UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

A multiple model assessment of seasonal climate
forecast skill for applications

Lavers, David; Luo, Lifeng; Wood, Eric F.

DOI:
10.1029/2009GL041365

Document Version
Peer reviewed version

Citation for published version (Harvard):
Lavers, D, Luo, L & Wood, EF 2009, 'A multiple model assessment of seasonal climate forecast skill for
applications', Geophysical Research Letters, vol. 36, no. 23, L23711. https://doi.org/10.1029/2009GL041365

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Copyright 2009 by the American Geophysical Union.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024


https://doi.org/10.1029/2009GL041365
https://doi.org/10.1029/2009GL041365
https://birmingham.elsevierpure.com/en/publications/ca55a8b3-a097-44bf-b49e-b20370612292

GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L23711, doi:10.1029/2009GL041365, 2009

Click

Here

Full
Article

A multiple model assessment of seasonal climate forecast skill

for applications
David Lavers,!">? Lifeng Luo,"* and Eric F. Wood"

Received 15 October 2009; revised 12 November 2009; accepted 17 November 2009; published 15 December 2009.

[1] Skilful seasonal climate forecasts have potential to
affect decision making in agriculture, health and water
management. Organizations such as the National Oceanic
and Atmospheric Administration (NOAA) are currently
planning to move towards a climate services paradigm,
which will rest heavily on skilful forecasts at seasonal (1 to
9 months) timescales from coupled atmosphere-land-ocean
models. We present a careful analysis of the predictive skill
of temperature and precipitation from eight seasonal climate
forecast models with the joint distribution of observations
and forecasts. Using the correlation coefficient, a shift in the
conditional distribution of the observations given a forecast
can be detected, which determines the usefulness of the
forecast for applications. Results suggest there is a
deficiency of skill in the forecasts beyond month-1, with
precipitation having a more pronounced drop in skill than
temperature. At long lead times only the equatorial Pacific
Ocean exhibits significant skill. This could have an
influence on the planned use of seasonal forecasts in
climate services and these results may also be seen as a
benchmark of current climate prediction capability using
(dynamic) couple models. Citation: Lavers, D., L. Luo, and
E. F. Wood (2009), A multiple model assessment of seasonal
climate forecast skill for applications, Geophys. Res. Lett., 36,
L23711, doi:10.1029/2009GL041365.

1. Introduction

[2] Seasonal climate prediction is based on the premise
that the lower-boundary sea surface temperature (SST)
forcing, which evolves slowly, imparts predictability on
atmospheric development [Palmer and Anderson, 1994].
In particular persistent SST anomalies associated with the
El Nifio Southern Oscillation influence atmospheric circu-
lation, thus producing seasonal climate anomalies [Carson,
1998; Stockdale et al., 2006]. Operational climate forecast
centers such as the European Centre for Medium-Range
Weather Forecasts (ECMWF) and NOAA’s National Cen-
ters for Environmental Prediction (NCEP) are now using
coupled atmosphere-land-ocean models to produce their
seasonal forecasts [Palmer et al., 2004; Saha et al., 2006].
Integrating coupled atmosphere-land-ocean models with an
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ensemble of different initial conditions allows predictions
that consider uncertainty in the initial state, resulting in what
is referred to as an ensemble forecast. Seasonal climate
forecasts can be incorporated into end-user application
models for determining crop yield amounts [Cantelaube
and Terres, 2005; Challinor et al., 2005] and future epi-
demic malaria [Thomson et al., 2006]. Retrospective fore-
cast (hindcast) datasets, such as those from the DEMETER
project, give the opportunity to assess the predictive skill in
current seasonal climate forecast models.

[3] Forecast quality in its complete sense can be assessed
using a distributions-oriented framework [Murphy, 1993].
This approach uses the joint distribution of the forecasts ( /)
and observations (o) as this contains all of the non-time
dependent information necessary for evaluating the forecast
quality [Murphy and Winkler, 1987; Murphy, 1993]. For
applications, one must determine the following: given a
particular seasonal climate forecast, what is the conditional
probability distribution of (future) seasonal climate p(o|f).
The extent to which the conditional seasonal distribution
p(olf) varies from the climatological distribution p(0) is an
indication of the skill of the forecast. Murphy and Winkler
[1987] refer to the factorization of the joint distribution into
the conditional p(o|f) and marginal p( /') distributions as the
‘calibration-refinement factorization’. Furthermore, this can
also be done within a Bayesian framework that will spatially
downscale and bias correct the seasonal climate forecasts,
making them relevant for applications [Luo et al., 2007].

[4] The predictability of 2-meter air temperature (hereaf-
ter, temperature) and precipitation is a multidimensional
variable that can vary with geographical location (x, y),
lead-time (7), season (t) and with temporal (T) and spatial
(L) scales. A thorough literature review of seasonal climate
forecast quality assessment suggests a paucity of published
papers on evaluation of monthly predictions, a fact also noted
by Weigel et al. [2008]. To address this gap, we assess 1) the
actual or realizable, and 2) the idealized predictability of
monthly temperature and precipitation hindcasts from the
NCEP Climate Forecast System (CFS) [Saha et al., 2006]
and seven models from the DEMETER project [Palmer et
al., 2004]. The analysis shows the current predictive capa-
bility in the “actual” and “model” climate systems.

2. Data and Methodology

[s] DEMETER was a European Union (EU) funded
project that created a multi-model ensemble hindcast dataset
containing seven models each with nine ensemble members.
The models are from climate centers around Europe and
their acronyms are: CERFACS, ECMWEF, INGV, LODYC,
METEO-FRANCE, MPI, and UKMO. The DEMETER
models were initialized on Ist February, Ist May, 1st
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Figure 1. Actual predictive skill for each model grid point for 1981-2001 for a 30 day temporal average at a 1 day lead
time for May two meter temperature forecasts for (a) CERFACS, (b) ECMWE, (c) INGV, (d) LODYC, (¢) METEO
FRANCE, (f) MPI, (g) UKMO, (h) CFS, and (i) the MULTI-MODEL. Non-white colors represent significant correlation »

at the p < 0.05 level.

August and 1st November to assess the seasonal depen-
dence of the hindcasts, and integrated for 180 days [Palmer
et al., 2004]. For the period being studied, CFS has 15 nine-
month hindcasts initialized during each calendar month
[Saha et al., 2006]. The common period for the DEMETER
and CFS models is 1981-2001 (21 years).

[6] Two meter air temperature at a 2.5° x 2.5° resolution
from the ERA-40 re-analysis dataset [Uppala et al., 2005]
and monthly observed precipitation at 1.0° x 1.0° from the
Global Precipitation Climatology Centre (GPCC) [Rudolf et
al., 2005] are used as the reference datasets. Precipitation
was regridded to 2.5° resolution to match the model
hindcasts’ resolution.

[7]1 The joint probability distribution is computed between
the model ensemble mean and observations using the oper-
ational hindcasts and observed climate outcomes. This joint
distribution can be represented by a bivariate-Normal distri-
bution [Wilks, 2006]. The conditional mean, m(o|f), and
variance, o(o|f), of p(o|f) is m(o|f) = m(0) + m(o)%
and o%(olf) = o*(0)(1 — %), where m(0), m(f), o(0) and
o(f) are the means and standard deviations of the marginal
distributions of p(o) and p(f) respectively, o*(o) is the
variance of the marginal distribution of p(0) and r is the
correlation between the forecast and resulting observation.

Note that the conditional explained variance due to the
forecast is reduced from the unconditional variance (clima-
tology) in the climate variable by *0*(0), which provides a
measure of the information content from the seasonal
forecast. A variety of skill scores could be used [Wilks,
2006], but we apply the product-moment correlation coef-
ficient » between the observed climate and forecast ensem-
ble mean series at a particular lead time and temporal
average as it is central in determining the usefulness of
seasonal forecasts for applications. Correlation represents a
traditional summary measure between the forecasts and
observations [Murphy et al., 1989], and has been widely
used in previous research [Colman and Davey, 1999; Davies
et al., 1997; Folland et al., 2001; Peng et al., 2000; Van
Oldenborgh et al., 2005; Wu et al., 2009]. The methodology
is applied for each model separately and for an equally-
weighted (averaged) multi-model using all members from
the eight models [Hagedorn et al., 2005].

[8] The idealized predictability of a forecasting model is
thought to be the upper limit of its predictive capability,
where the forecast model and “climate” system have the
same physics; that of the forecast model [Koster et al.,
2004]. This model estimate considers the spread (variance)
of the ensemble members, which can be thought of as
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Figure 2. Actual predictive skill for each model grid point for 19812001 for a 30 day temporal average at a 1 day lead
time for May precipitation forecasts for (a) CERFACS, (b) ECMWF, (c¢) INGV, (d) LODYC, (¢) METEO FRANCE,
(f) MPIL, (g) UKMO, (h) CFS, and (i) the MULTIMODEL. (Key same as in Figure 1)

indicative of the predictive skill. If an ensemble has small
(large) spread, then the forecast is likely to be insensitive
(sensitive) to initial condition uncertainty, resulting in high
(low) predictive skill [Koster et al., 2004; Tang et al., 2008].
The methodology used is done for each DEMETER and
CFS model, and assumes that one member of the ensemble
is the “truth” and that the remaining ensemble average is
the “predictor”. As before, » measures the linear association
between the observed and predictor series. For DEMETER
(CFS) this procedure is repeated nine (fifteen) times with
each ensemble member in turn being considered as the
truth. The nine (fifteen) values of r are averaged, which
forms the final estimate of the system in predicting itself
[Koster et al., 2004].

3. Results

[o] The global actual predictive skill of temperature and
precipitation for the eight models was calculated at the
model grid scale; note that precipitation was only evaluated
over the land masses. Figure 1 shows the realizable predic-
tive skill of temperature for the eight models and multi-
model for the first 30 day period (i.e., a 30 day temporal
average at a 1 day lead time, or month-1) from Ist May.
High predictive skill of » > 0.70 is generally confined to the
oceans, especially over the equatorial Pacific and subtrop-

ical Atlantic. Skilful predictions over the equatorial Pacific
in the ECMWEF (Figure 1b) and UKMO (Figure 1g) models
appear to be largely behind the multi-model skill (Figure 1i)
in that region. Few models have noteworthy skill over land
regions for the first 30 day forecast period.

[10] Figure 2 shows the realizable predictive skill of
precipitation for month-1 from 1st May. Strikingly, there
are very few grids with > 0.40 (non-white areas), and there
are fewer significant correlations over the land masses
compared with temperature. Six out of eight models have
significant skill over the Amazon basin, and all models have
skill in the North American monsoon region. These two
areas are also seen in the multi-model prediction. Figure 3
shows multi-model predictive skill of temperature and
precipitation for month-1 and month-2 (second 30 day
period) of May hindcasts. For month-1, high predictive
skill of temperature over land (» > 0.70) is found over the
Amazon basin, Congo basin, south-central Asia, central
Europe and north—western and south—western North
America. As lead time increases to 31 days (month-2
forecast), it is apparent that skilful temperature predictions
reduce back to the tropics (Figure 3b) and little skill exists
for precipitation (Figure 3d). The multi-model tends to
improve the predictive skill over the individual models. In
general the land masses have negligible skill at a 31 day
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Figure 3. Multi-model forecasts for 1981-2001 for a 30 day temporal average at a 1 day lead time for May (a) two meter
temperature and (c) precipitation. Multi-model forecasts for a 30 day temporal average at a 31 day lead time for May (b) two
meter temperature and (d) precipitation. (Key same as in Figure 1.)

lead time, which is a relatively short lead time in terms of
seasonal climate prediction.

[11] Figure 4 shows the global grid scale idealized predic-
tive skill for May temperature hindcasts for the first 30 day
period. Idealized predictive skill in the DEMETER models is
higher than that seen for the real climate system. This is true
for the land masses and oceans and is particularly noticeable
for the models shown in the left panels of Figure 4. Low
idealized skill in the extratropical regions in the CFS model
could be due to the ensemble initialization, which produces
members staggered throughout the month leading to mem-
bers of varying ages. However, even with an ensemble of
differing “initial” values, the members seem to forecast a
similar climate state in the equatorial Pacific, which corrob-
orates previous research by Shukla [1998]. Idealized predic-
tive skill of May precipitation for month-1 (not shown)
exhibits much less idealized predictive skill than for temper-
ature. As the lead time increases only a narrow region of the
equatorial Pacific has idealized skill (not shown). This
significant decrease in idealized predictive skill, more so
for precipitation than temperature, demonstrates yet again the
chaotic nature of climate [Lorenz, 1963] and the possible
futility of long-lead seasonal climate forecasting.

[12] It appears that the high idealized predictive skill
evident during month-1 is attributable to the skill present

in the first two weeks of the forecast when the spread of
ensemble members is small. This is confirmed by calculat-
ing the idealized skill on the first and second 15 day
averages, which shows a large drop off in predictive skill
in the second of these 15 day periods (not shown).

4. Discussion

[13] This work has shown that limited realizable predic-
tive skill of temperature and precipitation is found in the
DEMETER and CFS seasonal climate forecasting models.
Globally for 30 day temporal averages the skill deteriorates
with lead time becoming primarily located over the equa-
torial regions, in particular the eastern Pacific. In other
words, these results suggest that the equatorial regions are
predominately where a change can be detected in the
conditional distribution of the observations given a seasonal
forecast. Generally, only during the first month of the
forecasts can a change in conditional distribution of the
observations be seen over the land masses. Previous research
concurs with the findings here showing higher predictive
skill in the tropics [Kumar et al., 2007; Peng et al., 2000;
Phelps et al., 2004; Weigel et al., 2008]. Results also
highlight that predictive skill in the idealized world is higher
than in the real world, especially for the first month but

4 of 6



L23711 LAVERS ET AL.: SEASONAL CLIMATE PREDICTABILITY L23711

a) cerfacs
75N L

60N
45N
30N
15N

EQ
158
308
458
60S

758

75N
60N
45N
30N
15N

EQ
158
308
458
60S
758

75N

60N
45N
30N
15N

EQ
158
308
458
60S
758

75N

60N
45N
30N
15N

EQ
158
308
458
60S
758

-177.5E —-120E —-60E OE 60E 120E 180E -177.5E —-120E -60E OE 60E 120E 180E

I I
0.25 0.40 0.55 0.70 0.85 1.0

Figure 4. Idealized predictive skill for each model grid point for 1981—-2001 for a 30 day temporal average at a 1 day lead
time for May two meter temperature forecasts for (a) CERFACS, (b) ECMWF, (¢) INGV, (d) LODYC, (¢) METEO
FRANCE, (f) MPI, (g) UKMO, and (h) CFS. (Key same as in Figure 1.)
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degrades significantly after about 30 days. The idealized
predictability estimates vary between the models (Figure 4)
and depending on the noise inherent in the climate model
system, the potential improvement in realizable seasonal
climate predictability will also vary. However, if areas with
higher idealized predictability (compared to realizable pre-
dictability) of temperature in the first month (compare
Figures 1 and 4) could be translated to the real climate
system, then improved month-1 climate forecasts could be
attained. This realization of predictive skill would have
benefits for decision making based on these forecasts.

[14] Attempts are being made by the Global Land-
Atmosphere Coupling Experiment (GLACE2) (R. D. Koster
et al., The contribution of soil moisture initialization to
subseasonal forecast skill: First results from the GLACE-2
project, manuscript in preparation, 2009) to assess whether
sub-seasonal predictive skill can be improved by having a
more accurately initialized land surface. The Global Energy
and Water Cycle Experiment (GEWEX) [Sorooshian et al.,
2005] and the Hydrologic Ensemble Prediction Experiment
(HEPEX) [Schaake et al., 2007] also aim to improve
seasonal prediction practices. There is potential in using a
multi-model approach [Krishnamurti et al., 2006], but the
ideal way to combine the models is unresolved [Kirtman
and Pirani, 2009]. Given the actual skill demonstrated by
operational seasonal climate forecasting models, it appears
that only through significant model improvements can
useful long-lead forecasts be provided that would be useful
for decision makers — a quest that may prove to be elusive.
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the United Kingdom Natural Environment Research Council (NER/S/A/
2005/13646A) and is currently based at Princeton University, USA. We
acknowledge NOAA grants NAO60OAR4310051 and NA17RJ2612 that
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