This optimization 272 

is more closely related to commercial agricultural systems where one bad harvest one 273 

year can be compensated for by large harvests in “typical” years. 274 

 275 

The optimizations were made separately for each GCM. The results below are presented as 276 

the mean of all five GCMs. 277 

3 Results 278 

3.1 Optimized CFT fractions 279 

By performing the two optimizations for current climate we generated different sets of 280 

optimal CFT fractions (ωopt) for each grid cell, optimization and time period. The unweighted 281 

grid cell mean ωopt values for current climate were compared with the observed fractions (ωo) 282 

taken from the SPAM dataset (Fig. 1). This comparison could at least partly be seen as a form 283 

of validation, in a sense that it if these patterns agree there is an indication that current 284 

cropland cover to some extent follows the assumptions in the optimization. The ωopt values 285 

from the LR optimization were relatively similar to the ωo values, whereas for HR ωopt 286 

differed greatly from ωo, with Tropical Tubers being the dominating crop in the simulated 287 

case, covering nearly 60% of the crop area, rather than the ca. 20% observed (Fig. 1). For LR 288 

some differences can be seen for Temperate Maize, Temperate Pulses, Temperate Tubers and 289 
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Tropical Tubers where grid cell mean ωopt for Temperate Maize and Temperate Tubers was 290 

larger than ωo and smaller than ωo for Temperate Pulses and Tropical Tubers (Fig. 1) 291 

   

Figure 1. Current grid cell mean CFT fractions (a) as well as optimized CFT fractions (Low 292 

Risk: (b) and High Risk: (c)) for current climate. 293 

Latitudinally, both ωo and ωopt (LR and HR) for the three most important groups of crops in 294 

SSA (based on number of calories produced (FAOSTAT)) varied strongly (Fig. 2) with the 295 

latitudinal fraction for LR reproducing the data-based observed patterns quite well. A strong 296 

positive correlation (p<0.001) was found between the latitudinal mean values of ωo and ωopt 297 

for the LR-optimization (Table 2) for all CFTs except for Tropical Rice, indicating that 298 

current crop selection is close to optimum calculated based on the LR scenario. As correlation 299 

does not take into account the bias between predicted and observed values, the Modelling 300 

Efficiency (ME) (Janssen and Heuberger, 1995) was also calculated (Table 2). A negative ME 301 

value indicates a very poor fit whereas a value close to unity indicates a good fit. Of the CFTs 302 

with significant correlations between ωo and ωopt the ME values were positive for all CFTs 303 

except for Temperate Pulses and Temperate Tubers (Table 2). 304 

For the HR scenario the latitudinal pattern of ωopt differed greatly from that of ωo for all CFTs 305 

(Fig. 2 and Fig. S1). Still, there was a significant correlation (p<0.001) between ωo and ωopt 306 

for Temperate Pulses, Temperate Tubers, Tropical Tubers and Tropical Cereals (Table 2). 307 
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However, looking at the ME, none of the CFTs generated positive values, indicating a poor fit 308 

between ωo and ωopt. The ME values was smaller for HR compared to LR for all CFTs. 309 

Table 2. Pearson’s correlation (R) and Modelling Efficiency (ME) between observed and 310 

optimized latitudinal CFT fractions (High or Low Risk) of cropland cover for all Crop 311 

Functional Types (CFTs). Significant correlations (p<0.001) and positive values for ME are 312 

marked in bold. 313 

CFT 

Low Risk (LR) Scenario 

  

High Risk (HR) Scenario 

 

  R ME R ME 

Temperate Cereals 0.91 0.81 -0.09 -0.15 

Temperate Maize 0.61 0.26 0.03 -2.01 

Temperate Pulses 0.42 -0.48 0.35 -1.82 

Temperate Tubers 0.34 -5.67 0.69 -297.14 

Tropical Rice 0.26 -0.39 0.02 -1.25 

Tropical Tubers 0.92 0.70 0.81 -4.49 

Tropical Cereals 0.84 0.65 0.59 -0.49 

 314 

For the LR optimization some regions stood out in relation to where ωopt of CFTs differed 315 

from ωo. The ωopt values were much higher than the ωo for Tropical Cereals in the regions 316 

south of 25○S; and for Temperate Tubers in the regions around 10○S (Fig. 2 and Fig. S1). For 317 

Tropical Rice, ωopt was much lower than ωo for the region between 15 and 25○S (Fig. S1). 318 

When performing the optimizations for future climate, ωopt differed only to a relatively small 319 

degree in absolute terms compared to the optimizations made for current climate. The largest 320 
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difference in relative fractions between 2081-2090 and 1996-2005 was a decrease by nearly 321 

50% for Tropical Tubers (LR) and Temperate Maize (HR) (Fig. S1). 322 

 323 

Figure 2. Optimized latitudinal mean CFT fractions for the current climate (1996-2005) 324 

(High Risk solid blue lines; Low Risk solid green lines) and observed CFT fractions (black 325 

lines) for the three most common crops in SSA: Temperate Maize (a), Tropical Cereals (b), 326 

and Tropical Tubers (c). The bottom right panel (d) represents latiudinal mean total annual 327 

precipitation (mm) (dotted cyan line) and mean annual temperature (○C) (dotted red line). 328 
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3.2 Spatial and temporal differences in crop production and its interannual variability 329 

For future climate we compared the optimized crop production and its standard deviation 330 

against a “business as usual” situation which assumed the same CFT fractions as today 331 

(Ypf,BAU and σpf,BAU). Optimized crop production and its standard deviation were therefore 332 

compared against Ypf and σpf calculated using simulated values of Ycal for current (1996-2005) 333 

or future (2056-2065 and 2081-2090) climate, maintaining current observed cropland 334 

fractions (ωo).   335 

3.2.1 Current cropland cover: Business as usual (BAU) 336 

The grid cell median annual value of Ypf,BAU for current climate was 380 kcal m-2 with a 337 

median value for σpf,BAU of 45 kcal m-2 (Fig. 3). Reflecting simulated yield increases in the 338 

future, a result mostly in response to enhanced atmospheric CO2 levels (Rosenzweig et al., 339 

2013), there was an increase in Ypf,BAU over time (Fig. 3a; Fig. S3a-b). From 1996-2005 to 340 

2081-2090 there was an increase in the grid cell median Ypf,BAU by 30%. For the majority of 341 

the grid cells (~65%), there was also an increase in σpf,BAU,
 leading to an increase in grid cell 342 

median σpf,BAU over time (Fig. 3b) of around 15%. 343 

 344 

Figure 3. Grid cell median crop production (kcal m-2) (a) and standard deviation (b) (kcal 345 

m2) for current (BAU) and optimized CFT fractions. 346 
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Geographically, the largest increases in Ypf,BAU over time occurred in Somalia, Botswana and 347 

South Africa  (Figure S3a-b). The largest increase in σpf,BAU occured in the same regions but 348 

also for large parts of West Africa and Sudan (Figure S3c-d). For some regions (e.g. large 349 

parts of South Africa and Angola) σpf,BAU instead decreased over time (Figure S3c-d) . 350 

3.2.2 The High Risk Scenario (HR) 351 

Selecting the highest yielding crop (HR) meant that for current climate, optimized Ypf was by 352 

definition equal to or higher than Ypf,BAU. The grid cell median Ypf was ~70% higher than the 353 

grid cell median Ypf,BAU. Optimized Ypf was >25% larger than Ypf,BAU for ~80 % of the grid 354 

cells for both current and future climate (Table 3; Fig. S4). The grid cells with the highest 355 

potential to increase crop production through selecting the highest yielding CFT are mainly 356 

located in the Sahel, Angola and in the South Eastern parts of Africa (Fig. S4). The associated 357 

σpf was also much higher than σpf,BAU for the majority of grid cells (with a difference >25% for 358 

~80% of the grid cells: Table 3) and with the median value for σpf being 110% larger than 359 

σpf,BAU (Fig. 3b). For a small number of grid cells (for current and future climate) selecting the 360 

single highest yielding crop actually produced a σpf that was smaller than σpf,BAU (Fig. S5). But 361 

the number of grid cells where this difference was larger than 25% was less than 1% of the 362 

total (Table 3). 363 

3.2.3 The Low Risk Scenario (LR) 364 

For current climate, the set of assumptions made in LR meant that optimized Ypf was larger 365 

than Ypf,BAU across the entire simulation domain, with the grid cell median value being ~12% 366 

larger than Ypf,BAU. There was an increase over time in the grid cell median optimized Ypf (Fig. 367 

3a), but as the increase in Ypf,BAU was even larger, the relative difference of the grid cell 368 

median optimized Ypf  and Ypf,BAU became smaller for future climate (~5% for 2081-2090).  369 
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Patterns of change were spatially very variable. The largest potential to increase Ypf whilst 370 

keeping a σpf at current level could be found in Senegal, parts of the Sahel, Tanzania, Angola 371 

and parts of Mozambique and South Africa (Fig. 4a-c). In total ~10% of the grid cells 372 

displayed a Ypf that was at least 25% above Ypf,BAU for current climate, and 16-20% for future 373 

climates and CO2 (Table 3). Following the assumption that the optimization is made against 374 

σpf,BAU values for current climate, and the fact that σpf,BAU  increases over time for some grid 375 

cells, optimized Ypf actually became lower than Ypf,BAU (Fig. 4b-c) for future climates. These 376 

grid cells are mainly located in regions where σpf,BAU  in crop production displayed the largest 377 

increase over time (Fig. S3c-d).  For ~5% of the grid cells optimized Ypf was more than 25% 378 

below Ypf,BAU for future climates (Table 3). 379 

 380 

 Table 3. Percent of grid cells where the optimized crop production (or standard deviation) is 381 

at least 25% larger (or smaller) compared to using observed CFT fractions (BAU) for the two 382 

optimizations and three time periods. 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

  Low Risk (LR) Scenario High Risk (HR) Scenario 

  

 

1996-

2005 

2056-

2065 

2081-

2090 

1996-

2005 

1996-

2005 

1996-

2005 

Grid cells with increase in  

yield >25% 9% 16% 20% 77% 80% 81% 

Grid cells with increase in  

yield >25% 0% 4% 7% 0% 0% 0% 

Grid cells with increase in  

standard deviation >25% 0% 5% 7% 80% 82% 83% 

Grid cells with decrease in  

standard deviation >25% <1% 18% 24% <1% <1% <1% 
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 391 

Following the optimization criteria, optimized grid cell median σpf changes little over time 392 

(Fig. 3b) and for current climate σpf was smaller than or equal to σpf,BAU for all grid cells (Fig. 393 

S6a). Even if there was virtually no change in optimized σpf over time in absolute terms, the 394 

change could be either positive or negative in relative terms compared to σpf,BAU. This resulted 395 

in optimized σpf being at least 25% higher than σpf,BAU for ~5% of the grid cells and at least 396 

25% lower for ~20% of the grid cells (Table 3) for future climates.  The highest potential to 397 

decrease σpf can be found in western Africa whereas the largest increase in the relative 398 

difference of σpf compared to σpf,BAU can be found in the Sahel, Angola and parts of 399 

Mozambique and South Africa (Fig. S6). 400 

 401 

   

Figure 4. Relative difference in optimized crop production compared to assuming current 402 

land use fractions (BAU) for the Low Risk optimization for the time periods:1996-2005 (a), 403 

2056-2065 (b) and 2081-2090 (c). 404 
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From the results above (Table 3) it can be seen that for LR, it was potentially possible to 405 

simultaneously increase Ypf  by 25% and to decrease σpf by the same figure for the two future 406 

time periods compared to the business as usual scenario (Ypf,BAU and σpf,BAU) for a number of 407 

grid cells. However, the number of grid cells for which both these criteria were met was <1%. 408 

If instead looking at the possibility to increase Ypf by 10%, whilst decreasing σpf by the same 409 

magnitude, the number of grid cells for which this occurred increased to ~7%. The grid cells 410 

for which it is possible to increase Ypf while at the same time decreasing σpf are mainly located 411 

in the eastern parts of SSA (Fig. S7). 412 

4 Discussion 413 

The agreement between observed and simulated relative cropland cover of the LR optimisation 414 

for present-day suggests that cropland cover depends on both yield and interannual variability 415 

in yield in a way that makes it possible to recreate the existing spatial patterns for a range of 416 

CFTs using simulated yield with LPJ-GUESS and MPT. This pattern relies on assuming 417 

simulated interannual variability in crop production of current CFTs as the acceptable level. 418 

This agreement is remarkable and implies that in SSA under present-day conditions, crop 419 

selection with respect to calorific value is relatively optimal on average, accounting for given 420 

interannual variability in weather. Both temperature and precipitation vary notably with latitude 421 

(Fig. 2). As climate is the main driver of which CFTs are favoured regionally both in reality 422 

and in the optimization it is not surprising that there is a strong correlation between the relative 423 

sown areas of CFTs and climate (Table S1). For the observed fractions the strongest correlation 424 

with climate was found for temperature for all CFTs (with negative correlations for Temperate 425 

Maize, Temperate Tubers and Temperate Cereals) except for Tropical Tubers where the 426 

strongest correlation was with precipitation. The correlation between the optimized CFT 427 

fractions and climate for LR were of the same direction and order of magnitude for all CFTs 428 
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except for Temperate Maize. The lack of correlation for Temperate Maize follows a larger 429 

optimized fraction in the Sahel compared to the observed (Fig. 2).   430 

The optimizations were made under the assumption that all crops were rain-fed. The reported 431 

areas used in this study do however also include some irrigated crops. While for most crops 432 

the irrigated area is negligible in SSA, for the two countries with the highest rice production 433 

(Nigeria and Madagascar) 15% and 50% of all harvested area is irrigated, respectively 434 

(Balasubramanian et al., 2007). This could explain the large underestimation in optimized 435 

fractions of rice (Tropical Rice) for the region between 17 and 25○S where Madagascar is 436 

located. Furthermore, the CFTs in LPJ-GUESS are not affected by pests, such that yields 437 

respond to climatic, but not biotic stresses. This might play a role particularly for potatoes 438 

(Temperate Tubers) for which a large amount of pesticides are required compared to other 439 

crops in order to protect against, for example, late blight, a fungus responsible for large yield 440 

losses in unsprayed fields (Sengooba and Hakiza, 1999) with reported yield losses in central 441 

Africa of more than 50% (Oerke, 2006). The expense of these pesticides could partly explain 442 

the difference between optimized and observed Temperate Tubers cover. 443 

In the regions south of 25 οS the LR optimization generated larger fractions of Tropical 444 

Cereals than the observed and lower fractions of Temperate Maize. These latitudes are 445 

dominated by South Africa, a country where commercial agriculture is practiced on 86% of 446 

total cropland (Anon., 2012). By contrast, our study addresses subsistence farming which is 447 

the dominating form of agriculture in SSA, and the optimization assumptions are that two 448 

important features of agriculture are to maximize the number of calories produced and to 449 

ensure a stable production. Other drivers such as maximization of profit (rather than the 450 

number of calories), or national to local policies were thus not considered. Regional 451 

differences in these drivers could explain the lack of agreement in non-subsistence regions.  452 
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Given the overall strong correlation between observed and optimized crop fractions for 453 

current climate, the optimizations made for future climate could be seen as scenarios of 454 

changes in crop fractions in regions where agriculture is focused on local sustenance. These 455 

types of scenarios could be alternatives to assuming no change in land use and crop fraction 456 

which is frequently done in impact studies that focus on changes in yields (Liu et al., 2008; 457 

Müller et al., 2010; Rosenzweig et al., 2013a; Schlenker and Lobell, 2010). Earlier studies 458 

looking at trends in crop selection have mostly done so from the perspective of societal 459 

demand for various crops (e.g. Wu et al., 2007). Our study instead focus on the supply side 460 

but taking into account also aspects of crop production stability, thus offering a 461 

complementary alternative to demand-driven study designs.  462 

For the HR scenario we identified the single-highest yielding crop of each grid-cell for current 463 

and future climate (You et al., 2013). By contrast to Tropical Tubers in our study, Franck et 464 

al., (2011), using the model LPJmL, found the highest simulated yield for Temperate Tubers 465 

(in their study named sugar beet) followed by Temperate Maize. The chief reason for these 466 

differences is likely that Franck et al (2011) computed maximum (potential) yield by 467 

assuming agricultural intensification, and did not scale simulated yield against observed 468 

(actual subsistence) yield as we did for our optimizations. In the study by Koh et al., (2013) 469 

the highest yielding cereal (choosing between barley, maize, millet, rice, sorghum and wheat) 470 

for each 5 min grid cell was selected based on yield data from Monfreda et al., (2008). Their 471 

results gave an increase in crop production by 68% in eastern Africa and 87% in central 472 

Africa when selecting the highest yielding crop compared to current crop fraction. The 473 

relative increase in production from selecting the highest yielding crop in their study is lower 474 

than the one found in our study (HR). Their study however was confined to cereals and also 475 

did not take into account any difference in dry weight and calorific contents of the different 476 

crops. Moreover, in their study, some crops would be grown under intensive farming whereas 477 
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our study compared yield of crops grown under today’s existing management practices 478 

(subsistence farming). Neither of the above studies (Franck et al., 2011; Koh et al., 2013) 479 

therefore compare to our HR approach. Regardless of different approaches to estimate 480 

increases in crop production, as can be seen from our results, selecting the highest yielding 481 

crop generated not only a large increase in crop production compared to current crop fraction 482 

but also an even larger increase in interannual variability.  483 

By contrast to the HR approach, in the LR optimization, we investigated the ability to 484 

increase yield for a portfolio of crops while keeping standard deviation in crop production 485 

constant at the current level. We performed the analysis at the grid scale discussing the 486 

potential to increase crop production at regional to continental scale, in contrast to previous 487 

work that applied MPT for the selection of crop varieties more locally (Nalley et al., 2009; 488 

Nalley and Barkley, 2010). For a range of experimental sites in Arkansas, USA the potential 489 

to increase profit in rice production was up to 23% while keeping its standard deviation 490 

constant  (Nalley et al., 2009). Applying this method for different crop species rather than 491 

varieties of rice and for a larger spatial area we find that it is possible to regionally increase 492 

crop production by a similar figure.  493 

A commonly discussed option for increasing crop production is the closing of the so-called 494 

yield gap (Foley et al., 2011; Licker et al., 2010) through agricultural intensification, which 495 

has been estimated for large parts of SSA to lead to yield increases of existing crops by a 496 

factor of ~10 (Licker et al., 2010). There are however large obstacles for increasing yields in 497 

this manner due to high costs of fertilizers and pesticides, and lack of surface water for 498 

irrigation, all of which would need to be applied (Mueller et al., 2012). Switching from one 499 

mix of crops to another to maximize crop production whilst keeping an acceptable level of 500 

standard deviation in crop production, as suggested by this study, could therefore be seen as 501 
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an additional option to be explored to produce more calories as well as decreasing the 502 

variability in the food production system.  Ultimately, what is being sown is determined by 503 

the individual farmer and these decisions are affected by the demand for crops locally that 504 

may or may not reflect the suitability of those crops in the region. 505 

It is necessary, however, to consider that from a food security perspective many other factors 506 

than the generation of a large and/or stable number of calories are equally important, such as 507 

access to markets and the nutritional quality and safety of food (Food and Agricultural 508 

Organisation, 2013). Not getting enough calories is only one aspect of the food security 509 

problem. Micronutrient deficiency is a large problem with an estimated 2 billion people being 510 

affected (Tulchinsky, 2010). Also, at the same time as many people still suffer from 511 

malnutrition, obesity is a growing problem in the developing world (Godfray and Garnett, 512 

2014; Steyn and Mchiza, 2014) meaning that people simultaneously can be both nutritionally 513 

undernourished and obese. Our study focused on staple crops but for a fully nutritional diet 514 

these foods need to be complemented by foods which may be richer in minerals, vitamins and 515 

proteins (DeClerck et al., 2011). For example, a maize based diet increases the risk for the 516 

skin disease pellagra generated by vitamin B3 deficiency (Hegyi et al., 2004).  517 

By extending the simulations to future climate we simulated changes in yield taking into 518 

account not only mean yield changes in future climate but also in its interannual variability. 519 

Our projected crop production rates were compared against the “business as usual”-scenario 520 

in which cropland fractions were assumed to be the same as today (a common assumption in 521 

most modelling studies) and our results can thus be interpreted to consider some degree of 522 

climate change adaptation. Model impact studies have traditionally focused on changes in 523 

mean yield, ignoring the effect on interannual variability in yield. Those studies that assessed 524 

changes in future interannual variability in yield (Chavas et al., 2009; Urban et al., 2012)  525 
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concentrated on a single crop species. Here we take these approaches a step further, looking at 526 

the interannual variability of the total crop production and not only of single crops. Our 527 

results indicate that across large parts of SSA crop selection could generate increased future 528 

crop production using the same total sown areas as today without increasing the interannual 529 

variability in crop production (Fig. 4b-c). Some regions can also be identified where it is 530 

possible to both increase crop production and to decrease interannual variability at the same.  531 

Regions not suitable for growing crops today might become suitable in a changing climate. 532 

The option to increase crop production by extending crops to new regions was however 533 

beyond the scope of this paper as it would require additional analysis on potential and 534 

estimated actual yields in regions where crops are currently not growing. 535 

AgroDGVMss, such as the LPJ-GUESS model used in this study, have the advantage of being 536 

able to simulate changes in crop production and its standard deviation over large regions and 537 

for long time periods (Bondeau et al., 2007; Drewniak et al., 2013; Lindeskog et al., 2013; 538 

Rosenzweig et al., 2013a), and furthermore being based on fundamental process-539 

representations of plant physiology, rather than extrapolations of empirical relationships 540 

beyond their windows of validity. These advantages come at the price of a lack of spatial 541 

detail and therefore several generalizations have to be made (related to e.g. soil types, local 542 

climate and crop management, and the effect of heat stress)  (Challinor et al., 2009). There are 543 

also substantial uncertainties related to model input. Earlier evaluation tests for Africa have 544 

however shown the ability of LPJ-GUESS to reproduce interannual variability in yields at the 545 

country level as reported by the FAO (Lindeskog et al., 2013) when applying climate input 546 

based on observations. Our analysis here was made using bias corrected climate data from 5 547 

GCMs and the mean results from these model runs were used. Simulated fluxes of carbon 548 

using LPJ-GUESS have been shown to be highly sensitive to the choice of GCM (Ahlström et 549 
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al., 2012). By contrast to simulated current yield, the standard deviation in yield was not 550 

scaled against measured data as the availability of data in the SPAM database for evaluating 551 

interannual variability in yield is limited. One potentially useful dataset in this regard is the 552 

one recently created by Iizumi et al., (2014) which combines reported data of harvested area 553 

for the year 2000, country yield statistics and satellite-derived net primary production into a 554 

spatio-temporal gridded dataset of yield for a range of crops. However, two issues prevent 555 

comparison of simulated yield against this dataset, grid by grid. Firstly the dataset shows clear 556 

differences in interannual variability between grid cells on opposite sides of political borders, 557 

i.e. yield dynamics are influenced by the reporting of national yields. Secondly, the climate 558 

input data used in this study was based on GCM model runs which cannot represent the actual 559 

time-series of climate variability for an individual grid.  560 

In conclusion this study presents a novel approach for simulating the (climate-constrained) 561 

potential to optimize crop selection in order to increase food production but at the same time 562 

keeping a maximum level of interannual variability in crop production. The close 563 

reproduction of the observed latitudinal fractions of most crops in the study implies that, 564 

assuming current level of variability in crop production as the acceptable level, agriculture is 565 

relatively close to the optimum for producing the highest number of calories. Even so, our 566 

results imply that for some regions it is possible to increase the number of calories produced. 567 

Based on extending the optimization to future climate assuming the same acceptable level of 568 

variability in crop production, increasing regional food production appears plausible. Thus the 569 

method demonstrated herein could be seen as a way to introduce climate adaptation into the 570 

simulations of future crop production.  571 

 572 
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Supplementary 774 

Table S1. Pearson’s correlation between the latitudinal mean of observed (OBS) or optimized 775 

(High or Low Risk) cropland cover and mean annual temperature (Tair) or total annual 776 

precipitation (Prec). Significant correlations (p<0.001) are marked in bold. Colours indicate 777 

degree of correlation as indicated by the colour bar below. 778 

   Tair  Prec 

CFT OBS Low Risk High Risk OBS Low Risk High Risk 

Temperate Cereals -0.72 -0.80 0.16 -0.50 -0.55 0.04 

Temperate Maize -0.60 0.05 0.21 -0.26 0.16 0.06 

Temperate Pulses 0.37 -0.08 0.52 0.19 -0.32 -0.17 

Temperate Tubers -0.65 -0.36 -0.87 -0.36 -0.04 0.81 

Tropical Cereals 0.71 0.53 0.36 -0.10 -0.22 -0.66 

Tropical Rice 0.38 0.39 0.19 0.25 0.45 -0.06 

Tropical Tubers 0.43 0.54 0.68 0.88 0.87 0.29 

 779 

 

Tair/Prec 

|r| 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 >0.8 

 780 
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 781 

Figure S1. Optimized latitudinal mean CFT fractions for current climate (1996-2005) (High 782 

Risk solid blue lines; Low Risk solid green lines) and observed CFT fractions (black lines) 783 
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for: Tropical Rice (a), Temperate Cereals (b), Temperate Tubers (c) and Temperate Pulses 784 

(d). Note the difference in scale for Temperate Cereals. 785 

 786 

   

   

Figure S2. Optimized cropland fractions for the Low Risk (a-c) and High Risk optimization (d-787 

f) for the time periods 1999-2005 (a,d) 2056-2065 (b,e) and 2081-2090 (c,f). 788 
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Figure S3 Relative difference in simulated crop production (a-b) and standard deviation in 795 

production (c-d) compared to current climate (1996-2005) assuming current land use fractions 796 

(BAU) for both future time periods: 2056-2065 (a and c); and 2081-2090 (b and d). 797 

 798 
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Figure S4. Relative difference in crop production compared to assuming current land use 799 

fractions (BAU) for the High Risk optimization, for the years 1996-2005 (a), 2056-2065 (b) and 800 

2081-2090 (c). 801 
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Figure S5. Relative difference in standard deviation in crop production compared to assuming 813 

current land use fractions (BAU) for the High Risk optimization, for the years 1996-2005 (a), 814 

2056-2065 (b) and 2081-2090 (c). 815 
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Figure S6. Relative difference in standard deviation in crop production compared to assuming 827 

current land use fractions (BAU) for the Low Risk optimization, for the years 1996-2005 (a), 828 

2056-2065 (b) and 2081-2090 (c). 829 
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Figure S7. Grid cells where the Low Risk optimization generated both an increase in crop 837 

production and a decrease in the standard deviation in crop production >25% (a) or >10% 838 

(b) for the time period 2056-2065 (yellow); 2081-2090 (blue) or both time periods (green). 839 
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