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Abstract 10 

This paper describes a novel application of a pattern recognition technique for predicting boundary 11 

shear stress distribution in open channels. In this approach, a synthetic database of images 12 

representing normalized shear stress distributions is formed from a training data set using recurrence 13 

plot analysis. The face recognition algorithm is then employed to synthesize the recurrence plots 14 

and transform the original database into short-dimension vectors containing similarity weights 15 

proportional to the principal components of the distribution of images. These vectors capture the 16 

intrinsic properties of the boundary shear stress distribution of the cases in the training set, and are 17 

sensitive to variations of the corresponding hydraulic parameters. The process of transforming one-18 

dimensional data series into vectors of weights is invertible, and therefore, shear stress distributions 19 

for unseen cases can be predicted. The developed method is applied to predict boundary shear 20 

stress distributions in smooth trapezoidal and circular channels. The results show a cross correlation 21 

coefficient above 92%, mean square errors within 0.04% and 4.48%, and average shear stress 22 

fluctuations within 2% and 5%, thus, indicating that the proposed method is capable of providing 23 

accurate estimations of the boundary shear stress distribution in open channels. 24 

Keywords 25 

Boundary Shear Stress; Data Modelling; Face Recognition; Open Channel; Recurrence Plot 26 

Analysis 27 

Introduction 28 

Boundary shear stress is the result of the tangential component of the hydraulic forces that act in the 29 

direction parallel to the channel’s boundaries and transfer momentum to its bed and walls (Chow, 30 

1959). Excessive shear stress can undermine channel stability by eroding bank sides and cause 31 

changes in the river morphology by affecting the transport and deposition of sediments (Julien, 32 
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1995). Erosion often results in higher levels of turbidity and lower water quality levels. Furthermore, 33 

an increase in sediment movement and deposition can cause a decrease in channel capacity, and 34 

consequently, higher flood risk. Computation of flow resistance, side-wall correction, sediment 35 

discharge, channel erosion or deposition, cavitation problems, and design of stable channels are 36 

among the problems which require accurate estimates of the boundary shear stress distribution 37 

(Yang and Lim, 1997; Guo and Julien, 2005; Blanckaert et al., 2010).  38 

The distribution of boundary shear stress over the wetted perimeter of a channel cross-section is 39 

non-uniform. This is true even for steady flows in straight prismatic channels with a simple cross-40 

sectional geometry. This non-uniformity is mainly due to the anisotropy of the turbulence which 41 

produces transverse gradients of Reynolds stresses and secondary circulations (Gessner, 1973). 42 

Tominaga et al. (1989) and Knight and Demetriou (1983) showed that the boundary shear stress 43 

increases where the secondary currents flow towards the wall, and decreases when they flow away 44 

from the wall. Other factors that govern the distribution of shear stress are the geometry of the cross-45 

section, lateral and longitudinal boundary roughness distributions (Blanckaert et al., 2010) and 46 

sediment concentration (Khodashenas et al., 2008). 47 

To date, numerous investigations have been conducted and various mechanistic and empirical 48 

methods have been developed for understanding and estimating the magnitude and distribution of 49 

boundary shear stress. However, due to the complexities involved, boundary shear stress has 50 

proven to be one of the most challenging parameters to quantify and measure, even for simple 51 

smooth prismatic channels with uniform flow. 52 

For steady uniform open channel flow, an approximation of the average boundary shear stress can 53 

be found by applying Newton’s second law on a free body, and balancing the downslope component 54 

of the fluid weight by the frictional force exerted by the boundary: 55 

sinPL AL    
(1) 

where   is the average boundary shear stress (Nm-2), A is the channel’s cross-section (m2), P is the 56 

channel’s wetted perimeter (m), L is the reach length (m),  is water’s specific weight (kgm-3) and  57 

is the slope angle of the channel bed plane. Rearranging Eq. (1) gives: 58 

sin sin
A

R
P

       
(2) 

where R is the hydraulic radius of the channel (m). This simple equation, often referred to as the 59 

slope method, is valid for both laminar and turbulent flow regimes, but only provides the average 60 

boundary shear stress. 61 

The logarithmic “law of the wall” (Patel, 1965) is another popular and simple method for indirect 62 

estimation of the boundary shear stress in rivers and channels. This law, for a two dimensional 63 

turbulent flow is given by: 64 
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where u is the time-averaged (mean) streamwise velocity profile (ms-1), z is the vertical coordinate 65 

(m), u* is the shear velocity (ms-1) given by  
1/2

* /u   ,  is the kinematic viscosity (m2s-1),  is 66 

the von Karman’s constant =0.41 and C is a dimensionless integration constant related to the 67 

thickness of the viscous sub-layer. Although the log law is strictly valid for the turbulent sublayer 68 

(approximately the lower 20% of the depth), it is commonly extended over the entire flow depth in 69 

rivers and channels (Petrie and Diplas, 2015). If the mean velocity profile, u(z), is known, then a  70 

simple linear regression (e.g. least squares) can be applied to fit the velocity profile to Eq. (3) and 71 

calculate the log law parameters, the shear velocity, and consequently the shear stress. The 72 

advantage of this approach is that it does not need detailed information about bed roughness, 73 

however it requires measurements of the streamwise velocity profile, and making assumptions for 74 

the viscous sublayer thickness, which to some extent limits its applicability and accuracy.  75 

Preston’s (1954) method is the most widely practiced technique for measuring boundary shear stress 76 

in smooth channels. In this method, a Preston tube is used to infer the velocity of the water flow by 77 

recording the difference between static and total pressures. A non-dimensional calibration function 78 

is then established based on the “law of the wall”, Eq. (3), and used to determine the boundary shear 79 

stress from the differential pressures. The simplicity of the experimental setup and its operation are 80 

the main reasons behind the popularity of this method. However, for rough boundaries, application 81 

of the technique is substantially more complicated, due to the absence of a viscous sublayer. A 82 

number of studies (Hwang and Laursen, 1963; Ghosh and Roy, 1970; Hollick, 1976, Hollingshead 83 

and Rajratnam, 1980) have attempted to extend the use of this technique to rough surfaces, and 84 

have calibrated curves for the Preston tube by using Nikuradse’s (1933) model of velocity distribution 85 

over rough boundaries. Although promising, these methods can only be applied when the sand 86 

equivalent roughness height of the surface is known, which makes them unsuitable for application 87 

to a variety of open channels. Other methods based on fitting the log law of the wall such as Clauser's 88 

method (1956) and the boundary characteristics method (Hinze 1975, Papanicolaou et al., 2012) 89 

have been developed and applied to gradually (Afzalimehr and Anctil, 2000) and rapidly varying 90 

flows over spatially varying boundaries (Papanicolaou et al., 2012). 91 

Geometrical methods for estimating shear stress distribution (Leighly, 1932, Einstein, 1942, 92 

Lundgren and Johnson, 1964; Khodashenas and Paquier, 1999; Yang and Lim, 1997; 2005, Yu and 93 

Tan, 2007; and Abderrezzak et al., 2008) consist of splitting the channel cross-section into sub-94 

regions where the shear force along each segment of the boundary is calculated by balancing the 95 

forces against the weight of fluid in the corresponding sub-region. In these approximations, mapping 96 

and discretising the wetted perimeter is often a complicated and sensitive task, however, they have 97 

the advantage of requiring relatively low computational effort. 98 
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Where abundant experimental data existed, researchers (e.g. Knight, 1981; Knight et al., 1984, 99 

1994; Flintham and Carling, 1988; Pizzuto, 1991; Olivero et al., 1999) have used regression and 100 

correlation analysis to derive empirical and semi-empirical equations for boundary shear stress. 101 

These equations are capable of only calculating mean, maximum and percentages of shear stress 102 

carried on the channel’s walls and beds with relatively good accuracy, but are unable to provide the 103 

distribution of shear stress along the entire wetted perimeter. Some other researchers (e.g. Zheng 104 

and Jin, 1998, Jin et al., 2004; Guo and Julien, 2005 and Bilgil, 2005) have solved the governing 105 

energy transport, continuity, and momentum equations to formulate analytical and semi-analytical 106 

solutions for calculating the boundary shear stress. These methods often rely on a number of 107 

subjective and controversial assumptions and require a large amount of computing resources which 108 

make them impractical. With the advent of more powerful computers, Computational Fluid Dynamic 109 

(CFD) techniques have been also used (e.g. Christensen and Fredsoe, 1998; De Cacqueray et al., 110 

2009) to solve the referred set of equations and calculate the boundary shear stress distribution. 111 

Nonetheless, these methods are computationally expensive and the model outputs are extremely 112 

sensitive to mesh size, the turbulence closure model, and other internal parameters which are 113 

defined by the user. 114 

Recently, information theory and machine learning techniques have been used to tackle this 115 

problem. For instance, the principle of maximum entropy has been used (e.g. Sterling and Knight, 116 

2002; Li and Zhang, 2008; Bonakdari et al., 2015) to establish relationships for the boundary shear 117 

stress. A comparison with experimental data has shown that these approximations provide relatively 118 

flat shear stress distributions which make them unreliable. The divergence between the numerical 119 

and experimental results increases at the regions around the corners of the sections where 120 

secondary flow structures are more pronounced. Cobaner et al. (2010) used a neural network with 121 

4 hidden layers to predict the percentage of the shear force acting on the walls of smooth rectangular 122 

channels and ducts. The study concluded that the ANN predictions were less biased and slightly 123 

more accurate than the classic empirical models suggested by Knight et al. (1984) and Knight and 124 

Patel (1985). 125 

Measuring the actual local shear stress along the channel’s boundaries is difficult and costly owing 126 

to the complexity of the turbulent velocity field, presence of flow structures, and the small magnitude 127 

of the stress. Shear stress also represents a difficult parameter to calculate due to the variability of 128 

channel slope, geometry and flow structures, which are the main influencing factors in the complex 129 

flow process. To date, all the developed methods are inherently based on some sort of simplifying 130 

assumption, and therefore, the problem of accurately estimating these stresses has only been 131 

partially resolved (Zheng and Jin, 1998). 132 

The recent relative abundance in available experimental data has offered an opportunity to test and 133 

validate novel techniques for describing the boundary shear stress distribution. In this paper, an 134 

advanced pattern recognition technique is employed to predict the distribution of boundary shear 135 
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stress in open channels. This technique, which results from merging two existing algorithms 136 

(Recurrence Plots and Eigenfaces for Recognition),  is combined with a standard regression model 137 

for the prediction of data series representing shear stress distribution of flows with known attributes 138 

(i.e. Froude numbers, flow depths and channel slopes). 139 

In the following Sections the Recurrence Plot analysis and its adaptation to the Eigenfaces for 140 

Recognition is explained. This is followed by a description of the experimental data used in the study 141 

and details of the proposed methodology. Next, the prediction of boundary shear stress distributions 142 

in trapezoidal and circular channels are presented and critically discussed. The paper concludes 143 

with a discussion on the advantages of the method and suggestions for improvement. 144 

Background 145 

The proposed approach for predicting boundary shear stress distribution combines Recurrence Plot 146 

(RP) analysis (Eckmann et al., 1987) and Eigenfaces for Recognition (Turk and Pentland, 1991). RP 147 

is used to transform one-dimensional data series into two-dimensional arrays which can be 148 

graphically represented. Eigenfaces for Recognition is then used as a means of identifying patterns 149 

in the arrays and to transform these into short-dimension vectors which can then be used to predict 150 

boundary shear stress distributions. It is to note that despite using a method that was originally 151 

developed for the recognition of human faces using 2D still images; no “recognition” is involved in 152 

the proposed methodology. Instead, the technique is used to filter the original data and reduce its 153 

dimensionality whilst preserving intrinsic qualities. These reduced databases are then used to 154 

produce shear stress distribution for unseen cases. 155 

Recurrence Plots 156 

Recurrence Plots are visualization tools that can be used to picture the recurrence behaviors, hidden 157 

patterns and nonlinearities in data sets (Marwan et al., 2007). In this technique, starting from the first 158 

point of a data series, d-dimensional vectors are formed by taking a sample of d consecutive points 159 

in the data series: 160 
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where subscripts j and k represent the jth and kth data points in the data series. The d-dimensional 161 

vectors are then correlated by calculating the Euclidean distance between them. This parameter can 162 

then be used to form the RP matrix:  163 



6 
 

11 12 1

21

1

N

jk

N NN

e e e

P
e e

e

R

e

 
 
 
 
 
 

 (5) 

where ejk is the distance between vectors jq  and k
q and N is the total number of vectors, which 164 

define the number of data points in each column and row of the matrix. Note that the values of ejk in 165 

the RP matrix vary with d whilst any value of d would result in a matrix that could be used in the 166 

recognition method as described further below. However by letting d = 1 each row in the RP matrix 167 

effectively becomes a normalized version of the original one-dimensional data series which has the 168 

benefit of maintaining its basic structure throughout the pattern recognition process. 169 

By projecting the RP matrix on a Cartesian space, a map of the data can be generated. In this case 170 

each pixel on the map has the coordinates {j,k} with j, k = 1, 2, …, N, as well as a numerical value 171 

that is proportional to its associated distance, ejk. In an 8-bit grayscale image representation, the 172 

values of ejk can take values within the range 0 to 255, where the brightness intensity of each pixel 173 

indicates a larger ejk. Through the calculation of the RP matrix, the correlation between all data points 174 

within the data series is established whilst preserving the basic structure of the database. Such 175 

transformation and visualization helps to make explicit features of data which otherwise would be 176 

difficult to observe in the original series.  177 

The graphical representations of RPs helps to visualize characteristic patterns of the data, although 178 

for numerical analysis, its elements need to be sorted in a N2 dimension vector where all rows of the 179 

RP matrix are assembled in sequence:  180 

 11 12,  , ,  T

NNe e e   (6) 

The arrangement of columns of the RP matrix into the vector is schematically shown in Figure 1. 181 

The unique configuration of RPs makes them particularly suitable for machine learning. That is 182 

because pattern recognition methods are capable of identifying data sets with unique features such 183 

as those made explicit through the RP method. In the following sections the post-processing of 184 

vectors and their relationship with the hydraulic parameters that control shear stress distributions 185 

is discussed in detail. 186 
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 187 

Figure 1. Relationship between the RP matrix and the  vector. 188 

Eigenfaces for Recognition 189 

The Eigenfaces for Recognition is based on the premise that any 2D image of resolution N x N can 190 

be represented by an N2 size vector , where each element is a real number that represents an 191 

individual pixel in the image. If the training set consists of M images, then the average face of the 192 

training set, , is defined by: 193 

1

1
Γ

i M

i

iM






   (7) 

and hence, the difference between each image, i, and the average face,  is given by: 194 

; 1,2,...,Γi i i M    (8) 

Performing principal component analysis (PCA) on the collection of all i, would result in a set of M 195 

orthonormal vectors which best describe the distribution of data. PCA is a statistical procedure that 196 

is able to identify orthogonal modes or degrees of freedom within a numerical array, and transform 197 

a number of possibly correlated variables into a smaller number of uncorrelated variables, which are 198 

called the principal components. The eigenvectors and eigenvalues of these principal components 199 

can be determined from the covariance matrix: 200 

  TC AA  (9) 

where 201 

1 2A  [ , ., ]M     (10) 

Matrix C is of size N2, and finding its eigenvectors and eigenvalues is computationally expensive. If 202 

the number of training images, M, is less than the dimension of the space, N2, then there will only be 203 

M-1 meaningful eigenvectors (Turk and Petland, 1991), and hence, to reduce the calculations, an M 204 

by M matrix L can be constructed to find the meaningful eigenvectors: 205 
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  TL A A  (11) 

where 206 

T

ij i jL    (12) 

The principal components of the distribution of images are called the eigenfaces, ul, which can be 207 

calculated from a linear combination of the images and eigenvectors: 208 

1

1,...,
M

l li i

i

u v l M


   (13) 

where vli is the ith eigenvector of the covariance matrix. The collection of eigenface vectors defines 209 

a subspace of training images which is called the “face space”. Any input image expressed in vector 210 

form , can be projected into the face space through the following operation: 211 

( ), 1,...,T

i iu i M      (14) 

where i is a weight factor that describes the contribution of the ith eigenface in representing the 212 

image, and M’ is the number of significant eigenvectors, associated with the M largest eigenvalues 213 

i.e. M’ < M. Furthermore, the set of weights ordered in a short-dimension vector ΩT = {ω1, ω2 . . ., 214 

ωM’} can be used to project any new image, ’, into the face space by: 215 

( ' ), 1,...,TU i M       (15) 

where U={ui} is the collection of eigenfaces. Eq. (15) suggests that the process of encoding data into 216 

Ω vectors can be inverted for prediction purposes. If a reliable estimation of weights factors is 217 

available to conform a new vector ’, then a prediction of its associated image can be made through:  218 

U       (16) 

As will be further explained in the following sections, a reliable estimation of the weight factors, i.e. 219 

vector ’, would be based on the known vectors obtained through Eq. (15) together with the 220 

parameters that characterize the original data sets. These vectors and parameters can be typically 221 

related with the aid of a simple regression model or more complicated method such as an artificial 222 

neural network, and the output ’ can be considered to be reliable if the modeling error is less than 223 

5%. Note that the validity of Eq. (16) is provided in Appendix A. 224 

Experimental datasets 225 

In this study, laboratory measurements of flow velocity and boundary shear stress in trapezoidal and 226 

circular open channels were taken directly from the University of Birmingham’s Flow Database 227 

(www.flowdata.bham.ac.uk).  228 

http://www.flowdata.bham.ac.uk/
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Trapezoidal datasets 229 

Two sets of experimental data relating to uniform flow in trapezoidal channels were used in this 230 

study: Yuen (1989) and Yuen and Knight (1990). The data included local boundary shear stress 231 

measurements in trapezoidal channels (Figure 2) using a Preston tube, made in fully developed flow 232 

under uniform flow conditions in a 22 m long titling flume. Two different base widths (2b) of 0.15m 233 

and 0.45m were considered, and the bed slope was varied from 1x10-3 to 2.337x10-2 in order to 234 

observe shear stress distribution for Froude (Fr) and Reynolds (Re) numbers within ranges of 0.58 235 

< Fr < 3.59 and 0.46x105 < Re < 6.18 x105, respectively, which derives from flow velocities (V) 236 

between 0.39 ms-1 and 2.69 ms-1. Measurements of velocity and shear stress were taken on average 237 

every 20 mm along the wetted perimeter (i.e. between 16 and 32 measurement points for each 238 

case), and measurement accuracy was estimated to be within +/-5% (Yuen, 1989).  239 

 

Figure 2. Trapezoidal channel cross section. 240 

To obtain homogenous subsets suitable for pattern recognition, and to test the sensitivity of the 241 

approach to the size of the training set, k-nearest neighbors (k-nn) clustering analysis (Fix and 242 

Hodges, 1951) was first performed. The fundamental idea of the k-nn algorithm is to simply separate 243 

the data based on the assumed similarities between various clusters. Here, the Euclidean distance 244 

metric was used to measure the similarity between clusters, and shear stress data was non-245 

dimensionalized by the average shear stress to eliminate the scale effects. K-nn was run with 246 

different k values, and consequently, three clusters (subsets) were identified by investigating the 247 

resultant dendrograms, i.e. graphical tree-structures that show the hierarchical relationships among 248 

clusters, ensuring highest similarity within each cluster (homogeneity) and lowest similarity between 249 

clusters were achieved.  250 

Table (1) lists the geometric and hydraulic parameters of all the experiments. In each subset, one 251 

experiment (highlighted in Table 1) was randomly selected and excluded to be used for validation 252 

whilst the remaining were considered for training. Since the method requires all data series in the 253 

set to have the same number of measurements taken at relatively even distances, for each 254 

experiment, the horizontal coordinates of all data points were normalized using a perimetric distance 255 

defined as Pd = s/p, where s is the distance along the wetted perimeter starting at the left bank at 256 

the free surface, moving around the wetted perimeter, and p is the total length of the wetted 257 

perimeter. The shear stress measurements in each experiment were also non-dimensionalized by 258 

the average shear stress. Where required, linear interpolation was used to obtain shear stress values 259 

from adjacent neighboring points. It is to note that at regions where shear stress varied at higher 260 

 

h 
1 

1 

2b 



10 
 

rates, experimental measurements were taken at smaller increments, thus resulting in the 261 

standardization of the degree of accuracy across the wetted perimeter. 262 

Figure (3) shows the distribution of the measured and non-dimensionalized shear stress for each of 263 

the three sets. It can be seen that the data series corresponding to each set share patterns such as 264 

the location of peak values and inflection points, which are attributed to the secondary flow 265 

structures, and the range of shear stress fluctuations across the wetted perimeter. 266 

Table 1. Geometric and hydraulic parameters of trapezoidal experiments. 267 

  

 1 2 3 4 5 6 7 8 9 10 11 

ID 
2b 
(m) 

h 
 (m) 

A 
 (m2) 

S0 
 

P 
 (m) 

R 
 

V  
(ms-1) 

Q  
(m3s-1) 

 
(Nm-2) 

Fr 
 

Re 
 

Set 1 

 
#1 0.15 0.030 0.005 0.0040 0.235 0.023 0.565 0.003 0.894 1.12 11392 

 #2 0.15 0.058 0.012 0.0087 0.313 0.038 1.308 0.016 3.256 1.97 43656 

 #3 0.15 0.037 0.007 0.0234 0.255 0.027 1.843 0.013 6.223 3.35 43800 

(TVc-1) #4 0.15 0.042 0.008 0.0234 0.269 0.030 1.901 0.015 6.871 3.27 50251 

 #5 0.15 0.050 0.010 0.0234 0.291 0.034 2.080 0.021 7.859 3.32 62609 

 #6 0.15 0.057 0.012 0.0234 0.310 0.038 2.190 0.026 8.625 3.32 72546 

Set 2 

  #7 0.45 0.044 0.022 0.0040 0.574 0.038 0.893 0.019 1.472 1.42 29574 

 #8 0.45 0.050 0.025 0.0010 0.591 0.042 0.398 0.010 0.414 0.60 14743 

 #9 0.45 0.056 0.029 0.0010 0.609 0.047 0.428 0.012 0.459 0.61 17563 

 #10 0.45 0.060 0.031 0.0010 0.620 0.049 0.439 0.013 0.484 0.60 18998 

 #11 0.15 0.029 0.005 0.0087 0.231 0.022 0.924 0.005 1.882 1.88 17923 

 #12 0.15 0.036 0.007 0.0087 0.250 0.026 1.010 0.007 2.244 1.87 23347 

 #13 0.15 0.041 0.008 0.0088 0.266 0.029 1.113 0.009 2.521 1.94 28663 

 #14 0.15 0.048 0.009 0.0087 0.284 0.033 1.231 0.012 2.815 2.01 35702 

(TVc-2) #15 0.45 0.044 0.022 0.0087 0.574 0.038 1.381 0.030 3.228 2.19 45751 

 #16 0.45 0.059 0.030 0.0087 0.615 0.048 1.553 0.046 4.124 2.17 65743 

 #17 0.45 0.044 0.022 0.0145 0.574 0.038 1.822 0.040 5.384 2.89 60371 

 #18 0.15 0.029 0.005 0.0234 0.231 0.022 1.592 0.008 5.052 3.24 30888 

 #19 0.45 0.045 0.022 0.0234 0.576 0.038 2.272 0.050 8.752 3.59 76145 

 #20 0.45 0.059 0.030 0.0234 0.615 0.048 2.427 0.072 11.067 3.38 102739 

Set 3 

  #21 0.15 0.075 0.017 0.0040 0.362 0.047 0.960 0.016 1.812 1.29 39299 

 #22 0.15 0.107 0.028 0.0010 0.453 0.061 0.497 0.014 0.596 0.58 26583 

(TVc-3) #23 0.15 0.125 0.034 0.0010 0.504 0.068 0.544 0.019 0.669 0.59 32599 

 #24 0.15 0.150 0.045 0.0010 0.574 0.078 0.584 0.026 0.768 0.59 40170 

 #25 0.45 0.075 0.039 0.0010 0.662 0.060 0.514 0.020 0.583 0.64 26845 

 #26 0.15 0.073 0.016 0.0087 0.356 0.046 1.468 0.024 3.896 2.00 58886 

 #27 0.15 0.099 0.025 0.0087 0.430 0.057 1.667 0.041 4.891 2.00 84008 

 #28 0.15 0.030 0.005 0.0145 0.235 0.023 1.296 0.007 3.272 2.58 26146 

 #29 0.15 0.075 0.017 0.0145 0.361 0.046 1.943 0.033 6.598 2.62 78915 

 #30 0.15 0.099 0.025 0.0234 0.430 0.057 2.690 0.066 13.129 3.23 135513 

 #31 0.45 0.044 0.004 0.0234 0.574 0.007 1.679 0.007 5.264 3.13 9997 
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 #32 0.45 0.058 0.006 0.0234 0.614 0.010 1.785 0.011 6.513 2.96 15045 

 268 

 269 

  

a) Set 1 

  

b) Set 2 

  

c) Set 3 

Figure 3. Measured and non-dimensionalized shear stress distribution of trapezoidal channels. 270 

Circular Channels 271 

A separate set of experimental data containing local boundary shear stress measurements in a 272 

circular channel, with and without a flat bed, running partially full was also used in this study (Figure 273 

4). This data has been described and analyzed in detail by Sterling (1998), Knight and Sterling (2000) 274 

and Sterling and Knight (2000). 275 
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Figure 4. Circular channel cross section. 276 

Similar to the trapezoidal data, k-nn clustering analysis was performed and only one major cluster 277 

was identified. It is to note that for this particular data set, even if the clustering was performed in a 278 

different way (e.g. with a different distance measure or clustering technique) and more than one 279 

cluster was obtained, the quality of the prediction would increase, given enough data is available for 280 

training the model. The only major difference would be the increased computation required for the 281 

extra clusters. Hence, in this context, one can see clustering as the process to find the optimum data 282 

sets on which modelling can be applied to without loosing accuracy. Table (2) lists the geometric 283 

and hydraulic parameters of all the circular channel test cases. Two validation cases, labelled CVc-284 

1 and CVc-2, were randomly chosen to validate the method and were excluded from the training set. 285 

The local shear stresses were originally measured at 10mm intervals around the wetted perimeter 286 

using a Preston tube. Hence, the difference in water depth between experiments resulted in different 287 

number of measurements in each data series, ranging from 30 to 60 point measurements. Similar to 288 

what was done for the trapezoidal case studies, a perimetric distance, Pd, was used to uniformize 289 

the number of measurements along the wetted perimeter. Where data points did not exist in the 290 

original series, linear interpolation was used to infer local boundary shear stress from adjacent 291 

neighboring points. Figure (5) depicts the boundary shear stress distribution of the cases in the 292 

training set.  293 

Table 2. Case studies for circular section. 294 
 295 

  

ID 

1 2 3 4 5 6 7 8 9 10 11 12 

 D t/D h/D A  S0 P  R V  Q  
 
  
 

Fr Re 

  m     (m2) x 10-2 (m)   (ms-1) (m3s-1) (Nm-2)     

 #1 0.24 0 0.33 0.014 0.1 0.300 0.045 0.394 0.005 0.441 0.52 15687 

 #2 0.24 0 0.51 0.024 0.1 0.386 0.061 0.493 0.012 0.597 0.51 26580 

 #3 0.24 0 0.83 0.041 0.1 0.557 0.074 0.554 0.023 0.721 0.38 36068 

CVc-1 #4 0.24 0.25 0.15 0.008 0.196 0.078 0.106 0.403 0.003 0.545 0.70 37377 

 #5 0.24 0.25 0.08 0.004 0.196 0.044 0.100 0.294 0.001 0.337 0.67 25865 

 #6 0.24 0.25 0.25 0.014 0.862 0.127 0.111 1.283 0.018 3.538 1.70 125381 

 #7 0.24 0.25 0.42 0.024 0.862 0.210 0.114 1.625 0.039 4.804 1.59 162219 

 #8 0.24 0.25 0.55 0.031 0.196 0.282 0.109 0.775 0.024 1.198 0.63 74130 

 #9 0.24 0.33 0.17 0.010 0.2 0.083 0.117 0.449 0.004 0.612 0.72 46203 

D h 

t 
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 #10 0.24 0.33 0.33 0.020 0.2 0.166 0.117 0.625 0.012 0.967 0.69 64359 

 #11 0.24 0.33 0.47 0.027 0.2 0.241 0.110 0.833 0.022 1.106 0.72 80571 

 #12 0.24 0.5 0.16 0.009 0.9 0.081 0.117 0.886 0.008 2.571 1.40 91194 

CVc-2 #13 0.24 0.5 0.25 0.014  0.88 0.126 0.111 1.143 0.016 3.341 1.42 111576 

 296 

 297 

  

a) measured shear stress b) non-dimensionalized shear stress 

Figure 5. Measured and non-dimensionalized shear stress distribution of circular channels. 298 

Methodology 299 

The initial step in using Recurrence Plots and Eigenface Recognition for predicting boundary shear 300 

stress distribution is forming a training set from available experimental data. As mentioned in the 301 

previous section, the raw experimental data sets typically consist of a number of local boundary 302 

sheer stress measurements, taken along the wetted perimeter of a channel, and presented as a data 303 

series. If measurements are not taken at the same relative locations across the different channels, 304 

then, to make the raw data suitable for use in the data mining algorithm, interpolation is carried out 305 

to find shear stresses at the same relative distances along the wetted perimeter, for all data series.    306 

As the Eigenfaces for Recognition algorithm accepts two-dimensional arrays of numbers, the original 307 

(one-dimensional) data series in the training set has to be pre-processed. This can be done through 308 

the Recurrence Plot algorithm. To this end, the dimension of the q  vectors identified in Eq. (4) is set 309 

to be equal to 1, so that each vector would contain numerical differences of shear stress between 310 

consecutive points in the data series, effectively resulting in each row of the RP matrix to become a 311 

normalized version of the original data series. In line with the image recognition algorithm, once the 312 

RP matrix is formed, Eq. (6) is used to construct a unique i vector representing the i-th experimental 313 

data set. 314 

Figure (6) shows the recurrence plots for the shear stress distribution of selected trapezoidal and 315 

circular data sets. It can be seen that the patterns of RPs associated to trapezoidal sections are fairly 316 

consistent. There is a square region at the center of most images whose silhouette stretches along 317 

the diagonals more than it does towards the sides. This does not appear to be the case for circular 318 
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cases (Figure 6b) where the RPs follow at least three types of patterns. The consistency of the 319 

datasets is also present in the original series shown in Figures 3 and 4 although the use of the RP 320 

technique has made those intrinsic properties more explicit. That is the main reason for pre-321 

processing the data prior to applying the full recognition method. As will be shown in the Results 322 

Section, the apparent constraint found in data from circular channels did not have a significant impact 323 

on the prediction of shear stress distributions. 324 

 325 

 

ID #6 ID #5 ID #3 

(a) Trapezoidal cross-section Set 1 

 

ID #1 ID #3 ID #6 

 (b) Circular cross-section  

Figure 6. Recurrence Plots of selected a) Trapezoidal and b) Circular channels. 326 

Once the Recurrence Plot vector representation for all members of the training set are obtained, Eq. 327 

(7) is used to calculate the average face, , and consequently, the difference between each image 328 

in the training set and the average face,i, are found by using Eq. (8). Then, performing Principal 329 

Component Analysis, the eigenvectors that characterize the face space are computed, and 330 

consequently, the set of weights, Ω, are determined by using Eq. (14). Figure (6) outlines the steps 331 

involved for encoding the training data sets and obtaining the vectors of weights, Ω. 332 

 

Ω 
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Original data series RP eigenspace Encoded Data 

Figure 7.  Process of encoding data series of shear stress.  333 

As mentioned in the background Section, to use this approach for predicting the boundary shear 334 

stress distribution of an unseen case, i.e. experimental data not included in the training set, also 335 

hereafter referred to as a validation case, a set of weights must be obtained to be used in Eq. (16). 336 

For the sake of generality, the weights associated to any experimental case are related to non-337 

dimensional parameters which represent the major characteristics of channel’s geometry and flow. 338 

In this research we have used the following non-dimensional attributes: 339 

 Trapezoidal channels: 2b/h, 2bh/A, Fr, Re 340 

 Circular channels: (h+t)/D, Q/(VD2), Fr, Re 341 

Where h is the water depth, V is the mean velocity, Q represents discharge, and Fr and Re are the 342 

Froude and Reynolds numbers, respectively. The bottom width for trapezoidal channels is 343 

represented by 2b whilst t/D is the base height to diameter ratio for circular channels. In order to 344 

relate weights and non-dimensional attributes, a simple regression model can be established: 345 

1 1 2 2      . . .  i i i n inx x x        (17) 

where i represents a regression estimation of the i-th weighting factor, xij is the j-th non-dimensional 346 

hydraulic/geometric parameter of the i-th training experiment and j are regression parameters. The 347 

solution to Eq. (17) is given by: 348 

 
1




 T T
X X X  (18) 

where �̂� is the best estimator vector of the target  factors X represents the matrix of 349 

hydraulic/geometric non-dimensional parameters, and  is the vector of target weighting factors. 350 

Once the set of  factors is determined, the prediction model can be established. After investigating 351 

a number of non-dimensional attributes, the ones listed above were found to strongly influence the 352 

established relationship with the target weighting factors.  353 

Figure (6) shows the steps involved in the process of encoding the original data series. This process 354 

can be reversed to obtain a new set of weighting values, , e.g. for test cases not included in the 355 

training set. Eq. (17) enables to find  those weighting factors which can then be stored in the short-356 

dimension vector (Ω’). Following, The vector Γ’ can be predicted by applying Eq.(16). 357 

To help the reader better understand the entire modeling process, a simple step-by-step guide to 358 

using the proposed approach is presented in Appendix B. Furthermore, a copy of the code written 359 

in C++ is available at: http://shear-stress-using-face-recog.sourceforge.net 360 

Results 361 

http://shear-stress-using-face-recog.sourceforge.net/
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Trapezoidal Channels 362 

The proposed methodology was first applied to the three trapezoidal data sets presented in Table 363 

(1). In summary, for each training set, the process shown in Figure (6) was first followed to obtain 364 

the weight factors for the training set, . Then, Eq. (17) was used to establish a linear regression 365 

between the weights associated with each eigenface and the non-dimensional attributes of the 366 

geometric and hydraulic parameters of the experiments. The corresponding  regression parameters 367 

were then obtained using Eq. (18) and the vector of estimated weights for the unseen test case, ' 368 

was constructed. All weighting and  factors are provided in Appendix C. Subsequently, Eq. (16) 369 

was used to obtain the ' vector, and its elements were transformed to find non-dimensionalised 370 

shear stress values across the channel. It should be noted that the first component of the ' vector, 371 

i.e. e11, which corresponds to the boundary shear stress value at Pd = 0 is always zero. The boundary 372 

shear stress at this point was obtained through a separate linear regression between the predicted 373 

values of local shear stresses: 374 

10 1 2 2     . . .  i i ini nx x x        (19) 

where τ0i represents a regression estimation of the i-th shear stress at Pd = 0, xij is the j-th non-375 

dimensional hydraulic/geometric parameter of the i-th training experiment and j are regression 376 

parameters.  377 

Finally, the predicted series were rescaled by multiplying their ordinates by the estimated average 378 

shear stress (�̅�) obtained by the Slope method (Eq. 1). For practical purposes, this parameter could 379 

be estimated using any other prediction model, such as the ones suggested by Knight (1981), Knight 380 

et al., (1984&1994) and Flintham and Carling, (1988).  381 

Figure (7) shows the predicted vs. observed boundary shear stress distributions for the validation 382 

cases in each of the two sets along with the predictions of the well-established Shiono and Knight 383 

model (SKM) (Shiono & Knight, 1988; 1990). As it can be seen, although there is some difference 384 

between the observed and predicted values particularly at the edges of the wetted perimeter, the 385 

shape and amplitude of the predicted curves accurately follow the observed distributions. Moreover, 386 

the proposed method outperforms SKM in all three cases, particularly at the edges. It is also inferred 387 

that the relatively small number of experiments in training Set 1 did not have a significant impact on 388 

prediction accuracy. The mean square error (MSE) between observed and predicted ordinates 389 

averaged over all data points along the wetted perimeter was found to be of 4.4%, 0.88%, and 0.04% 390 

for TVc-1, 2, and 3, respectively. Table (3) shows a more detailed comparison between observed 391 

and simulated data series for the validation cases. In this table   is the average absolute 392 

difference between the ordinates of the observed and predicted data series, max is the largest 393 

estimated difference and MSESKM is the mean square error for the SKM model. The table also 394 
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provides the ratio of those divergence parameters with respect to the average stress, in addition to 395 

the relative location of Δτpeak along the wetted perimeter covering an interval [0-1], with 0 and 1 396 

corresponding to the utmost left and right edges of the wetted perimeter, respectively. Furthermore, 397 

the cross correlation,   , between the observed and predicted time series is presented for each 398 

case: 399 

obs obs model model obs model1

1
( )( ) /

N

iN
      


   
   (21) 

where   is the average shear stress and σ is the corresponding standard deviation.  400 

 

a) TVc-1 (Fr=3.27) 

 

b) TVc-2 (Fr=2.19) 
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c) TVc-3 (Fr=0.59) 

Figure 8. Modelled vs measured shear stress distributions for trapezoidal validation cases. 401 

Table 3. Overview of predicted boundary shear stress for trapezoidal channels. 402 

Validation 
case 

Fr MSE   

(Nm-2) 
 

|∆𝜏̅|

𝜏̅
 max  

(Nm-2) 
 

|∆𝜏𝑚𝑎𝑥|

𝜏̅
 

Relative 
location 
of 

max  

  
MSESKM 

     

TVc-1 3.2701 0.0448 0.1404 0.0204 0.7682 0.1118 1 0.994 0.6589 
TVc-2 2.1934 0.0088 0.0694 0.0215 0.2340 0.0725 0.946 0.984 0.1107 
TVc-3 0.5926 0.0004 0.0167 0.0249 0.0641 0.0958 1 0.975 0.0008 

 403 

Circular Channels 404 

The methodology was also applied to the circular channel data set introduced in the Experimental 405 

Datasets Section. Figure (8) shows the modelled vs. measured shear stress distribution for the 406 

validation test cases. The MSE between observed and predicted values were found to be 0.12% in 407 

the first case, CVc-1, and 4.9 % in the second validation case, CVc-2,  which are of similar order 408 

than those found for the trapezoidal cases. The largest divergence was obtained at the channel 409 

edges (Pd =0, 1) which seems to be a reflection of the scatter of the input data shown in Figure (4). 410 

It is also noted from Figure (8) that the predicted curves tend to be smoother than the observed ones. 411 

This can be due to a group effect which causes the predicted shear distributions to tend to the 412 

average face value established in the face space. This effect is to some extent implicit in Eq. (8).  413 

Nonetheless, the cross correlation parameter, which is well above 0.9 in both cases, together with 414 

the magnitude of the differences indicate that the shear stress contours have been captured with 415 

excellent accuracy. Table (4) provides an extended comparison between observed and predicted 416 

data for circular validation test cases. 417 

 418 
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a) CVc-1 (Fr=0.7) 

 

b) CVc-2 (Fr=1.42) 

Figure 9. Modelled vs measured shear stress distributions for circular validation cases. 419 

Table 4. Overview of predicted boundary shear stress for circular channels. 420 

Validation 
case 

Fr MSE   

(Nm-2) 
 

|∆𝜏̅|

𝜏̅
 max  

(Nm-2) 
 

|∆𝜏𝑚𝑎𝑥|

𝜏̅
 

Relative 
location 
of 

max  

  

   

CVc-1 0.696 0.0012 0.0245 0.0448 0.1239 0.2264 1 0.922 
CVc-2 1.420 0.0494 0.1710 0.0512 0.7048 0.2110 1 0.944 

 421 

Summary and Conclusions 422 

Recurrence Plot analysis and Eigenface for Recognition were used to predict the distribution of 423 

boundary shear stress in trapezoidal and circular channels. In this approach, first, the RPs of all 424 

training set members are constructed and the differences between them and the average RPs are 425 

computed. Principal component analysis is then performed and weight factors proportional to the 426 

eigenvectors are obtained. To obtain predictions of boundary shear stress, a simple regression 427 
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equation is established to relate the weight factors to non-dimensional attributes of the training set’s 428 

hydraulic and geometric characteristics. For each validation case, corresponding weights are 429 

obtained by the regression equations, and the reverse of the process is performed to obtain the 430 

distribution of the boundary shear stress. 431 

The method was applied to two trapezoidal data sets and one circular data set. The results showed 432 

that: 433 

 The technique is capable of capturing the intrinsic patterns of the RPs which makes it suitable 434 

for the prediction of shear stress distributions. 435 

 The method is valid for both sub and supercritical flow conditions. 436 

 The average error obtained across all predicted series is of 2.09% and the cross correlation 437 

is within 92% of accuracy for all trapezoidal and circular verification cases. 438 

The accuracy of the predictions was found to be somewhat higher for trapezoidal channels compared 439 

to circular channels. This can be a reflection of the consistency of the input information which in the 440 

case of circular channels is less, i.e. the distributions are less uniform. The variation of the shape of 441 

the wetted section with the increase of the water level appears to be the reason of such variability.  442 

The present investigation was based on a database formed by a limited number of experimental test 443 

cases, particularly for the case of circular sections. Nevertheless, the prediction results were 444 

satisfactory.  The robustness of the methodology should be further tested with a larger training 445 

database containing further combinations of hydraulic parameters and section dimensions, and 446 

additional validation cases. This would help to ensure the generality of the weighting factors, and 447 

therefore, the overall accuracy of the prediction models. Based on the analysis presented here it is 448 

clear that the method works for relatively low number of input data series which in this research 449 

ranged between 5 and 13 data series in the clusters. Furthermore, the linear regression models were 450 

demonstrated to be adequate estimators for the relatively smooth bed shear stresses studied, as 451 

they were able to capture the rates of shear stress variation with accuracy. It is to note that such 452 

simple estimators might not be accurate when modelling more complex configurations and patterns, 453 

and a more robust estimator (e.g. artificial neural network) may be more suitable depending on the 454 

degree of non-linearity observed in the input data.  455 

  456 
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Appendix A: Derivation of Eq. (16) 575 

From (15) we have: 576 

( )TU     (A1) 

Expanding gives: 577 

T TU U     (A2) 

Therefore, 578 

T TU U    (A3) 

Since the matrix U is orthogonal 1TU U  , and therefore: 579 

1 1UU UU U      (A4) 

Finally leading to, 580 

U     (A5) 

  581 
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Appendix B: Step-by-step guide to using the proposed approach 582 

Step No. Action Detail Comment 

1 Integrate database It will contain M data series  

2 
Take sample vectors of 
dimension d 

 

 

1 1

1 1

 ,  . .,  

 ,  . .,  

j j j d
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q q q

q q q

  

  





j

k

q

q

  

3 
Calculate Euclidean 
distance amongst q-
vectors 

ejk: Euclidean Distance between qj and qk 
 

4 

Assemble RP Matrix 
 
There will be one RP 
Matrix per data series. 

11 12 1

21

1

N

jk

N NN

e e e

P
e e

e

R

e

 
 
 
 
 
 

 

Project RP Matrix 
on Cartesian 
space to plot RP if 
required 

5 
Form M vectors of 
dimension N2 

 11 12,  , ,  T

NNe e e    
 

6 

Estimate the average Γ 
vector (ϑ) and its 
fluctuating components 
(φi) 

1

1
Γ

i M

i

iM






  ; ; 1,2,...,Γi i i M    
 

7 
Assemble A Matrix and 
related covariance matrix 

1 2A  [ , ., ]M    ;   TC AA   

8 
Perform eigenvalue and 
eigenvector analysis on 
matrix C 

ul : l-th eigenvector of matrix C 
 
if the reduced matrix L were used then, 

1

1,...,
M

l li i

i

u v l M


   

Alternatively, 
calculate 
eigenvectors from 
a reduced matrix L 

  TL A A  

9 

Determine M weighting 
factors (ω) to assemble 
the short-dimension 
vectors Ω 

( ), 1,...,T

i iu i M      

 

Ω𝑇 = {𝜔1, 𝜔2, . . 𝜔𝑀′} 
where M’ is the number of meaningful 
eigenvectors 

There will be one 
Ω vector per 
original data 
series 

Prediction Process 

10 

Put together estimators 
for predicting new sets of 
Ω vectors for cases not 
included in the original 
database as well as for 
predicting the initial value 
of the data series (τ0) 

Given the estimation of Ω’ the 
corresponding Γ’ vector ca be calculated, 
 

U       
 
τ0: estimated value of shear stress at Pd=0 

Estimators could 
be based on linear 
regression models 
or machine 
learning 
techniques 

11 Infer the RP’ Matrix See Step 4  

12 Infer predicted data series 
Any row in the RP’ Matrix represents a 
normalized version of the predicted data 
series 

Select Row 1 

13 
Denormalize the 
predicted series 

Rescale the selected row in the RP’ Matrix 
by using the estimated value of τ0 

End of prediction 
process 

 583 



26 
 

Appendix C: Weighting and  factors 584 

 585 

Table C1. Weighting factors for trapezoidal channels - Set 1 586 

# \ ω ω1 ω 2 ω 3 ω 4 ω 5 

1 -1.1900 0.1480 -0.5080 0.7390 0.8080 

2 -0.1180 0.1780 0.0928 -0.0506 -0.1020 

3 0.0592 0.1080 -0.1420 -0.0327 0.0075 

4 -0.0141 0.0015 0.0265 -0.1130 0.0994 

5 0.0000 0.0000 0.0000 0.0000 0.0000 

 587 

The weighting factors represent the components of the vector ΩT in step 9 of the algorithm - as described in 588 
Appendix B, and are the base to setup the estimator for predicting new sets of Ω vectors not included in the 589 
original data set as outlined in step 10 of the same procedure. 590 

 591 

 592 

  593 
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Table C2.  factors for trapezoidal channels - Set 1 594 

# \  1 2 3 4 

1 0.9556 7.6825 -18.9163 0.4420 

2 -1.2443 -5.2398 15.1313 -0.1711 

3 0.1478 1.1778 -2.4132 -0.0767 

4 0.5686 2.5755 -7.2138 0.0755 

5 0.0000 0.0000 0.0000 0.0000 

 595 
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Table C3. Weighting factors for trapezoidal channels - Set 2 597 

# \ λ ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 ω 8 ω 9 ω 10 ω 11 ω 12 ω 13 

1 -1.730 -0.970 -0.080 0.238 0.048 0.258 0.547 -0.187 -0.482 -0.016 -0.650 1.080 1.940 

2 0.178 -0.004 -0.063 -0.024 0.149 0.015 -0.061 -0.337 -0.017 0.030 -0.052 0.156 0.028 

3 -0.054 -0.095 -0.176 -0.207 0.160 0.077 0.094 0.070 0.065 0.091 0.051 0.006 -0.081 

4 -0.071 -0.067 0.064 0.070 0.136 -0.137 -0.098 0.015 -0.001 0.066 0.059 0.009 -0.044 

5 0.004 0.110 0.047 -0.107 0.077 -0.063 -0.004 0.044 -0.054 -0.016 -0.078 -0.011 0.051 

6 -0.075 0.064 0.046 -0.008 -0.032 -0.003 0.074 -0.053 -0.035 0.054 0.006 0.055 -0.093 

7 0.073 -0.047 -0.019 -0.005 -0.047 -0.029 -0.005 0.067 -0.088 0.067 -0.024 0.070 -0.014 

8 0.008 -0.017 0.009 0.045 0.065 0.059 0.033 0.006 -0.102 -0.048 0.006 -0.036 -0.028 

9 0.006 -0.015 0.032 -0.047 -0.016 -0.004 -0.004 -0.010 -0.022 -0.027 0.075 0.014 0.018 

10 -0.007 0.035 -0.052 0.018 -0.001 -0.023 0.003 -0.001 -0.018 -0.001 0.031 0.001 0.014 

11 -0.018 0.018 -0.003 -0.005 -0.003 0.043 -0.055 0.007 -0.012 0.016 0.004 0.008 -0.001 

12 0.002 -0.003 0.005 -0.003 -0.004 0.002 0.005 -0.012 -0.009 0.030 0.004 -0.029 0.014 

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 598 

The weighting factors represent the components of the vector ΩT in step 9 of the algorithm - as described in 599 
Appendix B, and are the base to setup the estimator for predicting new sets of Ω vectors not included in the 600 
original data set as outlined in step 10 of the same procedure. 601 

 602 

 603 
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Table C4.  factors for trapezoidal channels - Set 2 605 

# \  1 2 3 4 

1 -0.3051 -4.0757 6.9595 0.4486 

2 -0.0256 -0.9874 -1.4916 0.0220 

3 0.0108 0.4969 -0.8857 0.0539 

4 -0.0296 -0.5460 0.9375 0.0056 

5 0.0212 0.2969 -0.5460 -0.0122 

6 0.0136 0.1696 -0.3224 -0.0080 

7 0.0634 0.8683 -1.7137 0.0087 

8 -0.0127 -0.0032 0.1463 -0.0163 

9 -0.0190 -0.1555 0.2696 0.0126 

10 -0.0020 -0.0359 0.0540 0.0048 

11 0.0004 -0.0260 0.0341 0.0017 

12 -0.0021 -0.0428 0.0743 0.0004 

13 0.0000 0.0000 0.0000 0.0000 

 606 
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Table C5. Weighting factors for trapezoidal channels - Set 3 608 

# \ ω ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 ω 8 ω 9 ω 10 ω 11 

1 -0.681 0.806 -0.639 -0.732 -0.220 1.040 -0.987 1.240 0.556 -0.935 0.556 

2 0.029 -0.470 -0.255 -0.244 0.129 0.262 0.253 0.074 -0.121 0.101 0.242 

3 0.232 -0.049 -0.103 0.094 0.051 0.155 -0.028 0.011 0.018 -0.141 -0.239 

4 0.007 -0.007 0.078 -0.053 -0.171 0.174 0.004 -0.185 0.111 0.032 0.011 

5 -0.003 0.059 -0.104 0.084 -0.064 -0.022 0.120 -0.043 -0.005 -0.095 0.073 

6 -0.118 0.021 -0.012 0.011 -0.001 0.045 0.089 0.034 0.005 0.040 -0.113 

7 0.037 -0.004 0.013 -0.096 -0.001 -0.069 0.066 0.022 0.099 -0.039 -0.028 

8 -0.044 -0.075 0.007 0.067 0.010 -0.013 -0.022 0.006 0.076 -0.024 0.012 

9 -0.013 0.026 -0.043 -0.012 0.064 0.000 -0.014 -0.055 0.029 0.017 0.001 

10 0.016 0.000 -0.040 0.007 -0.032 -0.014 -0.013 0.017 0.019 0.047 -0.005 

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 609 

The weighting factors represent the components of the vector ΩT in step 9 of the algorithm - as described in 610 
Appendix B, and are the base to setup the estimator for predicting new sets of Ω vectors not included in the 611 
original data set as outlined in step 10 of the same procedure. 612 
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Table C6.  factors for trapezoidal channels - Set 3 614 

# \  1 2 3 4 

1 -0.2908 -0.0080 0.2281 0.4332 

2 0.0096 -0.2285 -0.1630 0.2357 

3 0.0180 0.0150 -0.0858 0.0193 

4 -0.0164 0.0021 0.0256 0.0143 

5 0.0267 -0.0275 -0.0603 0.0119 

6 0.0157 -0.0156 -0.0478 0.0183 

7 -0.0082 -0.0063 -0.0115 0.0318 

8 0.0075 -0.0131 -0.0240 0.0136 

9 -0.0026 0.0055 0.0128 -0.0093 

10 0.0022 -0.0148 -0.0063 0.0116 

11 0.0000 0.0000 0.0000 0.0000 

 615 

 616 

 617 

 618 
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 620 

Table C7. Weighting factors for circular channels 621 

# \ ω ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7 ω 8 ω 9 ω 10 ω 11 

1 0.575 0.045 -1.390 0.645 0.382 -0.580 -1.590 1.010 0.587 -0.815 1.130 

2 0.342 0.236 0.298 0.153 -0.130 -0.243 0.015 0.089 -0.548 -0.264 0.052 

3 -0.113 -0.081 0.116 -0.329 0.094 -0.148 0.041 0.025 -0.079 0.067 0.408 

4 0.062 0.002 0.029 -0.065 -0.056 0.181 -0.186 -0.008 -0.086 0.107 0.020 

5 0.019 -0.010 0.150 -0.055 -0.076 -0.116 -0.093 0.099 0.130 0.037 -0.086 

6 0.094 0.065 0.019 -0.060 0.078 -0.023 -0.037 -0.153 0.065 -0.040 -0.009 

7 -0.071 -0.025 0.063 0.118 0.016 -0.036 -0.061 -0.079 -0.006 0.040 0.039 

8 -0.025 -0.047 0.065 -0.001 0.020 0.070 -0.009 0.013 0.019 -0.113 0.008 

9 -0.010 -0.016 0.005 -0.009 0.109 -0.013 -0.023 0.035 -0.042 0.018 -0.055 

10 0.041 -0.058 -0.000 0.008 -0.000 -0.006 0.011 -0.007 0.000 0.009 0.002 

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 622 

The weighting factors represent the components of the vector ΩT in step 9 of the algorithm - as described in 623 
Appendix B, and are the base to setup the estimator for predicting new sets of Ω vectors not included in the 624 
original data set as outlined in step 10 of the same procedure. 625 

 626 

 627 
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Table C8.  factors for circular channels 629 

# \  1 2 3 4 

1 17.021 3.8897 -91.674 0.2276 

2 6.0396 0.2841 -28.183 -0.0307 

3 0.1384 0.3188 -0.7383 -0.0455 

4 0.1545 -0.2010 -0.8489 0.0717 

5 0.7182 0.2648 -2.7239 -0.1242 

6 0.4712 -0.2330 -2.1671 0.0612 

7 0.0934 0.0730 -0.4932 -0.0118 

8 -0.3949 -0.1719 1.8068 0.0465 

9 -0.3392 -0.1728 1.4864 0.0504 

10 0.0485 0.0327 -0.2667 -0.0047 

11 0.0000 0.0000 0.0000 -0.0001 

 630 


