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ABSTRACT: Oil spill detection is crucial, both from an environmental perspective 

and the associated economic losses. Current optical oil sensing techniques, such as 

underwater microscopy and light scattering methods, mainly focus on detecting the 

properties of particles or organisms in water and often require costly equipment and 

sophisticated data processing. Recent studies on graphitic foam show its 

extraordinary pollutant absorbing properties, with high absorption weight ratios. Here 

we propose to produce a graphene foam based ultra-light material that changes its 

optical properties on absorbing oil species. The results demonstrate clear changes in 



 
 

optical transmission and scattering properties of graphene foam when exposed to 

various oils.  The effective graphene foam sorbent can be easily integrated with optic 

fibers systems to detect the optical property variations and also to monitor oil 

presence/spillages remotely. Such sensors can also be used for underground oil 

exploration. 

1.Introduction 

The leakage of oil leads to a disastrous consequences in various industries, 

resulting in massive economical losses and, more importantly environmental 

pollution. Developing oil sensor to diagnose the oil leak at early stage before they 

causing widespread damage is crucial.[1] Petroleum hydrocarbons (HC) present a 

multiphase mix consisting of liquid, dissolved gaseous or solid phase in seawater.[2] 

Direct oil sensors detect methane, polyaromatic hydrocarbons, or hydrocarbons (HC) 

in seawater directly, while indirect oil sensors rely on discriminating the properties of 

the local seawater environment with and without the presence of oil. The indirect 

methods mainly include measurement of seawater physical properties (such as 

concentration of oxygen or CO2), optical light scattering, and under water microscopy. 

Optical light scattering method [3, 4] is usually used to detect the scattered light or 

diffraction patterns of the suspended and undissolved materials in a water sample, 

while underwater microscopy [5-7] is used for analysing microscopic organism to 

support dispersant injection,[8-10] which reduce the oil to small droplets and 

increase microbial degeneration.[11, 12] The existing optical methods, which focus 

on detecting the particles or organisms in the water generally require highly 

sensitive/expensive sensors to identify the small sized particles and also suffer from 

time consuming and complicate data processing.  



 
 

Graphene foam (GF), taking advantages of its ultra-light weight,[13] high surface 

area and porous structure, has been recently proposed as a versatile and recyclable 

sorbent material. It shows highly efficient absorption of petroleum products and fats 

(up to 86 times of its own weight), requiring no further pretreatment, which is tens of 

times higher than that of conventional absorbers.[14-17] Additionally, via simple heat 

treatment, the graphene foam can be reused up to 10 times without a drop in 

performance.[14, 15] Hence, the graphene foam can have widespread potential 

applications in environmental protection as well as in oil exploration. 

In this paper we present a novel study on the optical transmission and scattering 

properties of graphene foam. Clear changes in these optical effects that occur due to 

the absorption of various oil species were observed. The presence of oil droplets in 

graphene foam leads to much stronger scattering effects, a change that can be 

easily detected remotely via optic fibres and imaging systems. Imaging of oil soaked 

graphene foam in multiple optical microscope detection modes demonstrates the 

presence of oil droplets (causing scattering) and also aid in their identification. 

Therefore, with the graphene foam, the efficiency of current underwater microscope 

and scattering based oil spill detection methods can be enhanced.  

2.Fabrication of graphene foam  

The graphene foam samples were fabricated by chemical vapour deposition (CVD) 

method via nickel foam template, with pore size about 450 µm, area density 420 

g/m2 and total thickness of 1.6 mm.[18] After the CVD process, the few layer 

graphene (FLG) covered Ni scaffold was trimmed along the edges to create access 

for FeCl3 solution, which etched the nickel to produce the free-standing FLG foam. 

Then the sample was washed by deionised (DI) water and etched in 10% HCl to 



 
 

remove Fe.  Finally, after being washed again in DI water and rinsed in iso-propanol 

(IPA), the graphene foam was dried in ambient air.  Figure 1(a) and (b) show the 

optical and SEM images of graphene foam, where the multi-layer network structure 

can be observed.  

 

Figure 1. (a) Optical images of graphene foam. (b) SEM image of graphene 

foam.  

3. Transmission studies on graphene foam/oils composite samples. 

The transmission spectra for graphene foam and the three oils are shown in Figure 

2(a). It can be seen that compared with glass (reference), the transmission of nickel 

and graphene foam are very low (less than 8%). Because of the similar structure, the 

transmission curves of the two foams are similar in shapes. The transmittances for 

various oil species (used in our study: stroke, supercut and turbo oils) were also 

measured, Figure 2(b). The solid lines are transmission spectra for oils in plastic 

container with oil depths of about 2 mm. Empty containers were used as reference. 

As for the dash lines, these are transmission spectra for oils in graphene foam with 

reference to empty foams. The measurements were done under oil saturate 

conditions and it was found that the transmission through the foams was sensitive 



 
 

even for 0.5 µL oil, before saturation points. By combing with optical fibre sensing, it 

will be possible to detect minute amounts of oil and construct an GF based oil sensor.  

 

Figure 2. (a) Transmissions of graphene and Nickel foam, with reference to 

glass slide. The thickness for both of the foams was near 1.6 mm. (b) 

Transmissions of stroke oil, supercut oil, and turbo oil (solid lines) with 

respect to standard plastic container. Dashed lines refer to the oils soaked in 

GF, with empty GF as reference. (c) Transmission spectra for crude oils 

(including oils from Guffy, Spindletop, Wattenberg, and West Texas refineries). 

(d) Transmission spectra for crude oils when soaked in GF. The depth of oils 

in plastic container was about 2 mm.  

In wavelength ranges from 400 to 500 nm, all of the oils in plastic container have 

very low transmissions, which relate to high absorption, especially for the turbo oil, 



 
 

with a near zero transmission at 400 nm. The different absorptions in short 

wavelength regime (<550 nm) result in the difference of visual colours of the three 

oils, as they have almost the same transmissions, about 100%, in longer 

wavelengths (>600 nm).  

For wavelengths at 400-600 nm, the transmission of stroke oil in graphene foam is 

very similar to that in plastic container, with the same characteristic shape but 

different intensity. The supercut oil still has a higher transmission in GF than the 

other two oils, just as it does in plastic. The shape of transmission for turbo oil in 

graphene foam is very different from that in plastic, and this may due to the 

scattering effects.  

Thus detection of oils transmission signatures can be an efficient way for 

differentiating the oil species. Most oils have characteristic transmission curves, 

although the transmission spectrum may change in the graphene foam due to the 

scattering effect. However, the species can be identified by comparing with 

transmission in transparent container. For example, it can be employed to achieve 

the identical characteristic behaviour, or considered by the relative relationships 

between different oils.  

Four kinds of crude oils (sourced from Wattenberg, Spindletop, West Texas, and 

Guffey oil fields) in graphene foam were also studied, as illustrated in Figure 2(c-d). 

In order to investigate the optical properties of crude oils in graphene foam, the 

transmissions measurements were performed. As shown in Fig 2(c), a low 

transmission efficiency in short wavelength regime (< 500 nm) indicated strong 

corresponding absorption. Although with different colours in bottles, transmission of 

Spindletop oil is very close to Guffy oil, but with larger absorption in the range 470 - 



 
 

700 nm. The transmissions of West Texas and Wattenberg oils were much lower 

than the other two oils in the whole visible regime.  

Figure 2(d) shows transmission spectra for crude oils in GF, with GF without oil as 

a reference. Negligible transmission (due to strong absorption) takes places through 

GF containing West Texas and Wattenberg oils for light with wavelength shorter than 

600 nm. Transmission for Wattenberg oil increase gradually up to 30% for larger 

wavelengths, while that for West Texas remains near zero. As for Spindletop oil, its 

transmission is higher than that of Guffy oil for red light with wavelength longer than 

650 nm, but has a lower transmittance for green and yellow light. It can also be 

noticed that the blue light with wavelengths smaller 470 nm is absorbed by all the 

crude oil samples tested.  

4.Graphitic foam for oil spill detection based on optical imaging method.  

Optical imaging measurements of graphene foam with and without oil were 

performed to explore the possibility of using graphene foam to detect oil 

environments. This study also sheds light on the optical properties and various 

scattering effects displayed by the graphene foam plus oils composites. A Carl Zeiss 

Scope A1 optical microscope was used which was equipped with several detection 

modes (dark and bright field). The microscope can be operated under reflected or 

transmitted light or with a combination of both. As for reflected (R) mode of incident 

light, both the bright field (BF) and dark field (DF) mode were studied, while for 

transmitted (T) light, bright field and phase contrast modes were studied. The phase 

contrast method transfers the phase-shift into intensity or colour difference and has 

three phase modes (Ph 1- 3) with varying numeral apertures adjusted by different 

ring diaphragms. Relevant modes of the microscope are further discussed in 



 
 

supporting information (Figure S1) with images of graphene/oil composites in various 

modes.  

Figure 3 demonstrates optical images of graphene foam with and without oil in 

various optical modes. Various oil species were studied analysed (supporting 

information S2-S5) but due to the most clarity the results for GF soaked with stroke 

oil are presented in Fig 3 (d-f) under three detection modes. All the optical imaging 

was performed at the same position in GF while illuminating with constant intensity of 

both reflected/transmitted light simultaneously, with identical objectives and detection 

modes. Figure 3 (a-b) only show the GF in various optical modes. In the dark field 

(DF) modes the microscope blocks the normally propagating unperturbed light rays 

and only allows the scattered light waves through the objectives, hence the darker 

images. This allows the viewing of sharp edges and objects which are of the same 

scale as the wavelengths of light.  

 

 Figure 3. Optical images of graphene foam (a)-(c) without and (d)-(f) with 

stroke oil. Images in each column are under the same detection mode, with (a), 

(d) under bright field (BF) reflected (R) and transmitted (T) light; (b), (e) under 



 
 

dark field (DF) reflected and bright field transmitted light; (c),(f) under dark 

field reflected light and phase contrast (Ph3) transmitted light. In (d-f), oil 

appears as bright regions due to focusing effects. In DF mode the boundries of 

the oil droplets are clearly observed (marked by red circles). All of the images 

were taken on the same position. Images under other modes can be found in 

S2-5.  

In Fig. 3(d-f) the presence of oil droplets can be clearly seen in the form of bright 

spots within GF. The oil droplets lead to the local optical focusing of the transmitted 

light causing bright regions. The DF mode allowed the visualisation of the edges of 

oil droplets (Fig. 3(f)), marked with red circles. The clear difference between a 

graphene/air and graphene/oil composite is the presence of these additional oil 

boundaries (interfaces) which lead to the scattering of incident light rays,[19] as 

discussed in the later experiments as well. Thus in this method, the presence of oil 

environments can be detected by comparing images of GF with and without oils in 

various modes. 

Moreover, the possibility of differentiating the oil species by optical images is 

investigated. First, graphene foam was soaked with three oils, including supercut oil, 

turbo oil and stroke oil, which are transparent with different colours (Figure 4 (a)). 

Then the samples were detected under transmitted light, with (b)-(d) in bright field 

mode and (e)-(g) phase contrast mode. Images in the same column are illustrating 

identical positions of the same sample. Interestingly, oil droplets were observed as 

small light distortions in bright field and arc-like halos in phase contrast mode. The 

sizes of the oil droplets are about 10 µm, thus it is expected that geometric scattering 

will happen when light pass through the samples.  



 
 

 

Figure 4. (a) Samples of different oils. Optical images of Graphene foam with 

(b) and (e) supercut oil, (c) and (f) turbo oil, (d) and (g) stroke oil.  (b)-(d) are 

under bright field of transmitted light, while (e)-(g) are under phase contrast 

mode (Ph 2).    

The difference colours of the oils in the bottles indicate different absorptions 

characteristic. As can be seen in Figure 4(a), supercut oil is bright yellow while 

stroke and turbo oil are reddish. Turbo oil has strongest absorption in shorter 

wavelengths range thus mostly the red light passes. The colours of the oils in the 

graphene foam differed from their original colour in the bottles; this may be due to 

the foam’s absorption as well as the scattering effect.  What can also be noticed is 

that the colours of supercut and stroke oils are very similar in the foam. However, 



 
 

more distortion can be seen when light pass though supercut oil as it is much thicker 

than the other two oils.  

Images of crude oils in graphene foam are illustrated in Figure 5, in which the 

same row are for the same oil, with (a) Wattenberg field oil, (d) Spindletop field, (g) 

West Texas intermediate oil, and (j) Guffy field oil. The detection modes in each 

column was varied, with images in the first column taken under only bright field 

transmitted light (T(BF)), images in the second column with dark field reflected light 

(R(DF)), and images in the third column with both bright field transmitted light and 

dark field reflected light (T(BF)+R(DF)).  

In transmitted light, different oil species in GF present distinct colour features. The 

crude oils (except for Guffy field oil) were mostly black coloured in the bottles and 

could not be differentiating by naked eyes, as demonstrated in S6. Guffy field oil in 

the bottle is extra light/transparent, similar to the specialised oils in Figure 4. Thus 

the appearance of Figure 5 (j), for Guffy field oil in GF is similar to images in Figure 

4(b and d). As for the other three dark crude oils, the chemical and physical 

properties, associated with absorption and scattering effect respectively, would be 

different, which leads to the difference in images under transmitted light. The images 

for West Texas intermediate oil in Figure 5(g) are totally dark, indicating a very low 

transmittance of visible light, while the weak red colour of Wattenberg oil in image 5 

(a) suggest only a small portion of red light passes (in agreement with Fig. 2d).  



 
 

 

Figure 5. Optical images of graphene foam with crude oils. Each row of the 

images are with the same oil, with (a) Wattenberg field, (d) Spindletop field, (g) 

West Texas intermediate, and (j) Guffy field oil. Each column represents a 

different detection mode, with the first column for bright field transmitted light, 

second column for dark field reflected light, and the third column for both 

reflected (dark field) and transmitted (bright field) light.  

 



 
 

The results for dark field reflected light are of interest as they present the oil 

distribution within the GF, even when the oil is highly absorbing and dark. The 

distribution of Wattenberg field oil (Figure 5(b)) is quite similar to Guffy field oil (5(k)), 

with oil forming smaller droplets, compared to the larger formless shapes presented 

by Spindletop field and West Texas oils (Fig. 5 e and (h)). The similar reflective 

optical images of oils in GF indicate similar surface oil distributions, which are 

associated with the oils physical properties, such as density, viscosity and 

temperature, etc. As for images in the third column, what can be seen is that they 

are superposition of images in the first and second columns. By combining the two 

optical modes, more physical and chemical properties of crude oils will be revealed. 

The images reveal the visible appearance of the GF/crude oil composite along with 

the oil droplet shapes and distribution. Optical images of crude oils taken under 

bright field reflected light are also shown in S7.  

5.Graphene foam for oil spill sensing based on Light diffraction.  

As discussed above, the oil droplets and their distribution in graphene foam may 

lead to light scattering. This is proven by the oil transmission spectra changes which 

occur when the oil species are soaked in GF (Figure 2). The imaging in various 

modes also suggests that oil droplets in GF cause optical focusing and their 

boundaries lead to optical scattering effects (Figure 4-5). To understand the effects 

of the presence of these droplets on the far filed transmission properties of GF, 

optical diffractions from GF (with and without oil) were studied. A customised angular 

diffraction set up was used with a red laser source of wavelength 650 nm. Figure 6(a) 

depicts the schematic of the diffraction measurement set up, while (b) shows a laser 

beam being transmitted through a GF sample. In the measurement setup, diffraction 



 
 

patterns were obtained by replacing the detector with a white screen and the 

patterns of the screen were captured by a camera. Then the screen was replaced by 

a detector to measure the angular optical intensity. A stepper motor was used to 

rotate the sample stage horizontally between -90 to 90 degrees, with 1 degree 

resolution.  

 

Figure 6. (a) and (b) Schematic and photo for the diffraction measurement set 

up. (c) Diffraction patterns when light transmitted through GF without oil 

(middle) and with stroke oil (sides). Different patterns can be obtained at 

various positions of the foam. Normalized light intensity along the green line 

across the pattern in the middle (d) and below (e).   



 
 

 

Figure 6 (c) demonstrates diffractions of graphene foam with and without stroke oil. 

In the centre of Figure 6 (c), the pattern represents the light passing through 

graphene foam without any oil, and the shape is very similar to the pattern when light 

passing through glass slide, without any diffraction/scattering effects. However, when 

the light passes through graphene foam with stroke oil (phenomenon for stroke, 

turbo and supercut oils are similar) the diffraction pattern changes dramatically. The 

patterns generated from five different regions of the sample are shown in the corners 

of Figure 6(c). Figure 6(d and e) are illustrating the normalized light intensity along 

the green lines across the diffraction patterns in the middle and at the bottom, 

respectively. For graphene foam without oil, light intensity distribution has a sharp 

peak in the centre of the angular diffraction intensity pattern. The average pore size 

for graphene foam is in hundreds of microns (much larger than the wavelength of 

light), hence negligible diffraction/scattering of light occurs and a pronounce zero 

order peak (undiffracted light) is observed in the centre.  

However, the light intensity gets distributed in the larger degree ranges when oil is 

added, as shown Figure 6(e). The three peaks in this figure are consistent with the 

three bright spots in the bottom pattern of Figure 6 (c). Optical scattering is a 

prominent effect that is displayed by the oil rich graphene foams. The focusing 

effects from each droplet and the scattering from the additional boundaries cause the 

spreading of the transmitted laser beams. This effect can be conveniently used for 

remote oil detection via optic fibres, where the presence of oil (after absorption in GF) 

will lead to sufficient drop in transmission efficiency. The scattered rays are less to 

be coupled and transported by the optic fibres to the detectors; hence a transmission 



 
 

drop will occur and likewise the spectral signature can be used for oil species 

recognition. 

The diffractions of crude oils in graphene foam were also studied (Figure 7), 

Spindletop and Guffy oils shows distinguish diffraction effects. Because of the low 

transmission of Wattenberg and West Texas oil in graphene foam, no diffraction was 

observed. This can be explained by Figure 2 (d), in which no light passes through 

the West Texas oil in graphene foam while no more 10% light passes through the 

Wattenberg oil in the foam.  

 

 

Figure 7. Diffraction patterns in response to incident red laser propagating 

through graphene foam soaked in (a) Spindletop field and (b) Guffy field crude 



 
 

oils. (c) Absorption efficiencies of Graphene and Nickel foam. Graphene foam 

absorbs crude oils from West Texas (21.8×), Guffy field (15.3×), Wattenberg 

(17.8×), and Spindletop field (16.6×) with high efficiency compared with Nickel 

foam, with no more than 4 times weight gain.   

To signify the superiority of graphene foam over a Ni based foam a comparison of 

absorption efficiencies (with crude oil samples) was performed (Figure 7(c)). For 

each of the oil sample, graphene foam has displayed higher efficiency than Nickel 

foam, which has weight gains of no more than 4 times for the oils. Due to the larger 

density, absorption efficiencies of both foams for West Texas oil are the highest, with 

near 21.8 times for graphene foam and 3.8 times for Nickel foam.  

Conclusion  

In conclusion, we proposed a simple and innovative way to detect oil environment 

by using graphene foam through optical imaging, as well as light scattering method. 

Compared with the existing methods, which detect oil emulsions or organism in the 

water and often involve complicate data processing, the graphene foam’s 

performance as an oil collector can enhance the oil signal, making the detection 

easier, faster and economizer. Moreover, different oils in graphene foam give 

different colours in optical images, providing the possibility to identify the oil species.  

Interestingly, under microscope imaging, oil droplets can be observed in the 

graphene foam, which enhance the scattering effects, leading to the changes in 

spectral transmission. Despite the changes, the characteristic shapes of the 

transmission spectra remain the same, as well as the relative relationships between 

different oils. Finally diffraction of the oil in graphene foam was studied and results 



 
 

suggest that effect can be used to detect oil in conjunction with present optic fibre 

based oil sensors.  
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